排列组合典型例题

排列组合典型例题
排列组合典型例题

典型例题一

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?

分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:

如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是

2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.

如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.

如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.

解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3

9A 个;

当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一

个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有

2296179250428181439=+=??+A A A A 个.

解法2:当个位数上排“0”时,同解一有3

9A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:

)(283914A A A -?个 ∴ 没有重复数字的四位偶数有

22961792504)(28391439=+=-?+A A A A 个.

解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有

281515A A A ??个

干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0

在内),百位,十位从余下的八个数字中任意选两个作排列,有

281414A A A ??个

∴ 没有重复数字的四位偶数有

2296281414281515=??+??A A A A A A 个.

解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.

没有重复数字的四位数有39410A A -个.

其中四位奇数有)(283915A A A -个

∴ 没有重复数字的四位偶数有

28393939283915394105510)(A A A A A A A A A +--?=---

283954A A +=

2828536A A +=

2841A =

2296=个

说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.

典型例题二

例2 三个女生和五个男生排成一排

(1)如果女生必须全排在一起,可有多少种不同的排法?

(2)如果女生必须全分开,可有多少种不同的排法?

(3)如果两端都不能排女生,可有多少种不同的排法?

(4)如果两端不能都排女生,可有多少种不同的排法?

解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这

样同五个男生合一起共有六个元素,然成一排有6

6A 种不同排法.对于其中的每一种排法,

三个女生之间又都有33A 对种不同的排法,因此共有43203366=?A A 种不同的排法. (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有5

5A 种不同排法,对于其中任意一种排法,从上述六个位

置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=?A A 种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有6

6A 种排法,所以共有

144006625=?A A 种不同的排法. 解法2:(间接法)3个女生和5个男生排成一排共有8

8A 种不同的排法,从中扣除女生

排在首位的7713A A ?种排法和女生排在末位的7713A A ?种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以

还需加一次回来,由于两端都是女生有6623A A ?种不同的排法,所以共有

1440026623771388=+-A A A A A 种不同的排法.

解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有3

6A 种不同

的排法,对于其中的任意一种排活,其余5个位置又都有55A 种不同的排法,所以共有

144005536=?A A 种不同的排法, (4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受

条件限制了,这样可有7715A A ?种不同的排法;如果首位排女生,有13A 种排法,这时末位就

只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有6

6A 种不同的排法,

这样可有661513A A A ??种不同排法.因此共有360006615137715=??+?A A A A A 种不同的排法.

解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ?种,就能得到两端不都是女生的排法种数.

因此共有36000662388=?-A A A 种不同的排法.

说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法.

若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,

往往是考虑一个约束条件的同时要兼顾其它条件.

若以元素为主,需先满足特殊元素要求再处理其它的元素.

间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快.

捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.

典型例题三

例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种?

(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?

解:(1)先排歌唱节目有5

5A 种,歌唱节目之间以及两端共有6个位子,从中选4个放

入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200. (2)先排舞蹈节目有4

4A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5

个歌唱节目放入。所以歌唱节目与舞蹈节目间隔排列的排法有:44A 55A =2880种方法。 说明:对于“间隔”排列问题,我们往往先排个数较少的元素,再让其余元素插空排列。否则,若先排个数较多的元素,再让其余元素插空排时,往往个数较多的元素有相邻情况。

如本题(2)中,若先排歌唱节目有55A ,再排舞蹈节目有4

6A ,这样排完之后,其中含有歌唱节目相邻的情况,不符合间隔排列的要求。

典型例题四

例4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第

一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.

分析与解法1:6六门课总的排法是6

6A ,其中不符合要求的可分

为:体育排在第一书有55A 种排法,如图中Ⅰ;数学排在最后一节有55A 种排法,如图中Ⅱ;但这两种排法,都包括体育排在第一书数学排在最后一节,如图中Ⅲ,这种情况有4

4A 种排法,因此符合条件的排法应是:

5042445566=+-A A A (种). 分析与解法2:根据要求,课程表安排可分为4种情况:

(1)体育、数学既不排在第一节也不排在最后一节,这种排法有4424A A ?种;

(2)数学排在第一节但体育不排在最后一节,有排法4414A A ?种;

(3)体育排在最后一节但数学不排在第一节,有排法4414A A ?种;

(4)数学排在第一节,体育排在最后一节,有排法44A

这四类排法并列,不重复也不遗漏,故总的排法有:

504441444144424=?+?+?A A A A A A (种).

