动态电路的暂态响应研究

动态电路的暂态响应研究
动态电路的暂态响应研究

第三章 电路的暂态分析1

第三章 电路的暂态分析 一、填空题: 1. 一阶RC 动态电路的时间常数τ=___RC____,一阶RL 动态电路的时间常数τ=__L/R______。 2. 一阶RL 电路的时间常数越__大/小 _ (选择大或小),则电路的暂态过程进行的越快 慢/快 (选择快或慢)。。 3. 在电路的暂态过程中,电路的时间常数τ愈大,则电压和电流的增长或衰减就 慢 。 4. 根据换路定律,(0)(0)c c u u +-=,()+0L i =()0L i — 5. 产生暂态过程的的两个条件为 电路要有储能元件 和 电路要换路 。 6. 换路前若储能元件未储能,则换路瞬间电感元件可看为 开路 ,电容元件可看为 短路 ;若储能元件已储能,则换路瞬间电感元件可用 恒流源 代替,电容元件可用 恒压源 代替。 7. 电容元件的电压与电流在关联参考方向下,其二者的关系式为1 u idt C = ?;电感元件的电压与电流在关联参考方向下,其二者的关系式为di u L dt =。 8. 微分电路把矩形脉冲变换为 尖脉冲 ,积分电路把矩形脉冲变换为 锯齿波 。 9.下图所示电路中,设电容的初始电压(0)10C u V -=-,试求开关由位置1打到位置2后电容电压上升到90 V 所需要的时间为 4.8*10-3 秒。 F μ100 10. 下图所示电路中,V U u C 40)0(0_==,开关S 闭合后需 0.693**10-3

秒时间C u 才能增长到80V ? + U C - 11. 下图所示电路在换路前处于稳定状态,在0t =时将开关断开,此时电路的时间常数τ为 (R 1 +R 2 )C 。 U 12. 下图所示电路开关S 闭合前电路已处于稳态,试问闭合开关的瞬间, )0(+L U 为 100V 。 1A i L 13. 下图所示电路开关S 闭合已久,t=0时将开关断开,则i L (0-)= 4A ,u C (0+)= 16V ,i C (0+)= 0 。 u c 14.下图所示电路,当t=0时将开关闭合,则该电路的时间常数为 0.05S 。

一阶动态电路响应实验

一阶动态电路响应实验 一、实验目的 1. 学习示波器和函数信号发生器的使用方法。 2. 学习自拟实验方案,合理设计电路和正确选用元件、设备完成实验。 3. 研究RC电路的零输入响应和零状态响应。 4. 研究RC电路的方波响应。 二、实验环境 面包板、导线若干、示波器、100kΩ电阻、单刀双掷开关、5V电压源、10μF电容。 三、实验原理 动态电路的过渡过程是十分短暂的单次变化过程,要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 方波的前沿相当于给电路一个阶跃输入,其响应就是零状态;方

波的后沿相当于在电容具有初始值uC(0-)时把电源用短路置换,这时电路响应转换成零输入响应。 四、实验电路 五、波形图 六、数据记录 充电过程:最大充电电压Us=4.60V、充电时间△X=4.880s

Uc=0.632×Us=2.9072V、最接近该电压值时间△X=1.000s 放电过程:最大放电电压Us=4.60V、放电时间△X=4.560s Uc=0.368×Us=1.6928V、最接近该电压时间△X=3.560s 七、实验总结 更加熟悉在面包板上搭接试验电路以及示波器的使用,了解一阶电路的零状态响应和方波响应,学习在示波器上使用追踪坐标读取数据。 八、误差分析 1.可能没将光标置于波形最值点; 2.可能无法精确达到Uc值所在点,读取的△X不准确。

RC一阶电路的响应测试 实验报告

实验六RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用虚拟示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 用示波器测量零输入响应的波形如图6-1(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 U m所对应的时间测得,如图6-1(c)所示。 (a) 零输入响应 (b) RC一阶电路(c) 零状态响应 图 6-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC T时串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<< 2(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一个微分电路。因为此时 电路的输出信号电压与输入信号电压的微分成正比。如图6-2(a)

一阶RC电路的暂态响应

一阶R C电路的暂态 响应

专业:电子信息技术及仪器 姓名:__黄云焜__________ 实验报告 学号: 3100100407_______课程名称:__电路原理实验______指导老师:__ 熊素铭______成绩:__________________实验名称:_一阶RC电路的暂态响应____实验类型:________________同组学生姓名: __________ 一、实验目的和要求(必填)二、实验内容和原理(必填 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、熟悉一阶RC电路的零状态响应、零输入响应和全响应。 2、研究一阶电路在阶跃激励和方波激励情况下,响应的基本规律和特点。 3、掌握积分电路和微分电路的基本概念。 4、研究一阶动态电路阶跃响应和冲激响应的关系。 5、从响应曲线中求出RC电路时间常数τ。 二、实验原理 1.电路的过渡过程

2.一阶RC 电路的零输入响应: 激励(电源)为零,由初始储能引起的响应(放电过程) 1)求RC电路时间常数τ 3.一阶RC 电路的零状态响应: 储能元件初始能量为零,在激励(电源)作用下产生的 响应。 1)求RC电路时间常数τ 4.一阶RC 电路的全响应: 非零起始状态的电路受到外加激励所引起的响应。

