高一反函数·典型例题精析

高一反函数·典型例题精析
高一反函数·典型例题精析

反函数·例题解析

【例1】求下列函数的反函数:

(1)y (x )(2)y x 2x 3x (0]2=

≠-.=-+,∈-∞,.352112x x -+

(3)y (x 0)(4)y x +1(1x 0) (0x 1)

=≤.=-≤≤-<≤11

2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵=≠-,∴≠,由=得-=--,∴=所求反函数为=≠.35211232

3521

53253232

x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞),

由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222

解 (3)y (x 0)0y 1y x f (x)(0x 1)1

∵=

≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11

111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤,

得值域≤≤,反函数=-≤≤.由=-<≤,

x x +-1

得值域-≤<,反函数=-≤<,

故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x

【例2】求出下列函数的反函数,并画出原函数和其反函数的图像.

(1)y 1(2)y 3x 2(x 0)2=-=--

≤x -1

解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1,

由=-,得反函数=++≥-.

函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11

解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23

它们的图像如图2.4-2所示.

【例3】已知函数=≠-,≠.f(x)(x a a )3113

x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值.

解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=

,∴≠-,∵+=+,-=-,这里≠,31x x a ++

若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313

-----ay y ax x (2)f(x)f (x)x 1若=,即

=对定义域内一切的值恒成立,-++--3113

x x a ax x 令x =0,∴a =-3.

或解 由f(x)=f -1(x),那么函数f(x)与f -1(x)的定义域和值域相同,定义域是{x|x ≠a ,x ∈R },值域y ∈{y|y ≠3,y ∈R },∴-a =3即a =-3. 【例4】已知函数==中,、、、均不为零,y f(x)a b c d ax b cx d

++ 试求a 、b 、c 、d 满足什么条件时,它的反函数仍是自身.

解 f(x)bc ad 0f (x)x 1=+,∵常数函数没有反函数,∴-≠.又=,要使=,对定义域内一切值恒成立,a c bc ad c cx d dx b cx a

dx b cx a ax b cx d

-+-+--+-++-()

令x =0,得-a =d ,即a +d =0.

事实上,当a +d =0时,必有f -1(x)=f(x),

因此所求的条件是bc -ad ≠0,且a +d =0.

【例5】设点M(1,2)既在函数f(x)=ax 2+b(x ≥0)的图像上,又在它的反函数图像上,(1)求f -1(x),(2)证明f -1(x)在其定义域内是减函数.

解证(1)2a b 14a b a b f(x)x (x 0)(2)y x (x 0)f (x)(x )221由=+=+得=-=,∴=-+≥由=-+≥得反函数=≤.????????

??--1373137313737373

x

设<≤,∴->-≥,∴>,即>,故在-∞,上是减函数.x x 73x 73x 0f (x )f (x )f (x)(]12121112173

73373

12-----x x x

【例6】解法一若函数=,求的值.先求函数=的反函数=,于是==--.f(x)f (2)()f(x)f (x)f (2)532x x x x x x

-+-++-+----12

1212112212

111 解法(二) 由函数y =f(x)与其反函数y =f -1(x)之间的一一对应关 系,求的值,就是求=时对应的的值,∴令=,得=--,即=--.f (2)f(x)2x 2x 532f (2)53211---+x x 12

【例7】已知∈,且≠,≠.设函数=∈且≠,证明=的图像关于直线=对称.a a 0a 1f(x)(x x )y f(x)y x R R x ax a --11

1

证 y a 0a 1(ay 1)x y 1ay 10y a 1a 1由=

,≠,≠,得-=-,如果-=,则=,∴=得=,这与已知≠矛盾,x ax a

a x ax ----11

1111 ∴-≠,故=

,∴=,即证得=的反函数就是它本身.ay 10x f (x)f(x)1y ay x ax x ax -------111111

因为原函数的图像与其反函数的图像关于直线y =x 对称,

∴函数y =f(x)的图像关于直线y =x 对称.

