ansys分析钢结构稳定问题

ansys分析钢结构稳定问题
ansys分析钢结构稳定问题

ANSYS软件分析轴压和压弯构件的

稳定性问题

摘要:轴心受压杆件和压弯杆件广泛应用于工程中,本文通过ansys软件对该两种杆件进行分析,对于轴心受压杆件,运用beam189、solid95、shell65单元,进行弹性稳定分析和非线性分析,得到其屈曲荷载和变形情况;对于压弯杆件,在集中荷载和分布荷载的条件下,运用beam3单元进行非线性分析,得到其最大弯矩值,通过和理论值相比较,验证其正确性。

关键词:ANSYS;轴心受压杆件;压弯杆件;非线性分析

Abstract:Axial strut pieces and bending rods are widely used in engineering. This paper, using ANSYS software, analyzes the two rods. For Centrally Compressed Members, this paper using beam189, solid95, shell65 unit, carries out elastic stability analysis and nonlinear analysis, getting the buckling load and deformation. For the bending rod under conditions of concentrated loads and distributed loads, nonlinear analysis was conducted using beam3 unit, getting its greatest moment, and was compared to theoretical value to verify its correctness.

Keywords: ANSYS;Centrally Compressed Members; the bending rod member; nonlinear analysis

钢材具有高强度、质轻、力学性能良好的优点,是制造结构物的一种极好的建筑材料,所以广泛运用于工程实例中,它和钢筋混凝土结构相比,对于充任相同受力功能的构件,具有截面轮廓尺寸小、构件细长和构件柔薄的特点。对于因受压、受弯和受剪等存在受压受压区的构件或板件,如果技术上处理不当,可能使钢结构出现整体失稳或局部失稳。失稳前结构物的变形可能很微小,突然失稳使结构物的几何形状急剧改变而导致结构物完全丧失抵抗能力,以致整体塌落。钢结构的稳定性能是决定其承载力的一个特别重要的因素[1]。对于钢结构稳定性的研究也就极其重要。而轴压杆件和压弯杆件是钢结构的基础,对此杆件进行稳定性分析也就是不可避免的和尤为重要的。所以,非常有必要利用大型通用ANSYS软件对这两类杆件进行分析,得到一系列的研究成果。

一、基本理论

结构在荷载作用下由于材料的弹性性能而发生变形,若变形后结构上的荷载保持平衡,这种状态称为弹性平衡。如果结构在平衡状态时,受到扰动而偏离平衡位置,当扰动消除后仍能恢复到原来平衡状态的,这种平衡状态称为稳定平衡状态。根据失稳的性质,结构的稳定问题可以分为平衡分岔失稳,极值点失稳和跃越失稳三种情况。结构的弹性稳定分析属于平衡分岔失稳,在ANSYS中对应的分析类型是特征值屈曲分析(Buckling Analysis)[2]。

关于特征值屈曲分析有以下说明(1)该分析对结构临界失稳力的预测往往要高于结构实际的临界失稳力,因此在实际的工程结构分析时一般不用特征值屈曲分析;(2)特征值屈曲分析能够预测临界失稳力的大致所在,因此在做非线性屈曲分析时所加力的大小便有了依据;(3)特征值屈曲分析所预测的结果我们只取最小的第一阶;(4)特载值分析得到的是第一类稳定问题的解,只能得到屈曲荷载和相应的失稳模态,它的优点就是分析简单,计算速度快。

基本步骤:(1)创建模型;(2)获得静力解;(3)获得特征值屈曲解;(4)查看结果。注意事项为(1)在建模时,仅考虑线性行为;定义材料的弹性模量或某种形式的刚度;另外,单元网格对屈曲荷载系数影响很大;(2)在获得静力解时,必须激活预应力效应;由屈曲分析得到的特征值是屈曲荷载系数,在此直接施加单位荷载,得到的屈曲荷载系数即屈曲荷载;(3)若想用命令流获取第N 阶模态的特征值(屈曲荷载系数)直接采用以下命令流*GET,FREQN,MODE,N,FREQ ,其中FREQN 为用户定义的变量,存放第N 阶模态的屈曲荷载系数。

结构的非线性问题可以分为几何非线性、材料非线性、状态非线性三种情况。在此题中我们主要考虑几何非线性。其基本步骤如下:(1)创建模型;(2)设置求解控制参数,包括设置分析类型和分析选项,设置时间和时间步,设置输出控制,设置求解器选项,设置重启动控制等;(3)加载求解,注意变形前后荷载的方向;(4)查看结果。

因几何变形引起结构刚度改变的问题属于几何非线性问题。通常分为大应变,大位移和应力刚化三类。导致结构刚度[3]变化的原因如下:(1)单元形状改变(如面积、厚度等),导致单刚变化;(2)单元形状改变(如大转动),导致单刚向总体系坐标系下转换时发生变化;(3)单元较大的应变使得单元在某个面内具有较大的应力状态,从而显著的影响面外的刚度。

在分析时,应该注意单元选择,单元形状,网格密度,荷载和边界条件等问题[2]。

二、 轴心受压杆件分析

采用两端简支的受压柱,设截面尺寸B ×H=0.03m ×0.05m,柱长L=3m,弹性模量E=210GPa.根据欧拉临界公式[4],其临界荷载为:

22117

22

3.14 2.110 1.1251025.9077()(13)EI Pcr KN

l πμ-????===?

采用BEAM189单元时,需要约束绕单元轴的转动自由度,否则虽可进行静力分析,但是会出现异常屈曲模态(模态分析时会出现零值)。BEAM189是3D 二次有限应变梁。BEAM188/189是不支持跨间集中荷载和跨间部分分布荷载,仅支持在整个单元长度上分布的荷载。

采用solid95和shell63模拟此模型时,仅在下端截面中心约束Y方向的平动自由度,而不能约束整个截面,否则与简支约束条件不符。在solid95单元上,施加的为面荷载,在shell63上施加的为线荷载。

其杆件模型如图一所示:

图一,轴心受压杆件

2.1 采用BEAM189单元

其弹性稳定分析的命令流如下:

?Finish$/clear$/prep7

?b=0.03$h=0.05$l=3

?e=2.1e11$et,1,beam189

?mp,ex,1,e$mp,prxy,1,0.3

?sectype,1,beam,rect$secdata,b,h

?k,1$k,2,,l$k,10,0,l/2,l/2$l,1,2

?dk,1,ux,,,,uy,uz,roty$dk,2,ux,,,,uz,roty

?latt,1,,1,,10,,1$lesize,all,,,20$lmesh,all$finish

?/solu$fk,2,fy,-1$pstres,on

?solve$finish

?/solu

?antype,buckle$bucopt,lanb,5

?mxpand,5$outres,all,all$solve

?finish

?/post1

?set,list

得出以下图形:

图二,杆件一阶变形图和位移矢量图

图三,杆件二阶、三阶变形图

图四,杆件四阶、五阶变形图

非线性分析的命令流:

?Finish$/clear$/prep7

?b=0.03$h=0.05$l=3$e=2.1e11$et,1,beam189

?mp,ex,1,e$mp,prxy,1,0.3

?sectype,1,beam,rect$secdata,b,h

?k,1$k,2,,l$k,10,0,l/2,l/2$l,1,2

?latt,1,,1,,10,,1$lesize,all,,,20$lmesh,all

?finish$/solu$dk,1,ux,,,,uy,uz,roty$dk,2,ux,,,,uz,roty

?fk,2,fy,-27000$f,10,fx,50$pstres,on

?solve$finish$/solu$antype,static$nlgeom,on

?outres,all,all$nsubst,50$autots,on$lnsrch,on

?solve$finish$/post26$/gropt,divy,10$/color,axes,8

?/color,curve,2$/axlab,x,deflection$/axlab,y,force

?rforce,3,1,f,y$nsol,4,10,u,x$xvar,4$plvar,3

?/axlab,x,force$/axlab,y,displacement3

?rforce,5,1,f,y$nsol,6,2,u,y$xvar,5$plvar,6

图五,杆件中点荷载-挠度曲线

从上图可以得知,当荷载达到欧拉临界荷载时,挠度突然增加。

图六,杆件顶点荷载-位移曲线

从上图可以看出,当荷载达到临界荷载时,该点位移突然增加,向下移动。把-27000改为-56000,得到屈曲前后的图像,注意,改后的值不能过大。Finish$/clear$/prep7

b=0.03$h=0.05$l=3$e=2.1e11$et,1,beam189

mp,ex,1,e$mp,prxy,1,0.3

sectype,1,beam,rect$secdata,b,h

k,1$k,2,,l$k,10,0,l/2,l/2$l,1,2

latt,1,,1,,10,,1$lesize,all,,,20$lmesh,all

finish$/solu$dk,1,ux,,,,uy,uz,roty$dk,2,ux,,,,uz,roty

fk,2,fy,-56000$f,10,fx,50$pstres,on

solve$finish$/solu$antype,static$nlgeom,on

outres,all,all$nsubst,50$autots,on$lnsrch,on

solve$finish$/post26$/gropt, ivvy,10$/color,axes,8

/color,curve,2$/axlab,x,deflection$/axlab,y,force

rforce,3,1,f,y$nsol,4,10,u,x$xvar,4$plvar,3

/axlab,x,force$/axlab,y,displacement

rforce,5,1,f,y$nsol,6,2,u,y$xvar,5$plvar,6

图七,杆件中点屈曲前后挠度-荷载曲线

图八,杆件顶点位移-荷载曲线

2.2采用solid95单元

Solid95 弹性稳定分析的命令流

?Finish$/clear$/prep7

?b=0.03$h=0.05$l=3$e=2.1e11$et,1,solid95

?mp,ex,1,e$mp,prxy,1,0.3

?blc4,,,b,l,h$wpoff,b/2,,h/2$vsbw,all$wprota,,,90

?vsbw,all$wpcsys,-1$esize,3/20$vmesh,all

?dk,kp(b/2,0,h/2),uy$asel,s,loc,y,0

?asel,a,loc,y,l$da,all,ux$da,all,uz

?asel,s,loc,y,l$sfa,all,1,pres,1/b/h

?allsel,all$/solu$pstres,on

?solve$finish$/solu

?antype,buckle$bucopt,lanb,5

?mxpand,5$outres,all,all

?solve$finish$

?/post1$set,list

?set,1,1$pldisp,1$plvect,u$plnsol,u,x,1

?

?

图九,一阶变形图、位移矢量图图

图十,二阶、三阶变形图

2.3采用shell65单元

shell65 弹性稳定分析的命令流

?Finish$/clear$/prep7

b=0.03$h=0.05$l=3

?e=2.1e11$et,1,shell63

?mp,ex,1,e$mp,prxy,1,0.3

?r,1,b$wprota,,,-90

?blc4,,,h,l$wpcsys,-1$wpoff,,,h/2

?asbw,all$esize,3/20

?amesh,all$lsel,s,loc,y,0$lsel,a,loc,y,l

? dl,all,,ux$dl,all,,uz$dk,kp(0,0,h/2),uy ? lsel,s,loc,y,l$sfl,all,pres,1/h ? allsel,all$/solu

? pstres,on$solve$finish$/solu ? antype,buckle$bucopt,lanb,5 ? mxpand,5$outres,all,all ? solve$finish$/post1 ? set,list

?

?

图十一,一阶变形图、位移矢量图

三、压弯杆件分析

3.1两端铰接横向荷载下压弯构件分析

图十二,杆件简图、力学分析

为计算分析方便,在此选用之前所建模型的数据,b=0.03m,h=0.05m,l=3m.所以,该构件的欧拉临界力为25.9077KN 。由教材P78~P80[1]可知,跨中最大弯

矩 ,其中

max 0010.178/10.2/()()1/1/E E

E E P P P P M M M P P P P --=≈--04

Ql

M =

在此取P=10000KN ,Q=500KN, 计算得m A =1.5167。0M =375KN 。所以,在构件中点处,有最大弯矩0m A M =1.5167?375=568.77KN 。接着利用ANSYS 软件建立此模型,并进行非线性分析,得出构件的最大弯矩,以此和计算所得数据相比较,验证软件分析的正确性。由于采用BEAM189模拟比较复杂,在此采用BEAM3模型,该单元为2D 梁单元,分析比较简单,也能够较好的模拟此状态。 命令流

? Finish$/clear$/prep7$csys,0 ? b=0.03$h=0.05$l=3

? e=2.1e11$a0=b*h$i1=b*h**3/12$i2=h*b**3/12 ? mp,prxy,0.3$mp,ex,1,e$et,1,beam3 ? r,1,a0,i2,h$k,1$k,2,,l$k,3,,l/2 ? l,1,3$l,2,3$dk,1,ux,,,,uy$dk,2,ux ? latt,1,1,1$lesize,all,,,20$lmesh,all ? finish$/solu

? fk,2,fy,-10000$fk,3,fx,500 ? antype,0$nlgeom,on$subst,50 ? autots,on$lnsrch,on$solve$finish ? /post1$etable,mi,smisc,6

?

etable,mj,smisc,12$plls,mi,mj

图十三,弯矩图

通过上图可知,构件最大弯矩位于中点处,其值为566.385N ·m,通过公式计算为568.77N ·m 。二者相差不大。

图十四,变形图、位移矢量图

3.2 横向均布荷载下的压弯构件

图十五, 杆件简图、力学分析图

构件尺寸保持不变,横向荷载500N/m ,可知,

max

001.028/111/1/E E E P P M M M P P P P ????=+≈????--????

,其中208ql M =通过计算可得0M =562.5N ·m,0 1.028/11/E E

P P A P P

??=+??

-?

?

=1.646, max M = 926N ·m 命令流

? Finish$/clear$/prep7$csys,0 ? b=0.03$h=0.05$l=3

? e=2.1e11$a0=b*h$i1=b*h**3/12$i2=h*b**3/12 ? mp,prxy,0.3$mp,ex,1,e$et,1,beam3 ? r,1,a0,i2,h$k,1$k,2,,l$l,1,2 ? dk,1,ux,,,,uy$dk,2,ux$latt,1,1,1 ? lesize,all,,,20$lmesh,all ? finish$/solu

? fk,2,fy,-10000$sfbeam,all,1,pres,500 ? antype,0$nlgeom,on

? subst,50$autots,on$lnsrch,on ? solve$finish$/post1 ? etable,mi,smisc,6 ? etable,mj,smisc,12 ?

plls,mi,mj

?

?

