搅拌摩擦焊接缺陷的补焊方法

搅拌摩擦焊接缺陷的补焊方法
搅拌摩擦焊接缺陷的补焊方法

焊接缺陷分类及预防措施

一、焊接缺陷的分类 焊接缺陷可分为外部缺陷和内部缺陷两种 1.外部缺陷 1)外观形状和尺寸不符合要求; 2)表面裂纹; 3)表面气孔; 4)咬边; 5)凹陷; 6)满溢; 7)焊瘤; 8)弧坑; 9)电弧擦伤; 10)明冷缩孔; 11)烧穿; 12)过烧。 2.内部缺陷 1)焊接裂纹:a.冷裂纹;b.层状撕裂;c.热裂纹;d.再热裂纹。 2)气孔; 3)夹渣; 4)未焊透; 5)未熔合; 6)夹钨; 7)夹珠。 二、各种焊接缺陷产生原因、危害及防止措施 1、外表面形状和尺寸不符合要求 表现:外表面形状高低不平,焊缝成形不良,焊波粗劣,焊缝宽度不均匀,焊缝余高过高或过低,角焊缝焊脚单边或下凹过大,母材错边,接头的变形和翘曲超过了产品的允许范围等。 危害:焊缝成形不美观,影响到焊材与母材的结合,削弱焊接接头的强度性能,使接头的应力产生偏向和不均匀分布,造成应力集中,影响焊接结构的安全使用。

产生原因:焊件坡口角度不对,装配间隙不匀,点固焊时未对正,焊接电流过大或过小,运条速度过快或过慢,焊条的角度选择不合适或改变不当,埋弧焊焊接工艺选择不正确等。 防止措施:选择合适的坡口角度,按标准要求点焊组装焊件,并保持间隙均匀,编制合理的焊接工艺流程,控制变形和翘曲,正确选用焊接电流,合适地掌握焊接速度,采用恰当的运条手法和角度,随时注意适应焊件的坡口变化,以保证焊缝外观成形均匀一致。 2、焊接裂纹 表现:在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏形成的新界面所产生的缝隙,具有尖锐的缺口和大小的长宽比特征。按形态可分为:纵向裂纹、横向裂纹、弧坑裂纹、焊趾裂纹、焊根裂纹、热影响区再热裂纹等。 危害:裂纹是所有的焊接缺陷里危害最严重的一种。它的存在是导致焊接结构失效的最直接的因素,特别是在锅炉压力容器的焊接接头中,因为它的存在可能导致一场场灾难性的事故的发生,裂纹最大的一个特征是具有扩展性,在一定的工作条件下会不断的“生长”,直至断裂。 产生原因及防止措施: (1)冷裂纹:是焊接头冷却到较低温度下(对于钢来说是Ms温度以下)时产生的焊接裂纹,冷裂纹的起源多发生在具有缺口效应的焊接热影响区或有物理化学不均匀的氢聚集的局部地带,裂纹有时沿晶界扩展,也有时穿晶扩展。这是由于焊接接头的金相组织和应力状态及氢的含量决定的。(如焊层下冷裂纹、焊趾冷裂纹、焊根冷裂纹等)。 产生机理:钢产生冷裂纹的倾向主要决定于钢的淬硬倾向,焊接接头的含氢量及其分布,以及接头所承受的拘束应力状态。 产生原因: a.钢种原淬硬倾向主要取决于化学成分、板厚、焊接工艺和冷却条件等。钢的淬硬倾向越大,越易产生冷裂纹。 b.氢的作用,氢是引起超高强钢焊接冷裂纹的重要因素之一,并且有延迟的特征。高强钢焊接接头的含氢量越高,则裂纹的敏感性越强。 c.焊接接头的应力状态:高强度钢焊接时产生延迟裂纹的倾向不仅取决于钢的淬硬倾向和氢的作用,还决定于焊接接头的应力状态。焊接时主要存在的应力有:不均匀加热及冷却过程中所产生的热应力、金属相变时产生的组织应力、结构自身拘束条件等。