分析与解法3:根据要求,课表安排还可分下述4种情况:

(1)体育,数学既不在最后也不在开头一节,有122

4=A 种排法;

(2)数学排在第一节,体育不排在最后一节,有4种排法;

(3)体育在最后一书,数学木在第一节有4种排法;

(4)数学在第一节,体育在最后一节有1种排法.

上述 21种排法确定以后,仅剩余下四门课程排法是种44A ,故总排法数为5042144=A (种).

下面再提出一个问题,请予解答.

问题:有6个人排队,甲不在排头,乙不在排尾,问并肩多少种不同的排法.

请读者完成此题.

说明:解答排列、组合问题要注意一题多解的练习,不仅能提高解题能力,而且是检验所解答问题正确与否的行之有效的方法.

典型例题五

例5 现有3辆公交车、3位司机和3位售票员,

每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?

分析:可以把3辆车看成排了顺序的三个空:,然后把3名司机和3名售票员分

别填入.因此可认为事件分两步完成,每一步都是一个排列问题.

解:分两步完成.第一步,把3名司机安排到3辆车中,有633=A 种安排方法;第二步

把3名售票员安排到3辆车中,有633=A 种安排方法.故搭配方案共有

363333=?A A 种.

说明:许多复杂的排列问题,不可能一步就能完成.而应分解开来考虑:即经适当地分

类成分或分步之后,应用分类计数原理、分步计数原理原理去解决.在分类或分步时,要尽量把整个事件的安排过程考虑清楚,防止分类或分步的混乱.

典型例题六

例6 下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个

专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 学 校

专 业 1

1 2 2

1 2 3

1 2

分析:填写学校时是有顺序的,因为这涉及到第一志愿、第二志愿、第三志愿的问题;同一学校的两个专业也有顺序,要区分出第一专业和第二专业.因此这是一个排列问题.

解:填表过程可分两步.第一步,确定填报学校及其顺序,则在4所学校中选出3所并

加排列,共有3

4A 种不同的排法;第二步,从每所院校的3个专业中选出2个专业并确定其

顺序,其中又包含三小步,因此总的排列数有232323A A A ??种.综合以上两步,由分步计数

原理得不同的填表方法有:518423232334=???A A A A 种. 说明:要完成的事件与元素的排列顺序是否有关,有时题中并未直接点明,需要根据实

际情景自己判断,特别是学习了后面的“组合”之后这一点尤其重要.“选而且排”(元素之间有顺序要求)的是排列,“选而不排”(元素之间无顺序要求)的是组合.另外,较复杂的事件应分解开考虑.

典型例题七

例5 7名同学排队照相.

(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多

少种不同的排法?

(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?

(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排

法?

分析:(1)可分两步完成:第一步,从7人中选出3人排在前排,有3

7A 种排法;第二步,

剩下的4人排在后排,有44A 种排法,故一共有774437A A A =?种排法.事实上排两排与排成一排一样,只不过把第7~4个位子看成第二排而已,排法总数都是7

7A ,相当于7个人的全排列.(2)优先安排甲、乙.(3)用“捆绑法”.(4)用“插空法”.

解:(1) 5040774437==?A A A 种. (2)第一步安排甲,有13A 种排法;第二步安排乙,有1

4A 种排法;第三步余下的5人排

在剩下的5个位置上,有55A 种排法,由分步计数原理得,符合要求的排法共有

1440551413=??A A A 种. (3)第一步,将甲、乙、丙视为一个元素,有其余4个元素排成一排,即看成5个元素

的全排列问题,有55A 种排法;第二步,甲、乙、丙三人内部全排列,有3

3A 种排法.由分步

计数原理得,共有7203355=?A A 种排法. (4)第一步,4名男生全排列,有4

4A 种排法;第二步,女生插空,即将3名女生插入4

名男生之间的5个空位,这样可保证女生不相邻,易知有35A 种插入方法.由分步计数原理

得,符合条件的排法共有:14403544=?A A 种. 说明:(1)相邻问题用“捆绑法”,即把若干个相邻的特殊元素“捆绑”为一个“大元素”,与其他普通元素全排列;最后再“松绑”,将这些特殊元素进行全排列.(2)不相邻问题用“插空法”,即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间.