图十六,弯矩图

通过ansys 软件分析可知,在构件中点处获得弯矩最大,其值为922.837N ·m,和公式计算所得相差不大。

图十七,杆件变形图、位移矢量图

3.3 集中力作用下的压弯构件

图十八,杆件简图

构件尺寸保持不变Q=300N ,max 010.051/1()31/1/E E E

P P Ql M M P P P P +=?≈-- 经计算得,max M =498.206N ·m 。 命令流如下:

? Finish$/clear$/prep7

?

csys,0$b=0.03$h=0.05$l=3

?e=2.1e11$a0=b*h$i1=b*h**3/12$i2=h*b**3/12

?mp,prxy,0.3$mp,ex,1,e$et,1,beam3$r,1,a0,i2,h

?k,1$k,2,,l$k,3,,l/3$k,4,,2l/3

?l,1,3$l,3,4$l,4,2

?dk,1,ux,,,,uy$dk,2,ux

?latt,1,1,1$lesize,all,,,20$lmesh,all

?finish$/solu

?fk,2,fy,-10000$fk,3,fx,300$fk,4,fx,300

?antype,0$nlgeom,on

?subst,50$autots,on$lnsrch,on

?solve$finish$/post1

?etable,mi,smisc,6

?etable,mj,smisc,12

?plls,mi,mj

图十九,弯矩图

通过ANSYS软件分析可知,在构件中点处获得弯矩最大,其值为496.297N·m,和公式计算所得相差不大。

图二十,变形图、位移矢量图

四、结论

本文通过ANSYS软件对轴心受压杆件、压弯构件进行分析,得到以下结论:(1)对于轴心受压杆件,运用不同的单元进行模拟,在相同约束条件的情况下,利用特征值屈曲分析所得到的屈曲荷载是基本相同的。

(2)对于两端铰接的轴心受压杆件,特征值屈曲分析所预测的结果我们只取第一阶,杆件屈曲之前,不论是位移还是挠度,杆件均没有变化,当达到屈曲时,杆件发生突变,顶点位移和中点挠度急剧变大。

(3)对于压弯杆件,不论是受集中力荷载还是分布荷载,其最大弯矩都是等于相同条件下简支梁的最大弯矩乘以一放大系数。

(4)通过ANSYS软件进行非线性模拟,得到的杆件的最大弯矩和理论值几乎相等,从而验证了该模拟方案的正确性。

参考文献

[1]陈骥. 钢结构稳定理论与设计(第四版)[M]. 北京: 科学出版社, 2008.

[2]王新敏. ANSYS工程结构数值分析[M]. 北京:人民交通出版社, 2012.

[3]龙驭球、包世华[M].北京:高等教育出版社(第二版)2006

[4]刘鸿文. 材料力学[M]. 北京:高等教育出版社, 2009

第7章 结构的弹性稳定性分析

ANSYS 入门教程 (9) - 结构的弹性稳定性分析 第 7 章结构弹性稳定分析 7.1 特征值屈曲分析的步骤 7.2 构件的特征值屈曲分析 7.3 结构的特征值屈曲分析 一、结构失稳或结构屈曲: 当结构所受载荷达到某一值时,若增加一微小的增量,则结构的平衡位形将发生很大的改变,这种现象叫做结构失稳或结构屈曲。 结构稳定问题一般分为两类: ★第一类失稳:又称平衡分岔失稳、分枝点失稳、特征值屈曲分析。结构失稳时相应的载荷可称为屈曲载荷、临界载荷、压屈载荷或平衡分枝载荷。 ★第二类失稳:结构失稳时,平衡状态不发生质变,也称极值点失稳。结构失稳时相应的载荷称为极限载荷或压溃载荷。 ●跳跃失稳:当载荷达到某值时,结构平衡状态发生一明显的跳跃,突然过渡到非邻近的另一具有较大位移的平衡状态。可归入第二类失稳。 ★结构弹性稳定分析 = 第一类稳定问题 ANSYS 特征值屈曲分析(Buckling Analysis)。 ★第二类稳定问题 ANSYS 结构静力非线性分析,无论前屈曲平衡状态或后屈曲平衡状态均可一次求得,即“全过程分析”。 这里介绍 ANSYS 特征值屈曲分析的相关技术。在本章中如无特殊说明,单独使用的“屈曲分析”均指“特征值屈曲分析”。 7.1 特征值屈曲分析的步骤 ①创建模型 ②获得静力解 ③获得特征值屈曲解 ④查看结果 一、创建模型 注意三点: ⑴仅考虑线性行为。若定义了非线性单元将按线性单元处理。 刚度计算基于初始状态(静力分析后的刚度),并在后续计算中保持不变。 ⑵必须定义材料的弹性模量或某种形式的刚度。非线性性质即便定义了也将被忽略。 ⑶单元网格密度对屈曲载荷系数影响很大。例如采用结构自然节点划分时(一个构件仅划分一个单元)可能产生 100% 的误差甚至出现错误结果,尤其对高阶屈曲模态的误差可能更大,其原因与形成单元应力刚度矩阵有关。经验表明,仅关注第 1 阶屈曲模态及其屈曲载荷系数时,每个自然杆应不少于 3 个单元。 二、获得静力解 注意几个问题: ⑴必须激活预应力效应。

钢结构稳定设计指南

钢结构稳定设计指南 钢结构失稳形式存在多样性外,还应了解下列四个方面的特点:(1)稳定问题要考虑构件及结构的整体作用;(2)稳定计算要按二阶分析进行;(3)考虑初始缺陷的极值稳定计算正在取代完善构件的分岔点稳定计算;(4)稳定性不仅通过计算来保证,还需要从结构方案布置和构造设计来配合。 关键字:钢结构稳定,轴心压杆,计算长度,受弯构件,框架稳定 一.钢结构稳定问题的待点 失稳形式存在多样性外,还应了解下列四个方面的特点:(1)稳定问题要考虑构件及结构的整体作用;(2)稳定计算要按二阶分析进行;(3)考虑初始缺陷的极值稳定计算正在取代完善构件的分岔点稳定计算;(4)稳定性不仅通过计算来保证,还需要从结构方案布置和构造设计来配合。 二.轴心压杆的稳定计算 (1)影响轴心压杆稳定承载力的最主要因素是残余应力,它是把稳定系数分成a、b、c三类的依据,残余压应力越大,位置距形心轴越远,值越低。 (2)轴心压杆不仅会发生弯曲失稳,也可能发生扭转失稳。在采用单轴对称截面时.需要特别注意扭转的不利作用。 (3)设计格构柱时,需要了解几何缺陷的不利影响和柱肢压缩对缀条的影响。 三.轴心压杆的计算长度 关于压杆计算长度的确定,需要明确以下几点: (1)确定杆系结构中的杆件计算长度时,应把它和对它起约束作用的构件一起作稳定分析。这是稳定性整体计算的一种简化方法。压杆一般不能依靠其他压杆对它的约束作用,除非两者的压力相差悬殊。 (2)节点连接的构造方式会影响杆件的稳定性能。因此,杆件计算长度和构造设计有密切联系。比如杆件在交叉点的拼接会影响它的出平面弯曲刚度并使计算长度增大。又如起减小计算长度作用的撑杆的连接有偏心,会降低它的有效性。 (3)塔架杆件的计算长度有不同于平面桁架(屋架)的特点.主杆和腹杆都各有其特殊之处。此外、塔架中单角钢杆件预期绕平行轴失稳时,需要考虑扭转的不利影响。 (4)桁架体系的支撑构件和塔架中的横隔构件都对杆件的计算长度有直接影响。确定桁架杆件出平面计算长度时,需要特别注意杆系的相互关系 四. 受弯构件的整体稳定