5. 一阶RC 电路的方波响应: 从本质上看,方波是以相同的时间间隔,不停开关的电压(或者不断为高低值)。 6.微分电路和积分电路 1)微分电路:如图(1)RC电路,当输出电压取自电阻两端时,对于高频信号,可用作耦合 电路,而对于低频信号则可实现微分运算。 2) 积分电路 :如图(2)RC电路,当输出电压取自电容两端时,对于高频信号,可实现积分运算。 图(1)图(2) 7.冲激响应、阶跃响应及其关系:阶跃响应是阶跃函数激励下的零状态响应;冲激响应 是冲激函数激励下的零状态响应;冲激响应是阶跃响应的导数;

一阶电路的冲激响应

一、单位冲激函数 单位冲激函数也是一种奇异函数,通常用符号δ(t)表示,因此单位冲激函数又被称为δ函数。单位冲激函数的定义为 所以单位冲激函数是宽度趋于0、高度趋于∞、面积为1的特殊函数。单位冲 激函数可以看作是单位脉冲的一种极限。如图1是一个宽度为Δ、高度为的矩 形脉冲,其面积 当宽度Δ不断减小时,矩形脉冲的高度就不断增大,当脉冲宽度Δ趋近于0时,其高度趋近于∞,但其面积不变,仍然为1,该极限情况即为单位冲激函数。由于 故 单位冲激函数与t轴所包围的面积的大小称为该函数的强度,所以单位冲激函数的强度为1。单位冲激函数的波形如图2所示,用带箭头的线段表示,箭头旁边标注的是它的强度。如果冲激函数为K d(t),则该冲激函数的强度为K,如图3所示。图4所示波形则是一个延时的单位冲激函数,即

需要说明的是单位冲激函数的积分上、下限也可以不是正、负无穷,只要积分的上、下限包围了函数存在的那一点,积分就等于1,故有下面两式成立 二、单位冲激函数的主要特性 当一个连续函数f(t)和单位冲激函数相乘时,由于t≠0时d(t)=0,所以有 f(t)d(t)=f(0)d(t) 故 上式被称为筛选特性或采样特性。由此可推论得 式(1)和式(2)的积分限可缩小,且有 三、单位冲激函数与阶跃函数的关系

四、电路中的冲激函数 图5所示电路,电容上原无储能即u c(0-)=0,当电源电压加到电容元件上后,不难得电容电压为u c(t)=ε(t),并且可知u c(0+)=1,即电容电压发生了跳变,此时电容不再遵守u c(0-)=u c(0+)的换路定则。而电容电流 即电容电流为冲激函数。换句话说,电容电压的跳变是冲激电流作用的结果。同理,当冲激电压作用于电感元件时,如图6所示电路,电感电流同样会发生跳变,且 当电感元件的初始储能为零,即i L(0-)=0时, 因此单位冲激电压使电感电流从0跳变到了1/L。 五、单位冲激响应 单位冲激响应是零状态网络对单位冲激信号的响应。单位冲激响应通常用h(t)表示。下面介绍两种求解单位冲激响应的方法。 1、零输入响应法 由于单位冲激函数只存在于t=0的一瞬间,在t≠0时其数值为零,所以 当单位冲激激励作用于电路时,意味着单位冲激激励源在t=0的一瞬间将能量储存到了动态元件上,之后的响应便是由动态元件上的储能来提供的,因此其响应形式与零输入响应相同,故被称为零输入响应法。用零输入响应法求解单位冲激响应 h(t)的步骤为 ①根据电路方程,求得u c(0+)或i L(0+)。

一阶动态响应(电路分析)

姓名:王硕

一、实验目的 1、研究一阶动态电路的零输入响应、零状态响应及完全响应的特点和规律。掌握测量一阶电路时间常数的方法。 2、理解积分和微分电路的概念,掌握积分、微分电路的设计和条件。 3、用multisim仿真软件设计电路参数,并观察输入输出波形。 二、实验原理 1、零输入响应和零状态响应波形的观察及时间常数τ的测量。 当电路无外加激励,仅有动态元件初始储能释放所引起的响应——零输入响应;当电路中动态元件的初始储能为零,仅有外加激励作用所产生的响应——零状态响应;在外加激励和动态元件的初始储能共同作用下,电路产生的响应——完全响应。 以一阶RC动态电路为例,观察电路的零输入和零状态响应波形,其仿真电路如图1(a)所示。 ( u i ( u o (a)(b) 图1 一阶RC动态电路 方波信号作为电路的激励加在输入端,只要方波信号的周期足够长,在方波作用期间或方波间隙期间,电路的暂态响应过程基本结束(τ5 2/≥ T)。故方波的正脉宽引起零状态响应,方波的负脉宽引起零输入响应,方波激励下的) (t u i 和) (t u o 的波形如图1(b)所 示。在)2/ 0(T t, ∈的零状态响应过程中,由于T << τ,故在2/ T t=时,电路已经达到 稳定状态,即电容电压 S o U t u= )(。由零状态响应方程 ) 1( )(/τt S o e U t u- - = 可知,当2/ ) ( S o U t u=时,计算可得τ 69 .0 1 = t。如能读出 1 t的值,则能测出该电路的时间常数τ。 2、RC积分电路 由RC组成的积分电路如图2(a)所示,激励) (t u i 为方波信号如图2(b)所示,输出电压) (t u o 取自电容两端。该电路的时间常数 2 T RC>> = τ(工程上称10倍以上关系为远远大于或远远小于关系。),故电容的充放电速度缓慢,在方波的下一个下降沿(或上升沿)