搅拌摩擦焊和熔焊对比优劣

搅拌摩擦焊和熔焊对比优劣 FSW(搅拌摩擦焊)的一些优势。 搅拌摩擦焊(FSW)实践证明是非铁金属连接工艺,它没有母材熔化、填充金属和保护气体。因为它是固态连接工艺,搅拌摩擦焊消除了传统熔焊本身存在的大多数与再凝固相关的副作用。该工艺同时也能应用于全位置焊。 FSW的优缺点 三个重要特征展现了搅拌摩擦焊较之传统熔焊工艺的优势:高效率,低成本和有效连接铝合金。用传统熔焊法连接铝合金很难,或者几乎是不可能的。 当然,为了最好地确定搅拌摩擦焊潜在优势或劣势,要对每一个所述的优点进行测评。举个例子,如果一家公司需要在相关设备成本中分解,以建立生产部件的成本,由于最初投资成本相对较高,FSW的优势就只能体现在高生产率应用上。要焊接连续长焊缝长度的部件,或需要焊接2xxx或7xxx系列的铝,选择此项工艺是最好的。在选择最佳工艺时,铝合金型号和材料厚度也可能起到重要作用。 建立FWS的优势 搅拌摩擦焊是一种快速工艺,变形小,没有气孔,无热裂纹,能在单焊道内焊接厚铝板。这些都是效率高,生产成本低的原因。 表1显示的数据在焊接2in.厚铝型材时对FSW和GMAW两种焊接工艺作了比较。虽然FSW投资成本要高些,但由于焊接速度快,焊接准备工作成本低,所以每段长度的成本更少。 对焊接厚铝板来说,由于搅拌摩擦焊不熔化铝,所以不需要多焊道来限制线能量。它有足够的热来塑化铝,很像热压时的情况。 双重焊头设置也可用,能让用户同时焊接厚铝板的正反面,或同时焊接夹层板,从而进一步减少了线能量。同时,由于每个焊头负责材料厚度的一半,焊接总速度实质上加了倍。 使用搅拌摩擦焊的一个缺陷可能是焊接夹具投资成本,尤其是在更为复杂的焊接应用中。每边必须有足够的侧边和向下夹紧压力,以夹紧它们不离原位。这一方法可能需要用到液压传动装置。这一压力可能很大,但很合理。 减少生产成本 由于500°C是该工艺的最高连接温度,气孔和热裂纹消除,所以使用搅拌摩擦焊的生产成本要低些。这个温度不足铝660°C的熔化温度(图1),尤其是在评估疲劳寿命时特别有优势。 与此相关的是由于依赖旋转触针,搅拌摩擦焊能消除熔化或焊缝熔深问题。只有极大改变工具长度,超过15%,才会影响焊缝完整性,如弯折试验时所示。工具磨损最小,在保持质量的前提下,可持续使用。 搅拌摩擦焊不需要焊接气体和耗材。因此可很大节省生产成本。气体保护电弧焊中工艺的可变性,如焊丝直径容差和送丝问题,在搅拌摩擦焊中不需考虑。 减少焊前准备工作时间 搅拌摩擦焊焊前准备工作时间相对简单,这进一步节省了成本。只要去除油脂或其它润滑溶液就行了。换句话说,表面氧化和腐蚀对搅拌摩擦焊不会有多大的影响。实际上,该工艺有效弥补了GTAW或GMAW工艺的不足。在如航空业这些要求焊缝零缺陷的行业这一点尤为重要。 焊后修整 由于搅拌摩擦焊的锻接特性,焊缝断面很美观,大大减少了如去除熔渣和飞溅的焊后工艺。搅拌摩擦焊不需要去除污物和过度打磨。由于打磨通常要花大量时间,尤其是对长焊件

焊接中常见的缺陷及解决方法

焊接中常见的缺陷及解决方法 1.漏焊---漏焊包括焊点漏焊、螺栓漏焊、螺母漏焊等。 原因---主要原因是因为没有自检、互检,对工艺不熟悉造成的。 解决方法---在焊接后对所有焊点(螺母、螺栓等)进行检查,确认焊点(螺母、螺栓等)数量,熟悉工艺要求,加强自检意识,补焊等。 2.脱焊---包括焊点、螺母、螺栓等脱焊。(除材料与零部件本身不合格) 以下3种可视为脱焊: ①.接头贴合面未形成熔核,呈塑料性连接; ②.贴合面上的熔核尺寸小于规定值; ③.熔核核移,使一侧板焊透率达不到要求。 产生脱焊原因: ①.焊接电流过,焊接区输入热量不足; ②.电极压力过大,接触面积增大,接触电阻降低,散热加强; ③.通电时间短,加热不均匀,输入热量不足; ④.表面清理不良,焊接区电阻增大,分流相应增大; ⑤.点距不当,装配不当,焊接顺序不当,分流增大。 解决方法:在调整焊接电流后,对焊点做半破坏检查(试片做全破坏检查),目视焊点形状;补焊,检查上次半破坏后的相关焊点。 3.补焊---多焊了工艺上不要求焊接的焊点。 原因---不熟悉工艺或焊接中误操作焊钳。 解决方法---熟悉工艺或加强操作技能。 注意:两个或多于两个的连续点焊不能有偏焊现象,边缘及拐角处也不能存在偏焊的现象。(如两个连点偏焊,至少要有一个焊点需要重新点焊。) 4.焊渣---由于电流过大或压力过小,造成钢板的一部分母材在高温熔合 时沿着两钢板贴合面被挤出而形成的冷却物. 原因---主要原因是电流和压力的变化,以及焊钳操作不当引起的。 解决方法---调整焊接参数与电极压力,加强操作技能及清除焊渣。 5.飞溅---飞溅分为内部飞溅和外部飞溅两种。 内部飞溅---高温液态金属在电极压力的作用下,沿着最薄弱的两钢板间贴合而挤出。 产生原因 ①.电流过大,电极压力不足; ②.板间有异物或贴合不紧密。 外部飞溅---电极与焊件之间融合金属溢出的现象. 产生原因 ①.电极修磨得太尖锐;