ansys分析钢结构稳定问题

ANSYS软件分析轴压和压弯构件的 稳定性问题

摘要:轴心受压杆件和压弯杆件广泛应用于工程中,本文通过ansys软件对该两种杆件进行分析,对于轴心受压杆件,运用beam189、solid95、shell65单元,进行弹性稳定分析和非线性分析,得到其屈曲荷载和变形情况;对于压弯杆件,在集中荷载和分布荷载的条件下,运用beam3单元进行非线性分析,得到其最大弯矩值,通过和理论值相比较,验证其正确性。 关键词:ANSYS;轴心受压杆件;压弯杆件;非线性分析 Abstract:Axial strut pieces and bending rods are widely used in engineering. This paper, using ANSYS software, analyzes the two rods. For Centrally Compressed Members, this paper using beam189, solid95, shell65 unit, carries out elastic stability analysis and nonlinear analysis, getting the buckling load and deformation. For the bending rod under conditions of concentrated loads and distributed loads, nonlinear analysis was conducted using beam3 unit, getting its greatest moment, and was compared to theoretical value to verify its correctness. Keywords: ANSYS;Centrally Compressed Members; the bending rod member; nonlinear analysis 钢材具有高强度、质轻、力学性能良好的优点,是制造结构物的一种极好的建筑材料,所以广泛运用于工程实例中,它和钢筋混凝土结构相比,对于充任相同受力功能的构件,具有截面轮廓尺寸小、构件细长和构件柔薄的特点。对于因受压、受弯和受剪等存在受压受压区的构件或板件,如果技术上处理不当,可能使钢结构出现整体失稳或局部失稳。失稳前结构物的变形可能很微小,突然失稳使结构物的几何形状急剧改变而导致结构物完全丧失抵抗能力,以致整体塌落。钢结构的稳定性能是决定其承载力的一个特别重要的因素[1]。对于钢结构稳定性的研究也就极其重要。而轴压杆件和压弯杆件是钢结构的基础,对此杆件进行稳定性分析也就是不可避免的和尤为重要的。所以,非常有必要利用大型通用ANSYS软件对这两类杆件进行分析,得到一系列的研究成果。 一、基本理论 结构在荷载作用下由于材料的弹性性能而发生变形,若变形后结构上的荷载保持平衡,这种状态称为弹性平衡。如果结构在平衡状态时,受到扰动而偏离平衡位置,当扰动消除后仍能恢复到原来平衡状态的,这种平衡状态称为稳定平衡状态。根据失稳的性质,结构的稳定问题可以分为平衡分岔失稳,极值点失稳和跃越失稳三种情况。结构的弹性稳定分析属于平衡分岔失稳,在ANSYS中对应的分析类型是特征值屈曲分析(Buckling Analysis)[2]。

钢结构稳定性的分析

钢结构稳定性的分析 摘要:在钢结构设计中,稳定形设计是较为重要的一个环节。在各种类型的钢结构中,由于结构失稳造成的伤亡事故时有发生,凸显了稳定问题研究的重要性。本文从钢结构失稳的类型入手,阐述了钢结构稳定性的分析方法及稳定设计需要注意的问题。 关键词:钢结构稳定性分析 Abstract: Stable shape design is an important link in the steel structure design. In various types steel structure, casualties results from the structure instability, which highlights the importance of research on the stability. This article from the steel structure buckling type, elaborates the steel structure stability analysis method and some issues requiring attention in the stable design. Key words: steel structure; stability ; analysis 1 .前言 钢结构稳定分析是研究结构或构件的平衡状态是否稳定的问题。结构或构件的平衡状态有三种:1)稳定平衡:处于平衡位置的结构或构件,在任意微小外界扰动下,将偏离其平衡位置,当外界扰动除去以后,仍能自动回复到初始平衡位置时,称为稳定平衡。2)不稳定平衡:如果不能回复到初始平衡位置,则称为不稳定平衡。3)随遇平衡或中性平衡:如果受到扰动后不产生任何作用于该体系的力,因而当扰动除去以后,既不能回复到初始平衡位置又不继续增大偏离,则为随遇平衡或中性平衡。结构或构件由于平衡形式的不稳定性,从初始平衡位置转变到另一平衡位置,称为屈曲,或称为失稳。 钢结构稳定与强度有着显著区别。强度是指结构或者构件在稳定平衡状态下由荷载所引起的最大应力是否超过材料的极限强度,因此是一个应力问题。极限强度的取值取决于材料的特性,对混凝土等脆性材料,可取它的最大强度,对钢材则取它的屈服点。稳定问题则与强度问题不同,它主要是找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,因此,它是一个变形问题。如轴压柱,由于失稳,侧向扰度使柱增加数量很大的弯矩,因而柱子的破坏荷载可远远低于它的轴压强度。显然,,失稳是柱子破坏的主要原因,而非强度不够。 2 .钢结构失稳的分类 区分结构失稳类型的性质十分重要,这样才有可能正确估量结构的稳定承载力。钢结构的失稳按有无平衡分叉可分为两类: 2.1 第一类稳定问题—具有平衡分岔的失稳,也叫“分叉屈曲”。

ANSYS框架结构分析

有限元分析大作业报告 一、结构形式及参数 1、结构基本参数 某框架结构如下图所示,为两榀、三跨七层框架。结构由梁板柱组成,梁板柱之间刚结。材料为C35混凝土,弹性模量为3.15e10N/m2,泊松比取0.25,质量密度为2500kg/m3,梁截面为300mm×700 mm,柱截面为500mm×500mm,楼板厚度为120mm。梁和柱采用beam44 单元,板采用shell 63单元。单位采用国际单位制。 二、静力分析及结果 1、荷载详情 荷载包括自重荷载,采用命令acel,0,0,9.8施加;以及垂直板面向下的均布恒荷载0.35 kN/m2和活荷载0.15 kN/m,两者合并后采用命令*do,mm,204,245,1 sfe,mm,2,pres,,500,500,500,500 *end do施加。 2、结构变形:最大变形发生在91号节点,数值为1.573mm,方向竖直向下(-Z方向)。

3、位移云图 4、等效应力云图:最大等效应力发生在78号节点,数值为175064Pa。

5、支座反力(保留两位小数,单位如表中所示) 节点编码FX(kN) FY(kN) FZ(kN) MX(kN﹒m) MY(kN﹒m) MZ(kN﹒m) 1 -3.87 5.33 514.15 -5.19 -3.74 0.00 2 -6.36 0.09 774.5 3 -0.12 -6.13 0.00 3 -6.36 -0.09 774.53 0.12 -6.13 0.00 4 -3.87 -5.33 514.1 5 5.19 -3.74 0.00 5 0.00 8.2 6 693.8 7 -8.00 0.00 0.00 6 0.00 0.06 107.28 -0.08 0.00 0.00 7 0.00 -0.06 107.28 0.08 0.00 0.00 8 0.00 -8.26 693.87 8.00 0.00 0.00 9 3.87 5.33 514.15 -5.19 3.74 0.00 10 6.36 0.09 774.53 -0.12 6.13 0.00 11 6.36 -0.09 774.53 0.12 6.13 0.00 12 3.87 -5.33 514.15 5.19 3.74 0.00 三、模态分析结果 1、各阶振型频率及类型 振型阶次自振频率(Hz)振动形式 1 1.838 2 弯曲振型 2 1.8627 弯曲振型 3 2.2773 扭转振型 4 5.6636 弯曲振型 5 5.7097 弯曲振型