电路的暂态分析

第8章电路的暂态分析 含有动态元件L和C的线性电路,当电路发生换路时,由于动态元件上的能量不能发生跃变,电路从原来的一种相对稳态过渡到另一种相对稳态需要一定的时间,在这段时间内电路中所发生的物理过程称为暂态,揭示暂态过程中响应的规律称为暂态分析。 本章的学习重点: ●暂态、稳态、换路等基本概念; ●换路定律及其一阶电路响应初始值的求解; ●零输入响应、零状态响应及全响应的分析过程; ●一阶电路的三要素法; ●阶跃响应。 8.1 换路定律 1、学习指导 (1)基本概念 从一种稳定状态过渡到另一种稳定状态需要一定的时间,在这一定的时间内所发生的物理过程称为暂态;在含有动态元件的电路中,当电路参数发生变化或开关动作等能引起的电路响应发生变化的现象称为换路;代表物体所处状态的可变化量称为状态变量,如i L和u C就是状态变量,状态变量的大小显示了储能元件上能量储存的状态。 (2)基本定律 换路定律是暂态分析中的一条重要基本规律,其内容为:在电路发生换路后的一瞬间,电感元件上通过的电流i L和电容元件的极间电压u C,都应保持换路前一瞬间的原有值不变。此规律揭示了能量不能跃变的事实。 (3)换路定律及其响应初始值的求解 一阶电路响应初始值的求解步骤一般如下。 ①根据换路前一瞬间的电路及换路定律求出动态元件上响应的初始值。 ②根据动态元件初始值的情况画出t=0+时刻的等效电路图:当i L(0+)=0时,电感元件在图中相当于开路;若i L(0+)≠0时,电感元件在图中相当于数值等于i L(0+)的恒流源;当 u C(0+)=0时,电容元件在图中相当于短路;若u C(0+)≠0,则电容元件在图中相当于数值等于u C(0+)的恒压源。

一阶动态电路响应研究实验报告

一阶动态电路响应的研究 实验目的: 1.学习函数信号发生器和示波器的使用方法。 2.研究一阶动态电路的方波响应。 实验仪器设备清单: 1.示波器 1台 2.函数信号发生器 1台 3.数字万用表 1块 4. 1kΩ电阻X1 ;10kΩ电阻 X1 ;100nf电容X1 ;面包板;导线若干。 实验原理: 1.电容和电感的电压与电流的约束关系是通过导数和积分来表达的。积分电路和 微分电路时RC一阶电路中典型的电路。一个简单的RC串联电路,在方波序列 脉冲的重复激励下,由R两端的电压作为输出电压,则此时该电路为微分电路, 其输出信号电压与输入电压信号成正比。若在该电路中,由C两端的电压作为 响应输出,则该电路为积分电路。 2.电路中在没有外加激励时,仅有t=0时刻的非零初始状态引起的响应成为零输 入响应,其取决于初始状态和电路特性,这种响应随时间按指数规律衰减。在 零初始状态时仅有在t=0时刻施加于电路的激励所引起的响应成为零状态响应,其取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 线性动态电路的全响应为零输入响应和零状态响应之和。 实验电路图: 实验内容: 1.操作步骤、: (1).调节信号源,使信号源输出频率为1KHz,峰峰值为1.2VPP的方波信号。 (2).将示波器通道CH1与信号源的红色输出端相接,黑色端也相接,调示波器显示 屏控制单位,使波形清晰,亮度适宜,位置居中。 (3).调CH1垂直控制单元,使其灵敏度为0.2V,即在示波器上显示出的方波的幅值 在屏幕垂直方向上占6格。 (4).调CH2水平控制单元,使其水平扫描速率为0.2ms,表示屏幕水平方向每格为 0.2ms。 (5).按照实验原理的电路图接线,将1K电阻和10nf电容串联,将信号源输出线的 红色夹子,示波器CH1的红色夹子连电阻的一端,电容的另一端与信号源,示波器的黑色夹子连在一起,接着将CH2的输入探极红色夹子接在电容的非接地端,黑色夹子接在电容的接地端。

一阶电路的暂态响应

成绩 教师签字 通信工程学院 实验报告 实验题目: 实验三一介动态电路的暂态响应的研究 班级:通信工程专业 10 级 14 班 姓名一:曾旭龙学号: 52101409 姓名二:吴秀琼学号: 52101427 姓名三:陈光林学号: 52101407 实验日期: 2011 年 5 月 19 日

一阶电路的暂态响应的研究 曾旭龙吴秀琼陈光林徐峰 吉林大学通信工程学院通信工程系10级14 吉林大学通信工程学院电工电子实验中心 摘要:本文要通过进行一介RC电路对周期方波信号的响应的数据测量和分析,研究测量电路时间常数τ的方法,建立积分电路和微分电路的概念。 关键词:暂态响应电路时常数积分电路微分电路 0 引言电路的时常数τ是一阶电路的重要参数,测定电路时间常数是一阶电路暂态响应实验研究的重点和难点。因而研究一阶电路的暂态响应对于测量电路的时间常数有着十分重要的意义。 1 问题提出 2理论依据 2.1电容器的充电、放电 电容器是一种贮能元件,在带有电容器的电路中发生通断换接时,由于电容器贮能状态不能突变所以在电路中就产生了过渡过程。在直流电路中,电容器接通电源,在极板上积累电荷的过程称为充电;已充电的电容器通过电阻构成闭合回路使电荷中和消失的过程称为放电。 根据电路理论,在单一贮能元件组成的一阶电路中,过渡过程中的暂态电流与电压是按指数规律变化的。这一规律可以用下面的数字式表示,即