焊接缺陷及防止措施示范文本

焊接缺陷及防止措施示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

焊接缺陷及防止措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、外观缺陷:外观缺陷(表面缺陷)是指不用借助于仪 器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、 焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。 单面焊的根部未焊透等。 A、咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属 的充分补充所留下的缺口。产生咬边的主要原因是电弧热 量太高,即电流太大,运条速度太小所造成的。焊条与工件间 角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造 成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原 因。某些焊接位置(立、横、仰)会加剧咬边。 咬边减小了母材的有效截面积,降低结构的承载能力,同

时还会造成应力集中,发展为裂纹源。 矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。 C、凹坑凹坑指焊缝表面或背面局部的低于母材的部

焊接缺陷和检验术语

焊接缺陷和检验术语 一、焊接缺陷 1、焊接缺陷焊接过程中在焊接接头中产生的金属不连续、不致密或连接不良的现象。 2.未焊透焊接时接头根部未完全熔透的现象,对对接焊缝也指焊缝深度未达到设计要求的现象。 3.未熔合熔焊时,焊道与母材之间或焊道与焊道之间,未完全熔化结合的部分,电阻点焊指母材与母材之间未完全熔化结合的部分。 4.夹渣焊后残留在焊缝中的焊渣。 5.夹杂物由于焊接冶金反应产生的,焊后残留在焊缝金属中的微观非金属杂质(如氧化物、硫化物等)。 6.夹钨钨极惰性气体保护焊时由钨极进入到焊缝中的钨粒。7.气孔焊接时,熔池中的气泡在凝固时未能逸出而残留下来所形成的空穴。气孔可分为密集气孔、条虫状气孔和针状气孔等。 8.咬边由于焊接参数选择不当,或操作方法不正确,沿焊趾的母材部位产生的沟槽或凹陷。 9.焊瘤焊接过程中,熔化金属流淌到焊缝之外未熔化的母材上所形成的金属瘤。 10.白点在焊缝金属拉断面上,出现的如鱼目状的一种白色圆形斑点。

11.烧穿焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷。 12.凹坑焊后在焊缝表面或焊缝背面形成的低于母材表面的局部低洼部分。 13.未焊满由于填充金属不足,在焊缝表面形成的连续或断续的沟槽。 14.下塌单面熔化焊时,由于焊接工艺不当,造成焊缝金属过量透过背面,而使焊缝正面塌陷,背面凸起的现象。二、焊接裂纹 1.焊接裂纹在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面所产生的缝隙。它具有尖锐的缺口和大的长宽比的特征。2.热裂纹焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的焊接裂纹。 3.弧坑裂纹在弧坑中产生的热裂纹。 4.冷裂纹焊接接头冷却到较低温度下(对于钢来说在MS温度以下)时产生的焊接裂纹。 5.延迟裂纹钢的焊接接头跨却到室温后并在一定时间(几小时、几天、甚至十几天)才出现的焊接冷裂纹。 6.焊根裂纹沿应力集中的焊缝根部所形成的焊接冷裂纹。7.焊趾裂纹沿应力集中的焊趾处所形成的焊接冷裂纹。8.焊道下裂纹在靠近堆焊焊道的热影响区内所形成的焊接

超声波焊接常见缺陷及处理办法

超声波焊接常见缺陷及处理办法 一、强度无法达到欲求标准。 当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些配合是什么呢? ※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接?我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的?那就不一定了!而从另一方面思考假使ABS与耐隆、PP、PE相熔的情形又如何呢?如果超音波HORN瞬间发出150度的热能,虽然ABS 材质己经熔化,但是耐隆、PVC、PP、PE只是软化而已。我们继续加温到270度以上,此时耐隆、PVC、PP、PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!由以上论述即可归纳出三点结论: 1.相同熔点的塑料材质熔接强度愈强。