反函数与零点习题含答案

反函数-习题 1.函数f (x )=1-x +2 (x ≥1)的反函数是( ) A .y =(x -2)2+1 (x ∈R) B .x =(y -2)2+1 (x ∈R) C .y =(x -2)2+1 (x ≥2) D .y =(x -2)2+1 (x ≥1) 2.已知函数x x f a log )(=)1,0(≠>a a 且的图象过点(2,-1),函数()y g x =是函数 ()y f x =的反函数,则函数()y g x =的解析式为( ) A.()2x g x = B.1()()2 x g x = C.12 ()log g x x = D.2()log g x x = 3. 若函数)1(-=x f y 的图像与函数1ln +=x y 的图像关于x y =对称,则)(x f =( ) A. 1 2-x e B. x e 2 C. 1 2+x e D. 2 2+x e 4. 函数? ??≥<+=0,0,1x e x x y x 的反函数是______________. 5. 函数)2(,2-≥+-=x x y 的反函数是_______________. 6. 若函数)1,0(≠>=a a a y x 的反函数的图象过点(2,-1),则a =_________. 7. 函数)0)(24(log 2>++=x x y 的反函数是_______________. 8. 已知函数()f x 的反函数为)0(,lg 21)(>+=x x x g ,则(1)(1)f +g =_____________. 9. 函数1ln(1) (1)2 x y x +-= >的反函数是_______________. 10.若函数()y f x =的反函数... 图象过点(15),,则函数()y f x =的图象必过点__________. 11. 将x y 2=的图像先向______(填左、右、上、或下)平移_______个单位,再作关于直线 x y =对称的图象可得到函数)1(log 2+=x y 的图像. 12. 已知函数b a y x +=的图象过点(1,4)其反函数图象过点(2,0),则___.___==b a . 13. 已知函数x x x f 3 131)(+-=,则)5 4 (1 -f =____________.

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数22()log (1)f x x x =+的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

反函数典型例题精析.doc

学习必备 欢迎下载 2. 4 反函數·例題解析 【例 1】求下列函數的反函數: (1)y = 3x 5 (x ≠- 1 ) . 2x 1 2 (2)y = x 2 - 2x + 3, x ∈ ( -∞, 0] . 1 (3)y = x 2 1 (x ≤ 0) . x +1 ( -1≤x ≤ 0) (4)y = - x (0<x ≤1) 解 (1) ∵ y = 3x 5 (x ≠- 1 ),∴ y ≠ 3 , 2x 1 2 2 由 y = 3x 5 得 (2y - 3)x =- y - 5, 2x 1 ∴ x = y 5 所求反函数为 y = y 5 (x ≠ 3 ). 3 2y 3 2y 2 解 (2)∵ y =(x -1) 2 + 2, x ∈ (-∞, 0]其值域為 y ∈ [2,+∞ ), 由 y = (x - 1) 2 + 2(x ≤ 0) ,得 x -1=- y 2,即 x = 1- y 2 ∴反函数为 f 1 (x) = 1- x 2, (x ≥ 2) . 解 (3)∵y = 1 ,它的值域为 0<y ≤1, x 2 (x ≤ 0) 1 由 y = 2 1 得 x =- 1 y , x 1 y ∴反函数为 f 1 (x) =- 1 x (0 <x ≤1) . x 解 (4)由y = x 1(-1≤ x ≤ 0), 得值域 0≤y ≤1,反函数 f 1 (x) = x 2 -1(0≤x ≤1). 由 y =- x (0<x ≤1), 得值域- 1≤ y < 0,反函数 f 1 (x) =x 2 ( -1≤x < 0), x 2 -1 (0≤ x ≤ 1) 故所求反函数为 y = 2 ( - ≤ < . x 1 x 0)

反函数例题讲解

反函数例题讲解 例1.下列函数中,没有反函数的是 ( ) (A) y = x 2-1(x <2 1-) (B) y = x 3+1(x ∈R ) (C) 1 -= x x y (x ∈R ,x ≠1) (D) ? ? ?<-≥-=).1(4)2(22x x x x y , 分析:一个函数是否具有反函数,完全由这个函数的性质决定. 判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数. 本题应选(D ). 因为若y = 4,则由 ? ? ?≥=-2422x x , 得 x = 3. 由 ? ? ?<=-144x x , 得 x = -1. ∴ (D )中函数没有反函数. 如果作出 ? ? ?<-≥-=).1(4)2(22x x x x y , 的图像(如图),依图 更易判断它没有反函数. 例2.求函数 211x y --=(-1≤x ≤0)的反函数. 解:由 211x y --=,得:y x -=-112 . ∴ 1-x 2 = (1-y )2, x 2 = 1-(1-y )2 = 2y -y 2 . ∵ -1≤x ≤0,故 22y y x --=. 又 当 -1≤x ≤0 时, 0≤1-x 2≤1, ∴ 0≤21x -≤1,0≤1-21x -≤1, 即 0≤y ≤1 . ∴ 所求的反函数为 22x x y --=(0≤x ≤1).