式中i c(0+)及U c(0+)是起始瞬间的电容电流及电压,i c(∞)及U c(∞)是电路稳定后的电容电流及电压。 图1电容器充放电电路 电容器充放电电路中电流、电压变化曲线分别如图3.4a.2(a)及图3.4a.2(b)所示。这曲线是由电路发生通断瞬间的起始状态向新的稳定状态过渡的指数曲线。其起始状态可根据换路定律确定,即在电路参数不变时,若电路发生换接,则电容器端电压不能突变,也就是在电路换接前后的瞬间是相等的,即 i c(0+)=i c (0_) 电路的时间常数τ,可以根据和计算,即τ=RC,τ用来表征过渡过程的长短。τ大过渡过程时间长,反之就短。若的单位为Ω,C 的单位为F,则τ的单位为s.τ可以从的变化曲线上求得。从曲线上任选

动态电路的分析

动态电路的分析 摘要:动态电路的分析主要讨论含有电容和电感等储能元件的动态电路。描述着类电路的方程式是微分方程。对于只含有一个储能元件或简化后只含有一个独立储能元件的电路,它的微分方程是一阶,故称为一阶电路。其中着重讨论一阶的零输入响应、零状态响应和全响应以及一阶的阶跃响应的概念及求解概念及求解。 关键字:稳态、暂态、换路、三要素。 引言: 由于储能元件的伏安关系不是代数,而是微分关系,所以储能元件又称为动态元件,含有动态元件的电路又称为动态电路。在直流激励的稳态电路中,电容相当于开路,电感相当于短路。 正文: 电容元件和电感元件 电容:如果一个二端元件在任一时刻,其电荷与电压之间的关系由q-u平面上一条曲线所确定,则称此二端元件为电容元件。特性:动态元件,储能元件。 电感:如果一个二端原件在任意时刻,其磁链与电流之间的关系由平面上一条曲线所确定,则称此二端元件为电感元件。特性:动态元件,储能元件。 动态电路的基本概念 含有动态元件电容和电感的电路称动态电路。 特点:当动态电路状态发生改变时(换路)需要经历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。 稳态与暂态的概念 稳态:所有的响应均是恒稳不变,或是按元素周期表变动电路的这种状态称为稳定状态,简称稳态。 稳态值的计算: 稳态值是指过渡过程结束(即t=∞),电路达到新稳态时各电流、电压达到的终值。 当t=∞得到的电容电压和电感电流的终值记为Uc(∞)和iL(∞),在直流激励下,电感电压uL和电容电流iC最终都变为0,在t= ∞时,电感相当于短路,电容相当于开路,此时电路中其他各电流、电压按直流电路计算。 暂态:电路原来的稳定状态在达到另一种稳定状态之前,一个需要经历的过渡的过程,称为暂态 结论:含有一个动态元件电容或电感的线性电路,其电路方程为一阶线性常微分方程,称一阶电路。含有二个动态元件的线性电路,其电路方程为二阶线性常微分方程,称二阶电路。电路中有多个动态元件,描述电路的方程是高阶微分方程。一阶电路的零输入响应 零输入响应:仅有初始状态所引起的响应。 特点:换路后外加激励为零,仅由动态元件初始储能产生的电压和电流。其中分为RC电路的零输入响应,rl电路的零输入响应 小结:一阶电路的零输入响应是由储能元件的初值引起的响应, 都是由初始值衰减为零的指数衰减函数。 uC (0+) = uC (0-) RC电路 iL(0+)= iL(0-) RL电路

一阶动态电路的响应测试一

实验八 一阶动态电路的响应测试一 一、实验目的:测定RC 一阶电路的零输入响应、零状态响应及完全 响应;学习电路时间常数的测量方法。 二、实验原理及电路图 1、实验原理: 1) 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流iL (0)和电容电压uc (0)称为电路的初始状态。在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC 来体现),这种响应时随时间按指数规律衰减的。在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 2)动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。 3) 时间常数τ的测定方法 零状态响应:)1()1(τt m RC t m c e U e U U ---=-=。当t =τ时,Uc(τ)=0.632Um 。此时所对应的时间就等于τ。

零输入响应:τt m RC t m c e U e U U --==。当t =τ时,Uc(τ)= 0.368Um 。此时所对应的时间就等于τ。 2、电路图 图1 三、实验环境: 面包板(SYB —130)、直流电源(IT6302),一个100k ?电阻、10uF 的电容、单刀双置开关、导线、Tek 示波器。 四、实验步骤: 1)在面包板上将电路搭建如图1所示,在直流电源面板上将输入电压设置好,分别为3V 、50Hz 。 2)观察示波器上的信号,将开关拨至另一端是信号会发生改变,当整个过程完成后,按run/stop 键,使得信号停止。 3)分别对对充放电过程进行2)操作,并用联动光标测量充放电时间,及其对应的时间常数τ,记录波形及数据。