2.塑料材质熔点差距愈大,熔接强度愈小。 3.塑料材质的密度愈高(硬质)会比密度愈低(韧性高)的熔接强度高。 二、制品表面产生伤痕或裂痕。 在超音波熔接作业中,产品表面产生伤痕、结合处断裂或有裂痕是常见的。因为在超音波作业中会产生两种情形:1.高热能直接接触塑料产品表面 2.振动传导。所以超音波发振作用于塑料产品时,产品表面就容易发生烫伤,而1m/m以内肉厚较薄之塑料柱或孔,也极易产生破裂现象,这是超音波作业先决现象是无可避免的。而在另一方面,有因超音波输出能量的不足(分机台与HORN上模),在振动摩擦能量转换为热能时需要用长时间来熔接,以累积热能来弥补输出功率的不足。此种熔接方式,不是在瞬间达到的振动摩擦热能,而需靠熔接时间来累积热能,期使塑料产品之熔点到达成为熔接效果,如此将造成热能停留在产品表面过久,而所累积的温度与压力也将造成产品的烫伤、震断或破裂。是以此时必须考虑功率输出(段数)、熔接时间、动态压力等配合因素,来克服此种作业缺失。 解決方法:

焊接的六大缺陷产生原因和预防措施大汇总

一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 防止咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。 C、凹坑 凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。

常见的焊接缺陷及处理办法

常见的焊接缺陷及处理办法 一、外部缺陷 一)、焊缝成型差 1、现象 焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。 2、原因分析 焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。 ⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。 ⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。 ⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。 4、治理措施 ⑴加强焊后自检和专检,发现问题及时处理; ⑵对于焊缝成型差的焊缝,进行打磨、补焊; ⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊; ⑷加强焊接验收标准的学习,严格按照标准施工。 二)、焊缝余高不合格 1、现象 管道焊口和板对接焊缝余高大于 3 ㎜;局部出现负余高;余高差过大;角焊缝高度不够或 焊角尺寸过大,余高差过大。 2、原因分析 焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数; ⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢; ⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀; ⑷注意保持正确的焊条(枪)角度。 4、治理措施 ⑴加强焊工操作技能培训,提高焊缝盖面水平; ⑵对焊缝进行必要的打磨和补焊; ⑶加强焊后检查,发现问题及时处理; ⑷技术员的交底中,对焊角角度要求做详细说明。 三)、焊缝宽窄差不合格 1、现象 焊缝边缘不匀直,焊缝宽窄差大于 3 ㎜。 2、原因分析 焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。

常见的焊接缺陷及危害(DOC)

常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态

可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,两侧线状夹渣 钢板对接焊缝X射线照相底片 V型坡口,钨极氩弧焊打底+手工电弧焊,夹钨 (5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。 焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性

焊接缺陷及防止措施(最新版)

焊接缺陷及防止措施(最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0541

焊接缺陷及防止措施(最新版) 1、外观缺陷:外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。产生咬边的主要原因是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。 咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利

于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无 偏芯焊条,合理操作。 C、凹坑凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时 的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。 凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩

铝合金焊接缺陷及检验

第八章:焊接缺陷及焊接质量检验 学习要求:掌握焊接中各种焊接缺陷,了解焊接缺陷产生的原因及预防措施,掌握各种焊接检验方法。掌握公司焊缝外观检验标准, 课时:4课时 基本内容 前言:随着科学技术的发展,焊接在工业生产中的地位更加重要。从大量结构的事故原因分析结果可以看出,很多是由于焊接质量不好造成的,而焊工的责任心和操作技能直接影响到焊接质量。为提高焊工的素质,保证焊接结构的使用安全、可靠,对焊工进行培训与考核是十分必要的。 第一节焊接缺陷 焊接缺陷:焊接接头中产生的不符合设计或工艺文件要求的缺陷 一、焊接缺陷的分类按焊接缺陷在焊缝中的位置,可分为外部缺陷与内部缺陷两大类。外部缺陷位于焊缝区的外表面,肉眼或用低倍放大镜即可观察到。例如:焊缝尺寸不符合要求、咬边、焊瘤、弧坑、烧穿、下塌、表面气孔、表面裂纹等。内部缺陷位于焊缝内部,需用破坏性实验或探伤方法来发现。例如:未焊透、未熔合、夹渣、内部气孔、内部裂纹等。 二、常见电焊缺陷 (1)焊缝尺寸不符合要求主要指焊缝宽窄不一、高低不平、余高不