ANSYS课程作业-边坡稳定性分析

边坡稳定性分析、问题描述 边坡围岩分别选择3种材料,用强度折减法判断稳定性及安全系数。、建模 三、材料参数 单元类型:PLANE82 受力状态:平面应变Plain strain

四、载荷 1. 位移条件 两侧边约束X方向位移,底边约束X、Y方向位移。 2. 受力条件 重力10g/cm2 1 NODES U 五、结果分析 1?收敛结果 ANSYS R15XJ JUN 28 Z015 13:03:04 丄塔丄』;;冷:忖:£ K :

伴随强度折减系数的增加,边坡的塑性应变增大,塑性区也随之扩大,当塑性区发展成一个贯通区域,边坡就不稳定,此时求解也不收敛。与此同时,边坡水平位移也变大。因此, 主要通过观察后处理中边坡变形图、应力图、塑形区来判断稳定性与否。 2. F=1.0结果分析 F=1.0时边坡变形图 311^1 KY5-€ W —.0S3TM MH -.C5S*44 -.SLSil ■“”戸呂0^36C"? ,0315^3 .eCSTgfl AN SYS R15.0 JUK 冲 12:aa:Z4 F=1.0时边坡X方向位移云图

F=1.0时边坡X方向应力云图 AN SYS R15.0 JOE品p冨耶43 12:DO15Q T.[?SE-L EPFLE J JV悵V⑹ Mt SME --34&E-34 M 强“阴.1&91-0< .2A0K-Q4 .HCS?-CI 3?K-?& . ll&E-CH . I^lE-04 . E ECB-O^ . J:4fiE-CH F=1.0时边坡塑性变形云图 此时边坡坡趾处有微小塑性应变,塑性区范围较小。

2017,钢结构理论与设计120题

随堂练习提交截止时间:2017-12-15 23:59:59 当前页有10题,你已做10题,已提交10题,其中答对8题。 1. 钢结构的抗震及抗动力荷载性能好是因为() A.制造工厂化 B.密闭性好 C.自重轻、质地均匀,具有较好的延性 D.具有一定的耐热性 参考答案:C 2. 下列钢结构的特点说法错误的是( ) A.钢结构绿色环保 B.钢结构施工质量好,工期短 C.钢结构强度高、自重轻 D.钢结构耐腐蚀、耐热防火 参考答案:D 3. 大跨度结构常采用钢结构的主要原因是钢结构() A.密闭性好 B.自重轻 C.制造工厂化 D.便于拆装 参考答案:B 4. 多层住宅、办公楼主要应用了() A.厂房钢结构 B.高耸度钢结构 C.轻型钢结构 D.高层钢结构 参考答案:C 5. 钢结构设计内容正确的顺序是()。 A.确定选定的钢材牌号―结构选型和结构布置―确定荷载并进行内力计算―构件截面设计―构件链接设计―绘制施工图,编制材料表 B.结构选型和结构布置―确定选定的钢材牌号―确定荷载并进行内力计算―构件截面设计―构件链接设计―绘制施工图,编制材料表 C.结构选型和结构布置―确定选定的钢材牌号―构件截面设计―确定荷载并进行内力计算―构件链接设计―绘制施工图,编制材料表 D.结构选型和结构布置―确定选定的钢材牌号―构件截面设计―构件链接设计―确定荷载并进行内力计算―绘制施工图,编制材料表 参考答案:B 6. 钢结构设计用到的规范是( ) A.《建筑结构荷载规范》 B.《钢结构设计规范》 C.《钢结构工程施工质量验收规范》 D.以上有需要

参考答案:D 7. 钢材的标准应力-应变曲线是通过下列哪项试验得到的?() A.冷弯试验 B.单向拉伸试验 C.冲击韧性试验 D.疲劳试验 参考答案:B 8. 钢材的力学性能指标,最基本、最主要的是()时的力学性能指标 A.承受剪切 B.单向拉伸 C.承受弯曲 D.两向和三向受力 参考答案:B 9. 钢材的伸长率δ用来反应材料的() A.承载能力 B.弹性变形能力 C.塑性变形能力 D.抗冲击荷载能力参考答案:C 10. 下列是钢的有益元素的是() A. 锰 B 硫 C 磷 D 氢 参考答案:A 11. 下列是不影响钢材性能的钢材生产过程() A. 炉种 B 浇筑前的脱氧 C 钢的轧制 D 钢筋的调直 参考答案:D 12. 复杂应力状态下钢材的屈服条件一般借助材料力学中的第()强度理论得出。 A. 一 B 二 C 三 D 四 参考答案:D 13. 下列是钢材塑性破坏特征的是() A. 破坏前的变形很小,破坏系突然发生,事先无警告,因而危险性大 B 破坏时的应力常小于钢材的屈服强度fy C 断口平直,呈有光泽的晶粒状 D 构件断裂发生在应力到达钢材的抗拉强度fu时 参考答案:D 14. 下列防止钢材脆断的措施中错误的是() A. 焊接结构,特别是低温地区,注意焊缝的正确布置和质量 B 选用厚大的钢材

用ANSYS进行桥梁结构分析

用ANSYS进行桥梁结构分析 谢宝来华龙海 引言:我院现在进行桥梁结构分析主要用桥梁博士和BSACS,这两种软件均以平面杆系为计算内核,多用来解决平面问题。近来偶然接触到ANSYS,发现其结构分析功能强大,现将一些研究心得写出来,并用一个很好的学习例子(空间钢管拱斜拉桥)作为引玉之砖,和同事们共同研究讨论,共同提高我院的桥梁结构分析水平而努力。 【摘要】本文从有限元的一些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使用方法和利用APDL语言快速进行桥梁的结构分析,最后通过工程实例来更近一步的介绍ANSYS进行结构分析的一般方法,同时进行归纳总结了各种单元类型的适用范围和桥梁结构分析最合适的单元类型。 【关键词】ANSYS有限元APDL结构桥梁工程单元类型 一、基本概念 有限元分析(FEA)是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元模型是真实系统理想化的数学抽象。 真实系统有限元模型 自由度(DOFs)用于描述一个物理场的响应特性。

节点和单元 荷载 1、每个单元的特性是通过一些线性方程式来描述的。 2、作为一个整体,单元形成了整体结构的数学模型。 3、信息是通过单元之间的公共节点传递的。 4、节点自由度是随连接该节点单元类型变化的。 单元形函数 1、FEA仅仅求解节点处的DOF值。 2、单元形函数是一种数学函数,规定了从节点DOF值到单元内所有点处DOF值的计算方法。 3、因此,单元形函数提供出一种描述单元内部结果的“形状”。 4、单元形函数描述的是给定单元的一种假定的特性。 5、单元形函数与真实工作特性吻合好坏程度直接影响求解精度。 6、DOF值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情况吻合得很好。 7、这些平均意义上的典型解是从单元DOFs推导出来的(如,结构应力,热梯度)。 8、如果单元形函数不能精确描述单元内部的DOFs,就不能很好地得到导出数据,因为这些导出数