第三章----电路的暂态分析讲课教案

第三章电路的暂态分析 一、内容提要 本章首先阐述了电路瞬变过程的概念及其产生的原因,指出了研究电路瞬变过程的目的和意义。其次介绍换路定律及电路中电压和电流初始值的计算方法。第三着重推荐用“三要素法”分析一阶RC、RL电路瞬变过程的方法。 二、基本要求 1、了解性电路的瞬变过程的概念及其产生的原因; 2、掌握换路定律,学会确定电压和电流的初始值; 3、掌握影响瞬变过程快慢的时间常数的物理意义; 4、掌握影响巡边过程快慢的时间常数的物理意义; 5、学会对RC和RL电路的瞬变过程进行分析。 三、学习指导 电路的暂态分析,实际上就是对电路的换路进行分析。所谓换路是电路由一个稳态变化到另一个稳态,分析的重点是对含有储能元件的电路而言,若换路引起了储能元件储存的能量所谓变化,则由于能

量不能突变,这一点非常重要,次之电路的两个稳态间需要暂态过程进行过渡。 在直流激励下,换路前,如果储能元件储能有能量,并设电路已处于稳态,则在-=0t 的电路中,电容C 元件可视为开路,电感L 元 如果储能元件没有储能(00L C ==W W 或)只能00L C ==i u 或,因此,在-=0t 和+=0t 的电路中,可将电容元件短路,电感元件开路。 特别注意:“直流激励”,“换路前电路已处于稳态”及储能元件有无可能储能。 对一阶线性电路,求解暂态过程的方法及步骤 1、经典法 其步骤为: (1)按换路后的电路列出微分方程; (2)求微分方程式的特解,即稳态分量; (3)求微分方程式的补函数,即暂态分量 (4)按照换路定律确定暂态过程的初始值,定出积分常数。 对于比较复杂的电路,有时还需要应用戴维南定律或诺顿定理将换路后的电路简化为一个简单的电路,而后再利用上述经典法得出的式子求解,其步骤如下: (1)将储能元件(C或L)划出,而将其余部分看做一个等效电源,组成一个简单电路; (2)求等效电源的电动势(或短路电流)和内阻;

实验九实验报告(一)--一阶动态电路的响应测试

实验九 :一阶动态电路的响应测试(一) 一、实验目的: 1. 测定RC 一阶电路的零输入响应、零状态响应。 2. 学习电路时间常数的测量方法。 二、实验内容: 在面包板上搭建RC 电路,用开关控制零输入和零状态,用示波器观察其响应过程。 三、实验环境: 面包板一个,电路箱一个,单刀双掷开关一个,导线若干,电阻一个(100k Ω),DS1052E 示波器一台,电解电容一个(10μF )。 四、实验原理: 1.零输入与零状态: 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流 i L (0)和电容电压u c (0)称为电路的初始状态。 在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC 来体现),这种响应时随时间按指数规律衰减的。 在零初始状态时仅由在t 0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 2. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如下图所示, 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得τ. 零输入响应 零状态响应 3.RC 一阶响应电路图: VDD τ τ

4.仿真波形图: 五、实验数据: 实验波形图: 六、数据分析总结: 1.τ的测量: 根据u c=U m e-t/RC=U m e-t/τ: 充电过程:当t=τ时,u2=0.632u1; 放电过程:当t=τ时,u2=0.368u1; 可得:ΔU=2.93V

二一阶电路的瞬态响应

实验二 一阶电路的瞬态响应 一 实验目的 1 用万用表观察时间常数τ较大的RC 串联电路接通直流电压的瞬态响应。熟悉用万 用表判别较大电容好坏的方法。 2 用示波器观察和测定RC 电路的阶跃响应和时间常数τ。 3 了解时间常数对响应波形的影响及积分、微分电路的特点。 二 原理说明 1 用万用表观察大时间常数的RC 串联电路接通直流电压的瞬态响应。 如上图所示,虚线框内为万用表的欧姆档等效电路,它由电池,中值电阻r 和电流表G 组成。当万用表黑、红表笔分别接电解电容的正、负极时,就构成了RC 串联电路接通直流电压的情况,而表头指针的偏转就反映了电路响应电流的大小(满度电流I=v/r )。当将电容的两个端点短路,即使电容的初始电压为零 0)0(=C V ,则电容两端的电压为 )1(/τt C e V V --= 电路中电流为 τ /t e r V i -= 其中rc =τ是这个电路的时间常数,若从下图所示响应电流随时间变化的曲线上,任 意选两点P (i 1,t 1)和Q (i 2, t 2) 则由 τ /11t e r V i -= τ/22t e r V i -= 得 τ/)(ln 122 1t t i i -= 于是,可得时间常数τ的关系式 ) /ln(211 2i i t t -= τ 若取 2/12i i = 则 7 .01 2t t -= τ 这样,只要从某点电流值i 1开始计时到i 1/2值所经历的时间除以0.7即为电路的时间常数τ。 图2-1 万用表的欧姆档检查电解点容等效电路 图2-2 点容器接通直流电压时响应 电流