足或过高等。焊缝尺寸过小会降低焊接接头强度;尺寸过大将增加结构的应力和变形,造成应力集中,还增加焊接工作量。焊接坡口角度不当或装配间隙不均匀,焊接电流过大或过小,运条方式或速度及焊角角度不当等均会造成焊缝尺寸不符合要求。 (2)咬边由于焊接参数选择不当,或操作工艺不正确,沿焊趾的母材部位产生的沟槽或凸陷即为咬边。咬边使母材金属的有效截面减小,减弱了焊接接头的强度,而且在咬边处易引起应力集中,承载后有可能在咬边处产生裂纹,甚至引起结构的破坏。产生咬边的原因 操作方式不当,焊接规范选择不正确,如焊接电流过大,电弧过长,焊条角度不当等。咬边超过允许值,应予补焊。 (3)焊瘤焊接过程中,熔化金属流淌到焊缝之外未熔化的母材上,所形成的金属瘤即为焊瘤。焊瘤不仅影响焊缝外表的美观,而且焊瘤下面常有未焊透缺陷,易造成应力集中。对于管道接头来说,管道内部的焊瘤还会使管内的有效面积减少,严重时使管内产生堵塞。焊瘤常在立焊和仰焊时发生。焊缝间隙过大,焊条角度和运条方法不正确,焊条质量不好,焊接电流过大或焊接速度太慢等均可引起焊瘤的产生。(4)烧穿焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷称为烧穿。烧穿常发生于打底焊道的焊接过程中。发生烧穿,焊接过程难以继续进行,是一种不允许存在的焊接缺陷。造成烧穿的主要原因是焊接电流太大或焊接速度太低;坡口和间隙太大或钝边太薄以及操作不当等。为了防止烧穿,要正确设计焊接坡口尺寸,确保装配质量,选用适当的焊接工艺参数。单面焊可采用加铜垫板或焊剂垫等办法防

焊接缺陷产生原因及防止措施

焊接缺陷产生原因及防止措施 焊接接头的不完整性称为焊接缺陷,主要有焊接裂纹、未焊透、夹渣、气孔和焊缝外观缺陷等。这些缺陷减少焊缝截面积,降低承载能力,产生应力集中,引起裂纹;降低疲劳强度,易引起焊件破裂导致脆断。 一缺陷名称:气孔(Blow Hole) 焊接方式发生原因防止措施 手工电弧 焊(1)焊条不良或潮湿. (2)焊件有水分、油污或锈. (3)焊接速度太快. (4)电流太强. (5)电弧长度不适合. (6)焊件厚度大,金属冷却过速. (1)选用适当的焊条并注意烘干. (2)焊接前清洁被焊部份. (3)降低焊接速度,使内部气体容易逸 出. (4)使用厂商建议适当电流. (5)调整适当电弧长度. (6)施行适当的预热工作. CO2气体保护焊(1)母材不洁. (2)焊丝有锈或焊药潮湿. (3)点焊不良,焊丝选择不当. (4)干伸长度太长,CO2气体保 护不周密. (5)风速较大,无挡风装置. (6)焊接速度太快,冷却快速. (7)火花飞溅粘在喷嘴,造成气 体乱流. (8)气体纯度不良,含杂物多(特 别含水分). (1)焊接前注意清洁被焊部位. (2)选用适当的焊丝并注意保持干燥. (3)点焊焊道不得有缺陷,同时要清洁 干净,且使用焊丝尺寸要适当. (4)减小干伸长度,调整适当气体流 量. (5)加装挡风设备. (6)降低速度使内部气体逸出. (7)注意清除喷嘴处焊渣,并涂以飞溅 附着防止剂,以延长喷嘴寿命. (8)CO2纯度为99.98%以上,水分为0. 005%以下.

埋弧焊接 (1)焊缝有锈、氧化膜、油脂等 有机物的杂质. (2)焊剂潮湿. (3)焊剂受污染. (4)焊接速度过快. (5)焊剂高度不足. (6)焊剂高度过大,使气体不易 逸出(特别在焊剂粒度细的情 形). (7)焊丝生锈或沾有油污. (8)极性不适当(特别在对接时 受污染会产生气孔). (1)焊缝需研磨或以火焰烧除,再以钢 丝刷清除. (2)约需300℃干燥 (3)注意焊剂的储存及焊接部位附近 地区的清洁,以免杂物混入. (4)降低焊接速度. (5)焊剂出口橡皮管口要调整高些. (6)焊剂出口橡皮管要调整低些,在自 动焊接情形适当高度30-40mm. (7)换用清洁焊丝. (8)将直流正接(DC-)改为直流反接(D C+). 设备不良(1)减压表冷却,气体无法流出. (2)喷嘴被火花飞溅物堵塞. (3)焊丝有油、锈. (1)气体调节器无附电热器时,要加装 电热器,同时检查表之流量. (2)经常清除喷嘴飞溅物.并且涂以飞 溅附着防止剂. (3)焊丝贮存或安装焊丝时不可触及 油类. 自保护药芯焊丝(1)电压过高. (2)焊丝突出长度过短. (3)钢板表面有锈蚀、油漆、水 分. (4)焊枪拖曳角倾斜太多. (5)移行速度太快,尤其横焊. (1)降低电压. (2)依各种焊丝说明使用. (3)焊前清除干净. (4)减少拖曳角至约0-20°. (5)调整适当. 典型缺陷照片