ANSYS与ABAQUS稳定性研究比较

ANSYS与AB AQUS稳定性分析比较(转载?来自结构工程师崔家春的个人空间)其实,这些东西很简单,大多数朋友应该都比较了解。但是作为整个稳定性分析的一部分,觉得还是整理一下吧,也算是对后来者乂抛了一块砖。 算例描述: 为了能体现岀一般性,我故意找了一个比较大的结构。这是一个单层网壳结构, 最大尺寸在90m左右,杆件长度在1.13nv3.63m之间,截面形式为箱型截面;构件布置见下图。荷载任意挑选一个标准组合(具体是哪个不记得,只是验证软件单元特征,没有关系)。 在ANSYS软件中分别采用BEAM44x BEAM 188和BEAM 189进行计算。分析结果见下文。 备注:表格中Nl、N2分别代表每根构件采用1、2个单元;El、E2代表第1、 2阶屈曲荷载因子; ANSYS BEAM 188分析结果

山表格可以看出,利用ANSYS软件进行Buckling分析时,不同BEAM单元类型对单元剖分数量的要求。 (1)B EAM44和BEAM 189对单元的剖分数量要求较低,每根构件采用1个单元和采用2、3、4个单元时计算结果相差不大,在工程上这种误差应该是可以接受 的。 (2)B EAM 188单元对单元剖分数量的要求要高一些,从结果来看,每根杆件釆用5个BEAM 188单元计?算结果才与釆用1个BEAM44或BEAM189 单元计算结果相 同。 (3)在利用ANSYS进行Buckling分析时,以选用BEAM44与BEAM 189单元为佳。(4)选用BEAM44单元时,虽然每根杆件釆用1个单元和多个单元计算结果相差不大,但是本人还是建议每根杆件选用2至3个单元。理论上对于每根构件而 言,在设计时已经保证了其稳定性,但是我们也可以在整体稳定性分析过程中进一步对其进行校核。如果采用1个单元,就达不到这个效果。 (5)理论上能选择189单元是最好不过啦,不过考虑其是3节点单元,有时候从其它软件数据转过来时可能会有点不方便。 (6)考虑到后期进行非线性稳定计算,山于BEAM44单元不能考虑材料非线性,在前后延续上还是釆用BEAM 189比较好,而且3节点单元在单元剖分数量上要求也较低。 下面给岀每种单元计算得到的屈曲模态(每行从左到右分别为笫1、2、3阶): BEAM44单元讣算结果

建筑钢结构的稳定性设计综述

建筑钢结构的稳定性设计综述 摘要:建筑钢结构设计不但施工工艺简单,质量轻,而且还具有很高的强度, 但同时钢结构本身也存在一定的不稳定性,在外力干扰作用下,极易发生结构失稳,从而对建筑结构的平衡力和结构产生一定负面影响,一旦结构出现变形,必 然会对钢结构寿命和正常使用造成一定负面影响,从而增加工程事故发生概率。 为了有效改善此情况,有必要进一步分析和研究能够提高建筑钢结构设计稳定性 的设计方法,从而大大提升建筑钢结构的稳定性性能。 关键词:钢结构;稳定性;设计 前言:稳定性是钢结构设计的重要环节。一旦无法保证稳定性,对于这座建 筑而言,将失去它的意义。在建筑钢结构设计中,稳定性的考虑是最基本的问题,假设得到不妥善处理,必然会影响建筑的稳定性。在混凝土钢结构设计中,应先 对钢结构进行计算,再进行验算,以避免钢结构的失稳。为了克服这些困难,保 证建筑结构的性能,目前钢结构稳定设计中存在的缺陷主要集中在钢结构对稳定 性的影响上。 1建筑钢结构概述 1.1建筑钢结构的优点 由于建筑钢结构是一种能保证建设工程稳定的结构,它起着支撑作用,并具 有一定的抗震效果,其塑性和强度都比较强。在发生地震时,钢结构具有一定的 缓冲作用,减少了地震对房屋的破坏,提高了建筑物的安全性。建筑钢结构支撑 着整个建筑物,建筑钢的材料具要比钢筋混凝土材料要精确的多,所以会有部分 人在建筑工程项目中选择使用建筑钢结构。钢结构的可塑性也比较强,钢结构适 用于各种跨度比较大的建筑,较强的可塑性,导致建筑钢结构在受力过程中更加 的合适。而建筑钢结构的施工方法相对简单,建筑钢结构由钢板组成,钢板的生 产工艺也非常简单,大大缩短了施工周期。 1.2建筑钢结构存在的不足 建筑钢结构在建筑工程中的应用还存在一些不足。与其他建筑材料相比,钢 结构的耐腐蚀性和耐火性相对较低。如果有腐蚀性的东西,结构就会损坏。而且,如果发生火灾,房子很容易着火。危险和安全隐患很多。这些情况都不利于房屋 的质量安全。在实际的施工过程中,很多的建筑项目会选择一些强度比较低的钢 结构,这样就会导致建筑项目在施工过程中出现各种各样的问题。 2钢结构稳定设计中的几个问题 2.1结构完整性的影响 在钢结构设计稳定性分析过程中,设计者需要有一种全局感,从整体建筑的 角度考虑钢结构的整体性,充分考虑构件本身的特点。随着数据信息运用效率的 提升,分析钢结构设计中整体刚度、失稳问题的时候常常以临界压力求解法、折 减系数等方式,计算出轴心杆的稳定性。同时弹性稳定性设计也是钢结构设计中 的重要内容,在计算的过程中不仅仅要考虑钢结构本身的稳定性,还要做二阶分析。主要是因为结构内力被建筑结构中部分柔性构件变形量而影响,最后发生变化。对于应力叠加问题,设计人员应充分考虑。由于弹性稳定计算和结构变形关 系分析非常复杂,目前在弹性稳定计算中还没有得到广泛的应用。 2.2不确定因素分析 钢结构设计的稳定性会受到许多不确定因素的影响,主要表现在物理、几何 和力学方面。在结构设计中,涉及到材料、截面面积、构件尺寸、应力等诸多因

钢结构整体稳定性

在钢结构的可能破坏形式中,属于失稳破坏的形式包括:结构和构件的整体失稳;结构和构件的局部失稳。钢结构和构件的整体稳定,因结构形式的不同、截面形式的不同和受力状态的不同,可以有各种形式。轴心受压构件是工程结构中的基本构件之一。其形式分为实腹式轴心受压构件和格式轴心受压构件。在工程结构中,整体稳定通常控制着轴心受压构件的承载力,因为构件丧失整体稳定性常常是突发性的,易造成严重后果,所以应加以特别重视。对于钢构件轴心压杆承载力的极限状态是丧失稳定。轴心压杆整体失稳可能是弯曲屈曲、扭转屈曲、也可能是弯扭屈曲。 1、轴心压杆整体失稳形式 一根完全弹性的材料和无缺陷的轴心压杆,达到承载力的极限状态时,究竟呈弯曲屈曲、扭转屈曲、还是弯扭屈曲,要看它的材料和截面抗弯刚度EI、杆约束扭转刚度、杆自由扭转刚度GJ以及长度L的大小。 1.1弯曲失稳 对于截面没有削弱的双轴对称工字形等截面轴心受压构件,在承受较小压力Ⅳ时,构件可保持顺直。若遇到干扰力使其产生微小变形,在干扰力去掉后,构件将恢复其直线状态。当Ⅳ增加到一定大小后,该平衡状态则会转为不稳定平衡,亦即此时若有干扰力使其发生微变,则干扰力去掉后,构件任保持微弯状态。这时如果压力Ⅳ再稍加,则弯曲变形就会迅速增大而使构件丧失承载能力。这种现象称为构件的弯曲失稳或弯曲屈曲。 1.2扭转失稳 某些抗扭刚度较弱的十字截面和z形截面等轴心受压构件,当Ⅳ达到某一临界值时,构件将发生微扭变形。同样,若N再稍微增加,则扭转变形迅速增大而使构件丧失承载能力。这种现象称为扭转屈曲或扭转失稳。 1.3弯扭失稳 当构件的截面为单轴对称时,可能会发生绕非对称轴弯曲屈曲,也可能会发生绕对称轴弯曲变形并同时伴随有扭转变形的屈曲,这称为弯曲扭转屈曲或弯曲扭转失稳,简称弯扭屈曲或弯扭失稳。 2、考虑各种缺陷时的临界应力 实际工程中钢轴心压杆是弹塑性材料,但理想的轴心压杆并不存在,钢构件