当改变万用表欧姆档的档值时,其中值电阻值也随之改变,即电路的时间常数τ也随之改变,则瞬态响应所经历的时间也随之改变。当被测电容很小时,由于τ太小和表针的惰性,表针还未启动瞬态响应过程已经结束。所以,当电容量小于0.01uF 时,用万用表欧姆档还不能观察到电路的瞬态响应过程,且也只能在R ×10K 档(r 中=240K )观察到表针有摆动的现象,表针未偏转至满度值就返回。 利用上述原理就可用万用表来判别大于0.01uF 的电容器的好坏,若表针不摆动或偏转后不返回,则说明电容器开路或短路。若表针不返回至“∞”处,则说明电容器漏电。 2 积分电路和微分电路 如图所示为一阶RC 串联电路图。 )(t Vs 是周期为T 的方波信号, 设0)0(=C V 则 dt t V RC dt R t V C dt t i C t V R R C ???=== )(1 )(1)(1)( 当时间常数RC =τ很大,即τ》T 时,在方波的激励下,C V 上冲得的电压远小于R V 上的电压,即)(t V R 》)(t V C 因此 )()(t V t Vs R ≈ 所以 dt t V RC t V S C ? ≈ )(1 )( 上式表明,若将)(t V C 作为输出电压,则)(t V C 近似与输出电压)(t Vs 对时间的积分成正比。我们称此时的RC 电路为积分电路,波形如下 如果输出电压是电阻R 上的电压V R (t )则有 dt t dV RC t i R t V C R ) ()()(? =?= V S V 图2-3 一阶RC 串联实验电路图

二阶电路的动态响应实验报告

二阶电路的动态响应实验报告 一、实验目的: 1. 学习用实验的方法来研究二阶动态电路的响应。 2. 研究电路元件参数对二阶电路动态响应的影响。 3. 研究欠阻尼时,元件参数对α和固有频率的影响。 4. 研究RLC 串联电路所对应的二阶微分方程的解与元件参数的关系。 二、实验原理: 图1.1 RLC 串联二阶电路 用二阶微分方程描述的动态电路称为二阶电路。图1.1所示的线性RLC 串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2=++c c c u dt du RC dt u d LC (1-1) 初始值为 C I C i dt t du U u L t c c 0 00 )0()()0(== =-=-- 求解该微分方程,可以得到电容上的电压u c (t )。 再根据:dt du c t i c c =)( 可求得i c (t ),即回路电流i L (t )。 式(1-1)的特征方程为:01p p 2 =++RC LC 特征值为:2 0222,11)2(2p ωαα-±-=-±- =LC L R L R (1-2)

定义:衰减系数(阻尼系数)L R 2= α 自由振荡角频率(固有频率)LC 1 0= ω 由式1-2 可知,RLC 串联电路的响应类型与元件参数有关。 1. 零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 电路如图1.2所示,设电容已经充电,其电压为U 0,电感的初始电流为0。 图1.2 RLC 串联零输入电路 (1) C L R 2 >,响应是非振荡性的,称为过阻尼情况。 电路响应为: ) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---= --= 图1.3 RLC 串联零输入瞬态分析 响应曲线如图1.3所示。可以看出:u C (t)由两个单调下降的指数函数组成,为非振荡的 过渡过程。整个放电过程中电流为正值, 且当2 11 2ln P P P P t m -=时,电流有极大值。 (2)C L R 2 =,响应临界振荡,称为临界阻尼情况。 电路响应为

一阶RC电路的暂态响应

专业:电子信息技术及 仪器 实验报告 姓名:__黄云焜课程名称:__电路原理实验______指导老师:__ 熊素铭______成绩:__________________ 实验名称:_一阶RC电路的暂态响应____实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、熟悉一阶RC电路的零状态响应、零输入响应和全响应。 2、研究一阶电路在阶跃激励和方波激励情况下,响应的基本规律和特点。 3、掌握积分电路和微分电路的基本概念。 4、研究一阶动态电路阶跃响应和冲激响应的关系。 5、从响应曲线中求出RC电路时间常数τ。 二、实验原理 1.电路的过渡过程

2.一阶RC 电路的零输入响应: 激励(电源)为零,由初始储能引起的响应(放电过程) 1)求RC电路时间常数τ 3.一阶RC 电路的零状态响应: 储能元件初始能量为零,在激励(电源)作用下产生的响 应。

1)求RC电路时间常数τ 4.一阶RC 电路的全响应: 非零起始状态的电路受到外加激励所引起的响应。 5.一阶RC 电路的方波响应: 从本质上看,方波是以相同的时间间隔,不停开关的电压(或 者不断为高低值)。

6.微分电路和积分电路 1)微分电路:如图(1)RC电路,当输出电压取自电阻两端时,对于高频信号,可用作耦合电 路,而对于低频信号则可实现微分运算。 2)积分电路:如图(2)RC电路,当输出电压取自电容两端时,对于高频信号,可实现积分运 算。 图(1)图(2) 7.冲激响应、阶跃响应及其关系:阶跃响应是阶跃函数激励下的零状态响应;冲激响应 是冲激函数激励下的零状态响应;冲激响应是阶跃响应的导数; 三、实验内容及数据记录分析 1.利用DG08动态电路板上的R、C元件组成RC充、放电电路,在示波器上观察零输入响 应、零状态响应和全响应曲线,测取电路时间常数τ(与理论值比较)。