搅拌摩擦焊接头缺陷检测与修复方法

搅拌摩擦焊接头缺陷检测与修复方法 中图分类号:T341 文献标识码:A 文章编号:1009-914X(2017)11-0048-01 1 缺陷的检测方法 铝合金搅拌摩擦焊接头缺陷具有紧贴、细微、取向复杂等特点,增加了缺陷无损检测的难度,目前的检测方法主要有:超声检测、射线探伤、涡流探伤、激光干涉等检测方法。 1.1 超声检测法 超声检测技术是基于声波在材料中的传播路径与材料的均匀性有关,当声波的传播路径上出现缺陷时,就会改变原来的传播特性,产生反射、折射和波形转换。超声检测技术是目前应用于搅拌摩擦焊接头缺陷检测的一种理想的无损检测方法,也是应用最广泛的一种方法,具有灵敏度和检出率高、缺陷定位准确等优点。超声波定性检测缺陷的方法主要有波形判别法、回波相位法、频谱分析法、超声C和B 扫描法等[1]。 刘松平[2]等人研究了利用超声反射法检测搅拌摩擦焊缝区不同取向的缺陷。通过计算分析超声波在焊缝区的声波入射角、缺陷取向和缺陷紧贴性对声波反射的影响,确定入射声波的角度变化范围,通过改变入射角获取入射声波在缺

陷处的最佳声学反射方向,提高入射声波对不同取向缺陷的检出能力。检测结果表明,该法可以有效地检出铝合金搅拌摩擦焊缝区不同取向焊接缺陷,是解决搅拌摩擦焊缝区微细和紧贴型缺陷无损检测的一种可行的方法。另外,利用高分辨率超声波在缺陷的反射回波信号波形(即频谱)的不同,还可以区分缺陷的性质或类型。 徐蒋明[3]等人通过超声波检测中的前后扫查和左右扫 查获取缺陷的超声波回波动态波形,分别描述了铝合金搅拌摩擦焊焊缝的包铝陷入缺陷、隧道孔缺陷和未焊透缺陷的动态波形特点,并分析了各缺陷动态波形形成的原因。结果表明三种缺陷左右扫查的动态波形相似;隧道孔缺陷的前后扫查动态波形具有自身特征,而包铝陷入缺陷和未焊透缺陷的前后扫查动态波形具有光滑平面反射体的前后扫查的动态 波形特征,需要辅助以其他手段来区分这两种缺陷并对其定性。 1.2 X射线检测法 X射线检测方法基于射线束穿过缺陷区引起的能量衰减原理,利用合理感光材料或用记录仪器记录这种能量衰减,以灰(黑)度变化来评定缺陷的存在。 刘松平[4]等人利用X射线成功的探测了3mm厚铝合金板内预制的孔洞缺陷,但是相比超声检测的方法,X射线的检测能力有限,特别是针对搅拌摩擦焊缝中的微细和紧贴型

常见焊接缺陷产生原因及处理办法

以下是焊接缺陷方面的浅析 缺陷产生原因及防止措施 一、缺陷名称:气孔(Blow Hole) 焊接方式发生原因防止措施 手工电弧焊(1)焊条不良或潮湿。 (2)焊件有水分、油污或锈。 (3)焊接速度太快。 (4)电流太强。 (5)电弧长度不适合。 (6)焊件厚度大,金属冷却过速。 (1)选用适当的焊条并注意烘干。 (2)焊接前清洁被焊部份。 (3)降低焊接速度,使内部气体容易逸出。 (4)使用厂商建议适当电流。 (5)调整适当电弧长度。 (6)施行适当的预热工作。 CO2气体保 护焊(1)母材不洁。 (2)焊丝有锈或焊药潮湿。 (3)点焊不良,焊丝选择不当。 (4)干伸长度太长,CO2气体保护不周密。 (5)风速较大,无挡风装置。 (6)焊接速度太快,冷却快速。 (7)火花飞溅粘在喷嘴,造成气体乱流。 (8)气体纯度不良,含杂物多(特别含水分)。 (1)焊接前注意清洁被焊部位。 (2)选用适当的焊丝并注意保持干燥。 (3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊 丝尺寸要适当。 (4)减小干伸长度,调整适当气体流量。 (5)加装挡风设备。 (6)降低速度使内部气体逸出。 (7)注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以 延长喷嘴寿命。 (8)CO2纯度为99.98%以上,水分为0.005%以下。 埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂质。 (2)焊剂潮湿。 (3)焊剂受污染。 (4)焊接速度过快。 (5)焊剂高度不足。 (6)焊剂高度过大,使气体不易逸出(特别在焊剂 粒度细的情形)。 (7)焊丝生锈或沾有油污。 (8)极性不适当(特别在对接时受污染会产生气 孔)。 (1)焊缝需研磨或以火焰烧除,再以钢丝刷清除。 (2)约需300℃干燥 (3)注意焊剂的储存及焊接部位附近地区的清洁,以免 杂物混入。 (4)降低焊接速度。 (5)焊剂出口橡皮管口要调整高些。 (6)焊剂出口橡皮管要调整低些,在自动焊接情形适当 高度30-40mm。 (7)换用清洁焊丝。 (8)将直流正接(DC-)改为直流反接(DC+). 设备不良(1)减压表冷却,气体无法流出。 (2)喷嘴被火花飞溅物堵塞。 (3)焊丝有油、锈。 (1)气体调节器无附电热器时,要加装电热器,同时检 查表之流量。 (2)经常清除喷嘴飞溅物。并且涂以飞溅附着防止剂。 (3)焊丝贮存或安装焊丝时不可触及油类。 (2)焊丝突出长度过短。(2)依各种焊丝说明使用。

常见焊接缺陷及X射线无损检测.