ANSYS工程分析 基础与观念Chapter04

第4章 ANSYS结构分析的基本观念Basic Concepts for ANSYS Structural Analysis 这一章要介绍关于ANSYS结构分析的基本观念,熟悉这些基本观念有助于让你很快地区分你的工程问题的类别,然后依此选择适当的ANSYS分析工具。在第1节中我们会对分析领域(analysis fields)做一个介绍,如结构分析、热传分析等。第2节则对分析类别(analysis types)作一介绍,如静力分析、模态分析、或是瞬时分析等。第3节解释何谓线性分析,何谓非线性分析。第4节要对结构材料模式(material models)作一个讨论并作有系统的分类。第5节讨论结构材料破坏准则。第6、7节分别举两个实例,一个是结构动力分析,一个是非线性分析来总合前面的讨论。这两个例子再加上第3章介绍过的静力分析例子,这三个例子可以说是用来做为正式介绍ANSYS命令(第5、6、7章)之前的准备工作。最后(第8节)我们以两个简单的练习题做本章的结束。

第4.1节学科领域与元素类型 Disciplines and Element Types 4.1.1 学科领域(Disciplines) 我们之前提过,ANSYS提供了五大学科领域的分析能力:结傋分析、热传分析、流场分析、电场分析、磁场分析(电场分析及磁场分析可统称为电磁场分析),此外ANSYS也提供了偶合场分析(coupled-field analysis)的能力。为了能分析横跨多学科领域的偶合场,ANSYS提供了一些偶合场元素(coupled-field elements),但是这些元素还是无法涵盖所有偶合的可能性(举例来说,ANSYS 并没有流场与结构的偶合场元素)。但是在ANSYS的操作环境下,再加上利用APDL [Ref. 20],理论上可以进行各种偶合场分析(但是计算时间及收敛性常是问题所在)。下一小节将举几个例子来解说偶合场分析的含义,更详细的偶合场分析步骤你必须参阅Ref. 15。 4.1.2 偶合场分析 以下我们举三个例子来说明何谓偶合场分析。 第一个例子是热应力的计算,这是最常会遇到的问题之一。当你进行热应力分析时,通常分成两个阶段:先做热传分析解出温度分布后,再以温度分布作为结构负载来进行结构分析,而解出应力值。在第一个阶段,热边界条件(thermal boundary conditions)是热传分析的负载,我们希望知道在此热边界条件之下,温度是怎么分布的。因为不均匀的温度分布会造成结构的翘曲变形,所以第二个阶段是希望知道在这些温度分布下结构的变形及应力。这是一个很典型的偶合场分析问题,因为结构怎么变形是依温度怎么分布而定,而温度如何分布则与结构如何变形(变形量很大时,几何形状会改变)有关,这种相依的关系就称为偶合(coupling)。严格来说,前述的分析程序(先做热传分析再做结构分析)观念上不是很正确的,较正确的做法应该是热传与结构分析必须同时进行,也就是说温

ANSYS与ABAQUS稳定性分析比较

ANSYS与ABAQUS稳定性分析比较(转载-来自结构工程师崔家春的个人空间)其实,这些东西很简单,大多数朋友应该都比较了解。但是作为整个稳定性分析的一部分,觉得还是整理一下吧,也算是对后来者又抛了一块砖。 算例描述: 为了能体现出一般性,我故意找了一个比较大的结构。这是一个单层网壳结构,最大尺寸在90m左右,杆件长度在1.13m-3.63m之间,截面形式为箱型截面;构件布置见下图。荷载任意挑选一个标准组合(具体是哪个不记得,只是验证软件单元特征,没有关系)。 在ANSYS软件中分别采用BEAM44、BEAM188和BEAM189进行计算。分析结果见下文。 2阶屈曲荷载因子;

由表格可以看出,利用ANSYS软件进行Buckling分析时,不同BEAM单元类型对单元剖分数量的要求。 (1)BEAM44和BEAM189对单元的剖分数量要求较低,每根构件采用1个单元和采用2、3、4个单元时计算结果相差不大,在工程上这种误差应该是可以接受的。 (2)BEAM188单元对单元剖分数量的要求要高一些,从结果来看,每根杆件采用5个BEAM188单元计算结果才与采用1个BEAM44或BEAM189单元计算结果相同。 (3)在利用ANSYS进行Buckling分析时,以选用BEAM44与BEAM189单元为佳。 (4)选用BEAM44单元时,虽然每根杆件采用1个单元和多个单元计算结果相差不大,但是本人还是建议每根杆件选用2至3个单元。理论上对于每根构件而言,在设计时已经保证了其稳定性,但是我们也可以在整体稳定性分析过程中进一步对其进行校核。如果采用1个单元,就达不到这个效果。 (5)理论上能选择189单元是最好不过啦,不过考虑其是3节点单元,有时候从其它软件数据转过来时可能会有点不方便。 (6)考虑到后期进行非线性稳定计算,由于BEAM44单元不能考虑材料非线性,在前后延续上还是采用BEAM189比较好,而且3节点单元在单元剖分数量上要求也较低。 下面给出每种单元计算得到的屈曲模态(每行从左到右分别为第1、2、3阶): BEAM44单元计算结果