电工技术(第四版高教版)思考题及习题解答:第三章 动态电路的暂态分析 席时达 编.doc

第三章 动态电路的暂态分析 3-1-1 电路如图3-1所示,在t = 0时合上开关,已知u C (0-) =0,i L (0-)=0,则u C (0+)、i L (0+)、u L (0+)、u R (0+)各为多少? [答] 根据换路定律:u C (0+) = u C (0-) =0,;i L (0+)=i L (0-)=0。在开关合上的一瞬间,电容相当于短路,电感相当于开路,故u L (0+)=U S ;u R (0+)=0。 3-1-2 在图3-2中,如果U =10V ,R =5Ω,设二极管的正向电阻为零,反向电阻为无穷大。则在开关S打开瞬间电感两端的电压是多少? [答] 由于开关S打开瞬i L (0+)=i L (0-)= R U =510A=2A ,根据基尔霍夫电压定律可得电感两端的电压是 u L (0+)= u D (0+)+ u R (0+)= i L (0+)×R D + i L (0+)×R =0+2A ×5Ω=10V 3-3-1 电容的初始电压越高,是否放电的时间越长? [答] 不对,电容放电时间的长短只与时间常数τ=RC 有关,而与电容初始电压的高低无关。 3-3-2 已测得某电路在换路后的输出电流随时间变化曲线如图3-3所示。试指出该电路的时间常数τ大约是多少。 [答] 这是一条电流从初始值按指数规律衰减而趋于零的曲线,其时间常数τ等于初始值 思考题解答 图3-3 0 2 4 6 8 2 4 6 8 10 i /mA t /s (a) 0 2 4 6 8 2 4 6 8 10 i /mA t /s τ 3.68 (b) ii ii i L 图3-1 图3-2

实验4-5 RC一阶动态电路的响应

实验4-5 RC 一阶动态电路的响应 班级: 6班 姓名: 韩特 学号:1121000198 实验班次 实验台编号 个人数据 表4-5-1 表4-5-2 表4-5-3 表4-5-4 f(Hz) R(Ω) f(Hz) R(Ω) f(Hz) R(Ω) f(Hz) R(Ω) 6 22 2k 5k 1k 10k 10k 51 10k 10k 一、 实验目的 1. 测定一阶RC 动态电路的零输入响应、零状态响应及全响应; 2. 学习动态电路时间常数的测量方法; 3. 掌握微分电路、积分电路的基本概念; 二、 理论计算公式 1. 时间常数 RC =τ 2. 积分电路 ??==t 0t 0011dt u RC dt i C u s c t C 3. 微分电路 dt du RC dt du RC Ri u s c c R === 4. 电容充电 ) 1(τt s c e U u --= 5. 电容放电 τ t s c e U u - = 三、 实验电路 XSC1 A B Ext Trig + + _ _ +_ XFG1 R12kΩ C13.3nF C210nF J2 Key = Space 图4-5-1 积分电路(充放电过程)的仿真实验电路

图4-5-2 积分电路(充放电过程)的实测实验电路 XSC1 A B Ext Trig + + _ _ +_ XFG1 J1 Key = Space R11.0kΩ C1100nF C2 10nF 图4-5-3 微分电路(耦合电路)的仿真实验电路 图4-5-4 微分电路(耦合电路)的实测实验电路

四、实验数据表 表4-5-1 不同参数时的RC电路充、放电过程 个人数据R=5kΩ,C=3300pF R=5kΩ,C=0.01μF 计算值τ(μs)τ= RC =5kΩ*3300pF=16.504μs τ= RC=5kΩ*0.01μF =50μs 仿真值τ(μs)15.055μS 53.731μS 实测值τ(μs)27.00μS 250μS 仿真波形 实测波形 实测示波器档位和时间常数X轴:250 μS/Div X轴: v 250 μS/Di 1周期格数:8 1周期格数:8 波形周期: 1 波形周期: 1 Y轴: 1 V/Div Y轴: 1 V/Div 峰值格数: 2 峰值格数: 2 波形幅值: 4 波形幅值: 4 电压升至峰值的63%处的格数; 2.5 电压升至峰值的63%处的格数: 2.5 时间常数τ实测值:30μS 时间常数τ实测值:300μS

一阶动态电路暂态过程的研究报告

实验3 一阶动态电路暂态过程的研究报告 实验目的: (1)研究一阶RC电路的零输入响应、零状态响应和全响应的变化规律和特点。 (2)研究一阶电路在阶跃激励和方波激励情况下,响应的基本规律和特点。测定一阶电路的时间常数t,了解电 路参数对时间常数的影响。 (3)掌握积分电路和微分电路的基本概念。 (4)学习用示波器观察和分析电路的响应。 实验原理: (1)在电路中,开关S置于1使电路处于零状态,当开关在t = 0时刻由1扳向2,电路对激励 US的响应为零状态响应,有 t u c(t)二U s—U se 右 若开始开关S首先置于2使电路处于稳定状态,在t=0时刻由2扳向1,电路为零输入响应,有 t u c(t)= U se 时 动态电路的零状态响应与零输入响应之和为全响应。全响应与激励不存在简单的线性关系。 (2)动态电路在换路以后,一般经过一段时间的暂态过程后便达到稳定。故要由方波激励实现一阶 RC电路重复出现的充电过程,其中方波激励的半周期T/2与时间常数T(= RC)之比保持在 5: 1左右的关系,可使电容每次充、放电的暂态过程基本结束,再开始新一次的充、放电暂态 过程。 (3)RC电路充、放电的时间常数T可从示波器观察的响应波形中计算出来。设时间坐标单位确定,对于充电曲线,幅值由零上升到终值的63.2 %所需的时间为时间常数T。对于放电曲线,幅值 由零下降到初值的36.8%所需的时间同为时间常数T。 (4)一阶RC动态电路再一定的条件下,可以近似构成微分电路或积分电路。当时间常数T (= RC) 远远小于方波周期,输出电压Uo(t)与方波激励Us(t)的微分近似成比例。当时间常数T (= RC) 远远大于 方波的周期,输出电压Uo(t)与方波激励Us(t)的积分近似成比例。 实验内容与步骤: (1) 连接如图电路,应用示波器观察RC电路充、放的动态波形,确定时间常数,并与理论值 进行比较