前言 船舶制造业自20世纪初开始研究焊接应用技术,并于1920年以英国船厂首次采用焊接技术建造远洋船为标志,焊接技术逐渐在船厂得到推广应用,并迅速取代铆接技术。由于焊接过程中各种参数的影响,焊缝中有时候不可避免地会出现裂纹、气孔、央渣、未熔合和未焊透等缺陷。为了保证焊接构件的产品质量,必须对其中的焊缝进行有效的检测和评价,尤其是在船舶压力管道、分段大接缝、外板及水密与强力接点等部位进行质量检测是十分必要的。 众所周知,船舶结构件发生焊接裂纹对结构强度和航行安全危害极大,特别是一些隐性裂纹不易发现,一旦船舶出厂,这些隐性裂纹后患无穷。因此,船舶在建造焊接过程中产生的裂纹一经发现,就必须立即查明原因并采取果断的措施彻底根除。焊接质量的检验方法,一般分无损检验和破坏检验两大类,采用何种方法,主要根据产品的技术要求和有关规范的规定。 无损探伤分渗透检验、磁粉探伤、超声波探伤和射线照相探伤。破坏检验方法是用机械方法在焊接接头(或焊缝)上截取一部分金属,加工成规定的形状和尺寸,然后在专门的设备和仪器上进行破坏试验。依据试验结果,可以了解焊接接头性能及内部缺陷情况,判断焊接工艺正确与否。经检验,船体结构焊缝超过质量允许限值时,应首先查明产生缺陷的原因,确定缺陷在工件上的部位。在确认允许修补时,再按规定对焊缝进行修补。

一、船舶焊接缺陷及无损探伤技术简介 1、船舶焊接中的常见缺陷分析 船舶焊接是保证船舶密性和强度的关键,是保证船舶质量的关键,是保证船舶安全航行和作业的重要条件。如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起船舶沉没。因此,在船舶建造中焊接质量是重点验收工作之一,规范也明确规定,焊缝必须进行外观检查,外板对接焊缝必须进行内部检查。船体焊缝内部检查,可采用射线探伤与超声探伤等办法。射线探伤能直接判断船体焊缝中存在的缺陷的种类、大小、部位及分布情况,直观可靠,重复性好,容易保存,当前船厂普遍采用X射线探伤来进行船体焊缝的内部质量检查。船舶焊接缺陷种类很多,按其位置不同,可分为外部缺陷和内部缺陷。常见缺陷有气孔、央渣、焊接裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等. 2、焊接缺陷分类 (1)气孔 气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。产生气孔的。 主要原因有:坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。 预防产生气孔的办法是:选择合适的焊接电流和焊接速度,认真清理坡口边缘水份、油污和锈迹。严格按规定保管、清理和焙烘焊接材料。 (2)夹渣 夹渣就是残留在焊缝中的熔渣。夹渣也会降低焊缝的强度和致密性。 产生夹渣的原因主要是:焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。 防止产生夹渣的措施是:正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。 (3)咬边 焊缝边缘留下的凹陷,称为咬边。