典型例题八

例8 从65432、、、、五个数字中每次取出三个不同的数字组成三位数,求所有三位数

的和.

分析:可以从每个数字出现的次数来分析,例如“2”,当它位于个位时,即形如

的数共有24A 个(从6543、、、四个数中选两个填入前面的两个空)

,当这些数相加时,由“2”所产生的和是224?A .当2位于十位时,即形如

的数也有24A ,那么当这些数相加时,由“2”产生的和应是10224??A .当2位于面位时,可同理分析.然后再依次分析6

543、、、的情况.

解:形如

的数共有24A 个,当这些数相加时,由“2”产生的和是224?A ;形如的数也有24A 个,当这些数相加时,由“2”产生的和是10224??A ;形如

的数也有24A 个,当这些数相加时,由“2”产生的和应是100224??A .这样在所有三位数的和中,由“2”

产生的和是111224??A .同理由6543、、、产生的和分别是111324??A ,11142

4??A ,

111524??A ,111624??A ,因此所有三位数的和是26640)65432(11124=++++??A . 说明:类似于这种求“数字之和”的问题都可以用分析数字出现次数的办法来解决.如

“由x ,5,4,1四个数字组成没有重复数字的四位数,若所有这些四位数的各数位上的数字之和为288,求数x ”.本题的特殊性在于,由于是全排列,每个数字都要选用,故每个数字均出现了244

4=A 次,故有288)541(24=+++?x ,得2=x . 典型例题九

例9 计算下列各题:

(1) 215A ; (2) 66

A ; (3) 1111

------?n n m n m n m n A A A ; (4) !!33!22!1n n ?++?+?+Λ (5) !

1!43!32!21n n -++++Λ 解:(1) 2101415215=?=A ;

(2) 720123456!666=?????==A ;

(3)原式!

)1(1!)(]!)1(1[!)1(-?-?----=n m n m n n 1!

)1(1!)(!)(!)1(=-?-?--=n m n m n n ;

(4)原式]!!)1[()!3!4()!2!3()1!2(n n -+++-+-+-=Λ

1!)1(-+=n ;

(5)∵!

1!)1(1!1n n n n --=-, ∴!

1!43!32!21n n -++++Λ !

11!1!)1(1!41!31!31!21!21!11n n n -=--++-+-+-=Λ. 说明:准确掌握好排列公式是顺利进行计算的关键.

本题计算中灵活地用到下列各式:

!)1(!-=n n n ;!!)1(!n n nn -+=;!

1!)1(1!1n n n n --=-;使问题解得简单、快捷. 典型例题十

例10 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.对这个题目,A 、B 、C 、D 四位同学各自给出了一种算式:A 的算式是662

1A ;B 的算式是441514131211)(A A A A A A ?++++;C 的算式是46A ; D 的算式是4426A C ?.上面四个算式是否正确,正确的加以解释,不正确的说明理由.

解:A 中很显然,“a 在b 前的六人纵队”的排队数目与“b 在a 前的六人纵队”排队

数目相等,而“六人纵队”的排法数目应是这二者数目之和.这表明:A 的算式正确.

B 中把六人排队这件事划分为a 占位,b 占位,其他四人占位这样三个阶段,然后用乘

法求出总数,注意到a 占位的状况决定了b 占位的方法数,第一阶段,当a 占据第一个位置时,b 占位方法数是15A ;当a 占据第2个位置时,b 占位的方法数是1

4A ;……;当a 占据第5个位置时,b 占位的方法数是11A ,当a ,b 占位后,再排其他四人,他们有44A 种排法,可见B 的算式是正确的. C 中46A 可理解为从6个位置中选4个位置让f e d c ,,,占据,这时,剩下的两个位置

依前后顺序应是b a ,的.因此C 的算式也正确.

D 中把6个位置先圈定两个位置的方法数26C ,

这两个位置让b a ,占据,显然,b a ,占据这两个圈定的位置的方法只有一种(a 要在b 的前面),这时,再排其余四人,又有4

4A 种

排法,可见D 的算式是对的.

说明:下一节组合学完后,可回过头来学习D 的解法.

典型例题十一

例11 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,

共有多少种安排办法?

解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐

在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:

6408551424551224=??+??A A A A A A (种).