实验九实验报告(二)--一阶动态电路的响应测试

实验九 :一阶动态电路的响应测试(二) 一、实验目的: 1、 观测RC 一阶电路的方波响应; 2、 通过对一阶电路方波响应的测量,练习示波器的读数; 二、实验内容: 1、研究RC 电路的方波响应。选择T/RC 分别为10、5、1时,电路参数: R=1K Ω,C=0.1μF 。 2、观测积分电路的Ui(t)和Uc(t)的波形,记录频率对波形的影响,从波形图上测量时间常数。积分电路的输入信号是方波,Vpp=5V 。 3、观察微分电路的Ui(t)和U R (t)的波形,记录频率对波形的影响。微分电路的输入信号也是方波,Vp-p=1V 。 三、实验环境: 面包板一个,导线若干,电阻一个(1k Ω),DS1052E 示波器一台,电解电容一个(0.1μF ),EE1641C 型函数信号发生器一台。 四、实验原理: 1. 方波激励: ?电路图: ?方波波形:(调整方波电压范围在0~5V ) 2. 积分电路: 一个简单的RC 串联电路,在方波脉冲的重复激励下,当满足τ=RC>>T/2时(T 为 方波脉冲的重复周期),且由C 两端的电压作为响应输出,则该电路就是一个积分电路。此时电路的输出信号电压与输入信号电压的积分成正比。 ?电路图:(以f=1000Hz 为例) C1 100nF

?仿真波形:(以f=1000Hz为例) 3. 微分电路: 一个简单的RC串联电路,在方波脉冲的重复激励下,当满足τ=RC<

实验九一阶电路暂态响应(有数据)

实验九 一阶电路的暂态响应 一、实验目的 1、掌握一阶电路暂态响应的原理 2、观测一阶电路的时间常数τ对电路暂态过程的影响 二、实验仪器 1、双踪示波器 1台 2、模块一S5 1块 3、信号源及频率计模块S2 1块 三、实验原理 含有L 、C 储能元件的电路通常用微分方程来描述,电路的阶数取决于微分方程的阶数。凡是用一阶微分方程描述的电路称为一阶电路。一阶电路由一个储能元件和电阻组成,具有两种组合:RC 电路和RL 电路。图9-1和图9-2分别描述了RC 电路与RL 电路的基本连接示意图。 根据给定的初始条件和列写出的一阶微分方程以及激励信号,可以求得一阶电路的零输 入响应和零状态响应。当系统的激励信号为阶跃函数时,其零状态电压响应一般可表示为下列两种形式: τt e U t u - =0)( (t ≥0) )1()(0τt e U t u --= (t ≥0) 其中,τ为电路的时间常数。在RC 电路中,τ=RC ;在RL 电路中,τ=L/R 。零状态电流响应的形式与之相似。本实验研究的暂态响应主要是指系统的零状态电压响应。 τ值的测量方法:当电路两端加电压为Us 的激励时,储能原件两端的电压从0升到0.7Us 所经历的时间,即为电路的时间常数τ。 (t ) t )

四、实验内容 一阶电路的零状态响应,是系统在无初始储能或状态为零情况下,仅由外加激励源引起的响应。 为了使我们能够在仪器上看到稳定的波形,通常用周期性变化的方波信号作为电路的激励信号。此时电路的输出即可以看成是研究脉冲序列作用于一阶电路,也可看成是研究一阶电路的直流暂态特性。即用方波的前沿来代替单次接通的直流电源,用方波的后沿来代替单次断开的直流电源。方波的半个周期应大于被测一阶电路的时间常数3-5倍;当方波的半个周期小于被测电路时间常数3-5倍时,情况则较为复杂。 (一)一阶RC电路的观测 实验电路连接图如图9-3(a)所示。 信号源输出信号的要求:频率2.5K的方波。 ①连接信号源输出端P2与P1; ②连接P2与P6; ③用示波器观测TP6输出的波形; ④根据R、C计算出时间常数τ; ⑤根据实际观测到的波形计算出实测的时间常数τ; ⑥把“P2与P6”间的连线改变为“P2连P7”或“P3连P6”或“P3连P7”(注: 当连接点改在P7时,输出测量点应该在TP7); ⑦重复上面的实验过程,将结果填入表9-1中。 表9-1 一阶RC电路 P2—P6: P2—P7: P3—P6: P3—P7:

相关文档
最新文档