常见焊接缺欠的产生原因和防止措施教程文件

常见焊接缺欠的产生原因和防止措施 一、裂纹 1.1热裂纹 1.1.1产生原因: 1、焊缝金属结晶时造成严重偏析,存在低熔点杂质; 2、焊接拉伸应力的作用。 1.1.2防止措施: 1、选择偏析元素和有害杂质含量低的钢材和焊接材料,控制碳、硫、磷等含量; 2、调节焊缝金属化学成分,改善焊缝组织,细化焊缝晶粒,以提高焊缝金属塑性; 3、改善工艺因素,控制焊接规范,调整焊缝形状系数; 4、采用收弧板逐渐断弧。衰减焊接电流等,填满弧坑,防止弧坑裂纹; 5、避免产生应力集中的焊接缺欠,如未焊透、夹渣等; 6、采取各种降低焊接应力的工艺措施,如预热和后热等。 1.2冷裂纹 1.2.1产生原因: 1、焊接接头存在淬硬组织; 2、扩散氢的存在和浓集; 3、较大的焊接拉伸应力。 1.2.2防止措施: 1、选用低氢型焊接材料,严格按规程进行焊前烘烤,彻底清理坡口和焊丝表面的油、水、锈、污等,减少焊缝金属中的扩散氢含量; 2、选择合理的焊接规范和工艺措施,如焊前预热、控制层间温度、焊后缓冷、进行焊后热处理等。避免产生淬硬组织; 3、采取降低焊接应力的工艺措施。 1.3再热裂纹 1.3.1产生原因: 1、过饱和固溶的碳化物在再次加热时析出,造成晶内强化; 2、焊接残余应力。 1.3.2防止措施: 1、减少焊接应力和应力集中程度,如焊前预热、焊后缓冷等以及使焊缝与母材平滑过渡; 2、在满足性能要求的前提下,选用强度等级稍低于母材的焊接材料; 3、选用合理的热处理规范,减少在敏感区的停留时间。如能满足性能要求,可取消焊后热处理。 二、孔穴 2.1气孔 2.1.1产生原因: 1、焊条、焊剂潮湿,药皮剥落; 2、填充金属与母材坡口表面油、水、锈、污等未清理干净; 3、电弧过长,熔池面积过大; 4、焊接电流过大,焊条发红,保护作用减弱; 5、保护气体流量小,纯度低,气体保护效果差; 6、气焊火焰调整不合适、焊炬摆动幅度大,焊丝搅拌熔池不充分,对熔池保护差;

搅拌摩擦焊常见缺陷及其无损检测技术

27 搅拌摩擦焊(Friction Stir Welding)作为一种新型固态焊接技术,自1991年诞生以来,其研究与应用已取得突飞猛进的发展,现已在国外诸多工程制造领域得到广泛应用。目前,国内主要航空制造企业已陆续引进了该技术,由于焊接过程中焊缝温度始终低于被焊材料的熔点,可避免传统熔焊方法易产生的气孔和热裂纹等缺陷,因而特别适合于传统熔焊方法难以实现的铝合金等低熔点有色金属及其合金的焊接。尽管搅拌磨擦避免了传统熔焊易产生的缺陷,但由于该技术自身特点以及工艺参数选取不当等因素影响依然会产生一些特征不同于熔焊方法的缺陷。针对这一问题,本文对搅拌摩擦焊的几种常见缺陷以及无损检测技术进行探讨,以供业内相关人员参考。 1 搅拌摩擦焊常见缺陷的产生原因 搅拌摩擦焊的常见缺陷可分为三种基本类型:未充分填充、未焊透、根部不连续。 1.1 未充分填充 焊接过程中,焊缝中受到热-机联合作用的塑化金属会发生流动,是搅拌摩擦焊焊缝形成的基本特征。塑化金属的流动行为可分解为三种简化形 式:塑化金属受搅拌头作用而产生圆周运动;塑化金属沿焊接方向的水平流动;塑化金属在焊缝厚度方向的流动。若焊接参数选择不当,会造成焊接过程中塑化金属不能在搅拌头后方和焊缝厚度方向充分填充,因此沿焊缝水平方向将产生间隙。这个会因程度的差别而有两种表现形式,当塑化金属填充效果极差时,表现为暴露于焊缝表面的沟槽;当塑化金属填充有轻微不足时,则在焊缝内部形成孔洞。产生此类缺陷的原因主要是由于焊接参数选取不当,会导致焊接时的热输入量过高或不足所致。当热输入过高时,焊缝金属软化程度急剧升高,与搅拌头之间的摩擦作用减弱,甚至产生相对滑移;而当热输入过低时,焊缝金属软化程度不足,同样无法充分流动。 1.2 未焊透 未焊透是指在焊缝底部未形成连接或不完全连接的缺陷。未焊透的产生实际上是由于搅拌头上用来插入接合面的搅拌针长度不足或是焊接时搅拌头轴肩对被焊工件的顶锻压力不够所造成。在搅拌摩擦焊焊接过程中,如果搅拌针长度合适,两块对接板材之间对接面上的氧化物会在搅拌针旋转和前进过程中被打碎,在搅拌头后部形成致密的接头,氧 搅拌摩擦焊常见缺陷及其无损检测技术 张光伟1 王晓东2 (1.西安航空发动机(集团)有限公司,陕西 西安 710021; 2.中航发动机控股有限公司,北京 100028) 摘要: 文章介绍了搅拌摩擦焊的几种常见缺陷及其产生原因,并详细介绍了当前搅拌磨擦焊焊缝缺陷可以采用的几种基本无损检测方法,比较其优势与不足,认为目前超声检测与涡流检测方法相结合能够较大程度识别搅拌摩擦焊焊缝缺陷。 关键词: 搅拌摩擦焊;超声波检测;涡流检测;渗透检测;射线检测中图分类号: TG115 文献标识码:A 文章编号:1009-2374(2012)32-0027-03 2012年第32/35期(总第239/242期)NO.32/35.2012 (CumulativetyNO.239/242)

相关文档
最新文档