解法2:采取“总方法数减去不命题意的所有方法数”的算法.把“甲坐在第一排的八

人坐法数”看成“总方法数”,这个数目是7

714A A ?.在这种前提下,不合题意的方法是“甲坐第一排,且乙、丙坐两排的八人坐法.”这个数目是5514131214A A A C A ????.其中第一个因数

14A 表示甲坐在第一排的方法数,12C 表示从乙、丙中任选出一人的办法数,13A 表示把选出的这个人安排在第一排的方法数,下一个1

4A 则表示乙、丙中沿未安排的那个人坐在第二排的方法数,55A 就是其他五人的坐法数,于是总的方法数为

640855141312147714=????-?A A A C A A A (种). 说明:解法2可在学完组合后回过头来学习.

典型例题十二

例12 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成

一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有( ).

A .5544A A ?

B .554433A A A ??

C .554413A A C ??

D .554422A A A ??

解:将同一品种的画“捆”在一起,注意到水彩画不放在两端,共有2

2A 种排列.但4

幅油画、5幅国画本身还有排列顺序要求.所以共有554422A A A ??种陈列方式. ∴应选D .

说明:关于“若干个元素相邻”的排列问题,一般使用“捆绑”法,也就是将相邻的若

干个元素“捆绑”在一起,看作一个大元素,与其他的元素进行全排列;然后,再“松绑”,将被“捆绑”的若干元素,内部进行全排列.本例题就是一个典型的用“捆绑”法来解答的问题.

典型例题十三

例13 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).

A .210

B .300

C .464

D .600

解法1:(直接法):分别用5,4,3,2,1作十万位的排列数,共有555A ?种,所以其中个位数字小于十位数字的这样的六位数有30052

155=??A 个. 解法2:(间接法):取5,,1,0Λ个数字排列有66A ,而0作为十万位的排列有55A ,所以其中个位数字小于十位数字的这样的六位数有300)(2

15566=-A A (个). ∴应选B .

说明:(1)直接法、间接法是解决有关排列应用题的两种基本方法,何时使用直接法或间接法要视问题而定,有的问题如果使用直接法解决比较困难或者比较麻烦,这时应考虑能否用间接法来解.

(2)“个位数字小于十位数字”与“个位数字大于十位数字”具有对称性,这两类的六位数个数一样多,即各占全部六位数的一半,同类问题还有6个人排队照像时,甲必须站在乙的左侧,共有多少种排法.

典型例题十四

例14 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).

A .24个

B .30个

C .40个

D .60个

分析:本题是带有附加条件的排列问题,可以有多种思考方法,可分类,可分步,可利用概率,也可利用本题所提供的选择项分析判断.

解法1:分类计算.

将符合条件的偶数分为两类.一类是2作个位数,共有2

4A 个,另一类是4作个位数,

也有24A 个.因此符合条件的偶数共有242424=+A A 个. 解法2:分步计算.

先排个位数字,有12A 种排法,再排十位和百位数字,有24A 种排法,根据分步计数原理,三位偶数应有242

412=?A A 个.

解法3:按概率算.

用51-这5个数字可以组成没有重复数字的三位数共有6035=A 个,其中偶点其中的

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

排列组合典型例题

— 典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 9A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一 个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439=+=??+A A A A 个. 典型例题二 例2 三个女生和五个男生排成一排 — (1)如果女生必须全排在一起,可有多少种不同的排法 (2)如果女生必须全分开,可有多少种不同的排法 (3)如果两端都不能排女生,可有多少种不同的排法 (4)如果两端不能都排女生,可有多少种不同的排法 解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有6 6A 种不同排法.对于其中的每一种排法, 三个女生之间又都有33A 对种不同的排法,因此共有43203366=?A A 种不同的排法. (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有5 5A 种不同排法,对于其中任意一种排法,从上述六个位 置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=?A A 种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有6 6A 种排法,所以共有 144006625=?A A 种不同的排法. (4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受 条件限制了,这样可有7715A A ?种不同的排法;如果首位排女生,有13A 种排法,这时末位就 只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有6 6A 种不同的排法, 这样可有661513A A A ??种不同排法.因此共有360006615137715=??+?A A A A A 种不同的排法.

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

排列组合问题经典题型#精选.

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

高考排列组合典型例题

高考排列组合典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

排列组合典型例题 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千 位数是“0”排列数得:)(283914 A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439 =+=-?+A A A A 个.