由此可见,对于用解析式表示的函数,求其反函数的主要步骤是: ① 把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ). ② 求给出函数的值域,并作为所得函数的定义域; ③ 依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y )为y = φ ( x ). 例3.已知函数 f ( x ) = x 2 + 2x + 2(x <-1),那么 f -1 (2 )的值为__________________. 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -1 (2 )的值(略). 依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f - 1 (2 )的值会简捷些. 令 x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 . ∴ x = 0 或 x =-2 . 又x <-1,于是舍去x = 0,得x =-2,即 f -1 (2 ) = -2 . 例4.已知函数 241)(x x f +=(x ≤0),那么 f ( x )的反函数f -1 ( x ) 的图像是 ( ) (A ((B (C

导数与反函数练习题.doc

1. 2. (2011-重庆)曲线尸?X 3+3X 2在点(I, 2) A. y=3x - 1 B. y=-3x+5 (201b 山东)曲线 y=x 3+l 1 在点 P (1, 12) 处的切线方程为( ) C. y=3x+5 D. y=2x 处的切线与y 轴交点的纵坐标是( 15 3. A. [- 1,-岑] B ?[?1, 0] C. [0, II D.[兰,1] 乙 那么导函数y=f (x )的图象可能是( 函数q : g (x ) =x 2 - 4x+3m 不存在零点则 p 是 D.既不充分也不必要条件 导数与反函数练习题 选择题 (2011 ?杭州)如图是导函数尸f (x )的图象,则下列命题错误的是( ) A .导函数y=f (x )在x=xi 处有极小值 B .导函数y=F (x )在x=x?处有极大值 C.函数y=f (x )在x=X3 处有极小值 D.函 数y=f (x )在x=X4处有极小值 4. (2011 ?福建)若a>0, b>0,且函数f (x ) =4x 3 - ax 2 - 2bx+2在x=l 处有极值,则ab 的最大值等于( ) A. 2 B. 3 C. 6 D. 9 5. (2010*江西)若 f (x ) =ax 4+bx 2+c 满足 f (I ) =2,则 f ( - 1)=( ) A. -4 B. - 2 C. 2 D. 4 6. (2009?江西)若存在过点(1, 0)的直线与曲线尸x3和y=ax 2+^X- 9都相切,则a 等于( ) 方 91 7 9R 7 A. - 1 或一竺 B. - 1 C. 一」或一竺 D. 一 ■或 7 64 4 4 64 4 ° TT 7. (2008?辽宁)设P 为曲线C : y=x~+2x+3上的点,且曲线C 在点P 处切线倾斜角的取值范围是[0,—],则点P 横 4 坐标的取值范围是( ) A.充分不必要条件 B.必要不充分条件 C. 充分必要条件8.(2008?福建)如果函数y=f (x )的图象如图, q 的( )

反函数_典型例题精析

2.4 反函数·例题解析 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1) =≤.=-≤≤-<≤11 2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵= ≠-,∴≠,由=得-=--,∴=所求反函数为=≠.352112323521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----22 2 解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1 得值域-≤<,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x

【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=--≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠, 31x x a ++ 若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313 -----ay y ax x (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3.

高一指数函数与对数函数经典基础练习题,

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348.029.0121,8,4-? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是 . 5..函数)3(log 32x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f += )(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x (1) 证明:函数)(x f 在()+∞-,1上是增函数;

对数函数 典型例题

对数函数 例1求下列函数的定义域 (1)y=log2(x2-4x-5); (2)y=log x+1(16-4x) (3)y= . 解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为{x|x<-1,或x>5}. (2)令得 故所求定义域为{x|-1<x<0,或0<x<2}. (3)令,得 故所求定义域为 {x|x<-1- ,或-1- <x<-3,或x≥2}. 说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零. 例2求下列函数的单调区间. (1)y=log2(x-4);(2)y=log0.5x2. 解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大, ∴(4,+∞)是y=log2(x-4)的递增区间. (2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t 当x>0时,t随x的增大而增大,y随t的增大而减小, ∴(0,+∞)是y=log0.5x2的递减区间. 当x<0时,t随x的增大而减小,y随t的增大而减小, ∴(-∞,0)是y=log0.5x2的递增区间.