钢结构设计的稳定性原则与设计要点

钢结构设计的稳定性原则与设计要点 作者:马云龙 来源:《科学与财富》2020年第26期 摘要:钢结构作为建筑设计中一种主要的建造形式,目前,在大型厂房、桥梁、高层建筑物设计中被广泛应用。钢结构所采用的建筑钢材具有防变形、耐腐蚀、抗震以及符合环保要求等众多优点,因此能够在建筑设计领域得到广泛的应用。建筑工程采用钢结构时,其结构稳定性作为一个至关重要的指标,直接决定了建筑物的质量和使用寿命。本文结合笔者多年的建筑设计经验对建筑工程钢结构的稳定性展开讨论,已对相应问题提供参考。 关键词:建筑;钢结构;稳定性 0.;;; 前言 在建筑工程技术漫长的发展历程中,钢结构占据重要地位,目前,作为一种主流的建筑结构形式,被广泛应用于各类建筑设计中,尤其是在厂房、桥梁、机场、剧院、超高层等大型建筑结构中。在上世纪,由于钢材冶炼技术并不发达,建筑用钢材含碳量较高,其韧性和耐腐蚀性等缺点使得钢结构在建筑设计领域并不受重视,一度被边缘化,几乎淘汰。近年来,随着金属冶炼科技的不断进步,高强度、高韧性、耐腐蚀的建筑用钢材被广泛生产,钢结构又重新受到建筑设计师的青睐,被越来越多地使用在各种工程建造中,在减轻建筑物总体结构重量,提高建筑物整体安全性方面起到了积极作用。[1]随着建筑技术的不断发展,钢结构的使用也越来越广泛,各种复杂的使用条件对其稳定性提出了严峻的考验,本文将详细分析钢结构稳定性的设计在建筑工程使用的要点和原则,并总结相关经验教训。 1.;;; 钢结构的概念 钢结构顾名思义就是以钢材作为结构搭建的主要原材料,通过钢梁、钢板、钢柱等不同的钢制组件,采用焊接、铆接等连接手段进行拼接组装,进行大型建筑物搭建的建筑结构类型。钢结构以各类钢材作为主要材料,与普通混凝土等建筑材料不同,钢材具有重量轻,韧性强等特点,能够承受更大的力,因此在大中型建筑物设计中经常采用钢结构设计。钢结构构造稳定,不易变形,能够为建筑物提供良好的安全稳定性。但是,在某些特殊情况下也有可能出现钢结构失稳的情况,常见的有以下两种情况:一种是过大的压力直接作用在受力平衡点上,造成结构整体受力不均导致失稳。[2]另一种是钢结构构件由于长期使用,导致内部结构发生金属疲劳等问题,内部结构失去支撑作用,导致整体结构失稳。在进行钢结构设计之前,有必要明确这种结构的稳定性特点,才能在设计过程中有的放矢,避免结构弱点,发挥钢结构的优势,使得建筑物中的钢结构发挥更好的作用。 2.;;; 钢结构提高设计稳定性的原则

钢结构稳定问题

钢结构稳定问题的综述 建筑与土木工程学院刘小伟学号:2111316139 摘要:总结了钢结构稳定问题的基本概念和类型,介绍了影响钢结构稳定的一些因素和稳定问题的计算方法、规范规定,并总结了钢结构稳定设计的设计原则和目前钢结构稳定问题研究中存在的问题特点。 关键词:钢结构稳定性原则类型 Abstract:Summarized the basic concept and type of stability problems of steel structure, introducing the standard calculation method.The influence of some factors and stability problems of steel structure stability of the regulation, and summarizing the design principle of stability design of steel structure and the present research of structure stability problems in steel. Keywords: Steel structure stability principle type 1、引言 随着我国钢铁工业的快速发展,又由于钢结构的诸多优点,所以这种被认为绿色环保型产品的钢结构,是建筑的发展方向。但由于钢比混凝土的抗压强度高20多倍,因此设计的承担相同受力功能的钢构件与混凝土构件相比,具有截面尺寸小、构件细长等特点,在对于受压、受弯等存在受压区的钢构件处理不当时,就很可能出现失稳现象。因此为了提高截面效率、充分发挥钢材的强度,钢结构一般做成

基于ANSYS的拱坝坝肩及坝基整体稳定分析

1002 -5634(2012)03 -0004 -05 基于ANSYS的拱坝坝肩及坝基整体稳定分析 丁泽霖1,2王婧1黄德才2 1.华北水利水电学院,河南郑州450011:2贵州省黔西南州望谟县水利局,贵州望谟552300 摘 要:结合拱坝坝肩与坝基的地形、地质特征以及软弱结构面分布状况,通过ANSYS软件建立拱坝天然地基条件下的三维数值模型,并进行超载法计算,分析坝体变形与应变特征、坝肩和断层的变位分布特征、坝肩的破坏形态和过程,得到整体稳定超载安全系数,评价拱坝的安全度,为工程设计、施工和加固处理提供依据.拱坝;有限元;坝肩稳定 2012 -04 -05 丁泽霖( 1983-),男,满族,辽宁凤城人,讲师,博士,主要从事水工结构工程方面的研究. 万方数据

密或少量 曲泥瞒存情万方数据

万方数据

i梁剖面塑万方数据

@@[1]苑宝军,张玉文.加快四川水电建设打造中国水电基地 [J].水利科技与经济,2006,12(2):118 -120. @@[2 ] Boulon M, Alachaher A. A new incrementally nonlinear  constitutive law for finite element applications in geome chanics[ J ]. Computers and Geotechnics, 1995,17 (2) : 177 - 201. @@[3]陈胜宏,汪卫明.小湾高拱坝坝踵开裂的有限单元法分 析[J].水利学报,2003(1):66 -71. @@[4]杨强,吴浩,周维垣.大坝有限元分析应力取值的研究 [J].工程力学,2006,23(1):69 -72. @@[5]王新敏.ANSYS工程结构数值分析[M].北京:人民交 通出版社,2007. Stability Analysis of Foundation and Abutment of Arch Dam Based on ANSYS  DING Ze-linWANG JingHUANG De-cai 万方数据

钢结构的稳定性

钢结构的稳定可分为结构整体的稳定和构件本身的稳定两种情况。 结构整体的稳定,在结构的纵向,主要依靠结构的支撑系统来保证,如钢柱的柱间支撑,钢屋架的上、下弦水平支撑和垂直支撑等。计算时主要考虑支撑系统能可靠地传递结构纵向的水平荷载(风荷载、地震荷载、厂房吊车荷载等)。在结构的横向,主要依靠结构自身(框架或排架)的刚度来保证,计算时主要要考虑结构自身能可靠地传递结构横向的水平荷载。 构件本身的稳定主要由构件组成部份的自身刚度来保证。计算时要保证构件本身及其组成部份(杆件或板件)在荷载作用下不发生屈曲而丧失稳定(这种情况主要发生在受压或压弯构件上)。在实际计算中,一般是用稳定系数来限制钢材的设计强度。使构件中的最大应力不大于钢材的设计强度乘以稳定系数后的值。这样的公式在钢结构的受压和受弯的计算公式中均可见到。 稳定系数是个主要与构件的长细比(杆件)或高厚比(板件)有关的系数,控制了长细

比和高厚比也就等于控制了构件的稳定。 所以说,构件本身的稳定因素主要是构件的计算长度和截面特性,包括平面内和平面外的两个方向。当然,还应该包括材料的强度和应力的大小。 对钢管的强度和稳定性(整体稳定性)都有影响,当钢管受拉时,其破坏是强度破坏,它能承受的轴向拉力设计值为:N=A*f,其中:A是钢管的截面面积,f是钢材的强度设计值,由于钢管壁厚的减小,必然导致钢管截面面积的减小,从而导致钢管承受的轴向拉力值的减小。当钢管受压时,其破坏是稳定性破坏,它能承受的压力设计值为:N=φ*f*A,其中:φ是钢管的整体稳定系数,可以根据它的长细比由钢结构设计规范的附表查到,长细比的计算公式是:λ=l/i,l 是它的计算长度,i是截面的回转半径,由于钢管壁厚的减小,必然导致i的减小,因为i=sqrt(I/A),这里的I是钢管的截面惯性矩,A为截面面积,所以由于壁厚的减小,导致了长细比的增大,从而导致了稳定系数φ的减小,最终导致了稳定承载力设计值的

ANSYS 非线性_结构分析

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 1

第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析 非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 2

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 3

非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。 接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。 几何非线性 如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。 4

相关文档
最新文档