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合典型题解

排列组合典型题解“十法” 一、特殊元素(位置)——“优先法” 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 例1、6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 解法1:(元素分析法): 解法2:(位置分析法): 例2、用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有() A.24 B.30 C.40 D.60 例3、在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有_____个. 例4、将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有种? 练习:(1)0,1,2,3,4,5这六个数字可组成多少个无重复数字的五位数? (2)0,1,2,3,4,5可组成多少个无重复数字的五位奇数? (3)五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有种。 二、相邻问题——“捆绑法” 对于要求某几个元素必须排在一起的问题,可用“捆绑法”:可先将相邻的元素“捆绑”在一起,看作一个“大”的元(组),与其它元素排列,然后再对相邻的元素(组)内部进行排列。 例5、7人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法? 例6、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 练习:求不同的排法种数: (1)6男2女排成一排,2女相邻; (2)4男4女排成一排,同性者相邻; 三、不相邻问题——“插空法” 元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。 例7、7人排成一排,甲、乙、丙3人互不相邻有多少种排法? 引申: (1)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法? (2)三个男生,四个女生排成一排,男生之间、女生之间不相邻,有几种不同排法?

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 9A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一 个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得: )(283914A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 281515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0 在内),百位,十位从余下的八个数字中任意选两个作排列,有 281414A A A ??个 ∴ 没有重复数字的四位偶数有 2296281414281515=??+??A A A A A A 个. 解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数. 没有重复数字的四位数有39410A A -个. 其中四位奇数有)(283915A A A -个

排列组合问题经典题型

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.D C B A ,,,五人并排站成一排,如果B A ,必须相邻且B 在A 的右边,则不同的排法有多少种? 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个 元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是多少种? 3.定序问题等机会法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(B A ,可以不相邻)那么不同的排法有多少种? 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继 续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字 均不相同的填法有多少种? 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同 的选法种数有多少种? (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有多少种? 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法有多少种? 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有多少种? (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺 序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ?=+-? 例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的 参赛方案? 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

排列&组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

排列组合专题总结复习及经典例题详解 .docx

排列组合专题复习及经典例题详解 1.学目 掌握排列、合的解策略 2.重点 (1)特殊元素先安排的策略: (2)合理分与准确分步的策略; (3)排列、合混合先后排的策略; (4)正反、等价化的策略; (5)相捆理的策略; (6)不相插空理的策略. 3.点 合运用解策略解决. 4.学程 : (1)知梳理 1.分数原理(加法原理):完成一件事,有几法,在第一法中有m1种不同的方法,在第 2 法中有m2种不同的方法??在第n 型法中有m n种不同的方法,那么完成件事共有N m1m2... m n种不同的方法. 2.分步数原理(乘法原理):完成一件事,需要分成n 个步,做第 1 步有m1种不同的方法,做第 2 步有m2种不同的方法??,做第n 步有m n种不同的方法;那么完成件事共有 N m1 m2...m n种不同的方法. 特提醒: 分数原理与“分”有关,要注意“ ”与“ ”之所具有的独立性和并列性; 分步数原理与“分步”有关,要注意“步”与“步”之具有的相依性和性,用两个原理行正确地分、分步,做到不重复、不漏. 3.排列:从 n 个不同元素中,任取m(m≤n) 个元素,按照一定的序排成一列,叫做从n 个不同元素中取出 m个元素的一个排列,m n叫做排列,m n 叫做全排列. 4.排列数:从 n 个不同元素中,取出m(m≤n) 个元素的所有排列的个数,叫做从n 个不同元素中取出 m个元素的排列数,用符号P n m表示. 5.排列数公式:P n m n(n1)( n2)...( n m1) (n n!( m n,n、 m N)m)! 排列数具有的性: P n m1P n m mP n m 1 特别提醒: 规定 0!=1

排列组合经典练习答案

排列与组合习题 1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70 [解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36 A22=10种不 同的分法,所以乘车方法数为25×2=50,故选B. 2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有() A.36种B.48种C.72种D.96种 [解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C. 3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有() A.6个B.9个C.18个D.36个 [解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个. 4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人 [解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人. 5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有() A.45种B.36种C.28种D.25种 [解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法. 6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有() A.24种B.36种C.38种D.108种 [解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去

相关文档
最新文档