例3比较大小: (1)log0.71.3和log0.71.8. (2)(lg n)1.7和(lgn)2(n>1). (3)log23和log53. (4)log35和log64. 解:(1)对数函数y=log0.7x在(0,+∞)内是减函数.因为1.3<1.8,所以 log0.71.3>log0.71.8. (2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论. 若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2; 若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里 x=3,所以log23>log53. (4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解. 因为log35>log33=1=log66>log64,所以log35>log64. 评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论. 例4已知函数f(x)=log a(a-a x)(a>1), (1)求f(x)的定义域、值域. (2)判断并证明其单调性. (3)解不等式f-1(x2-2)>f(x). 解:(1)要使函数有意义,必须满足a-a x>0,即a x

反函数典型例题

反函数求值 例1、设有反函数,且函数与 互为反函数,求的值. 分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果. 解:设,则点在函数的图象上,从而点 在函数的图象上,即.由反函数定义有,这样即有,从而. 小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解. 两函数互为反函数,确定两函数的解析式 例2 若函数与函数互为反函数,求 的值. 分析:常规思路是根据已知条件布列关于的三元方程组,关键是如何 布列如果注意到g(x)的定义域、值域已知,又与g(x)互为反函数,其定义域与值域互换,有如下解法: 解:∵ g(x)的定义域为且,的值域为 . 又∵g(x) 的定义域就是的值域, ∴. ∵g(x) 的值域为 , 由条件可知的定义域是 , , ∴. ∴.

令, 则即点(3,1) 在的图象上. 又∵与g(x) 互为反函数, ∴ (3,1) 关于的对称点(1,3) 必在g(x)的图象上. ∴ 3=1+ , . 故 . 判断是否存在反函数 例3、给出下列函数: (1); (2); (3); (4); (5) . 其中不存在反函数的是__________________. 分析:判断一个函数是否有反函数,从概念上讲即看对函数值域内任意一个 ,依照这函数的对应法则,自变量总有唯一确定的值与之对应,由于这种判断难度较大,故通常对给出的函数的图象进行观察,断定是否具有反函数. 解: (1) ,(2)都没有问题,对于(3)当时,和 ,且 . 对于(4)时,和 .对于(5)当时,和 . 故(3),(4),(5)均不存在反函数. 小结:从图象上观察,只要看在相应的区间内是否单调即可. 求复合函数的反函数

反函数·典型例题精析

2.4 反函數·例題解析 【例1】求下列函數得反函數: 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域為y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为 =-,≥. y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222 【例2】求出下列函數得反函數,並畫出原函數与其反函數得圖像. 解 (1)∵已知函數得定義域就是x ≥1,∴值域為y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 它們得圖像如圖2.4-2所示. (1)求它得反函數;(2)求使f -1(x)=f(x)得實數a 得值. (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3. 或解 由f(x)=f -1(x),那麼函數f(x)與f -1(x)得定義域与值域相同,定義域就是{x|x ≠a,x ∈R },值域y ∈{y|y ≠3,y ∈R },∴-a =3即a =-3. 【例4】已知函数==中,、、、均不为零,y f(x)a b c d ax b cx d ++ 試求a 、b 、c 、d 滿足什麼條件時,它得反函數仍就是自身. 令x =0,得-a =d,即a +d =0. 事實上,當a +d =0時,必有f -1(x)=f(x),

因此所求得條件就是bc -ad ≠0,且a +d =0. 【例5】設點M(1,2)既在函數f(x)=ax 2+b(x ≥0)得圖像上,又在它得反函數圖像上,(1)求f -1(x),(2)證明f -1(x)在其定義域內就是減函數. 解证(1)2a b 14a b a b f(x)x (x 0)(2)y x (x 0)f (x)(x )221由=+=+得=-=,∴=-+≥由=-+≥得反函数=≤.???????? ??--1373137313737373 x 【例6】解法一若函数=,求的值.先求函数=的反函数=,于是==--.f(x)f (2)()f(x)f (x)f (2)532x x x x x x -+-++-+----12 1212112212 111 解法(二) 由函數y =f(x)與其反函數y =f -1(x)之間得一一對應關 系,求的值,就是求=时对应的的值,∴令=,得=--,即=--.f (2)f(x)2x 2x 532f (2)53211---+x x 12 【例7】已知∈,且≠,≠.设函数=∈且≠,证明=的图像关于直线=对称.a a 0a 1f(x)(x x )y f(x)y x R R x ax a --1 1 1 因為原函數得圖像與其反函數得圖像關於直線y =x 對稱, ∴函數y =f(x)得圖像關於直線y =x 對稱.

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

反三角函数典型例题

反三角函数典型例题 例1:在下列四个式子中,有意义的为__________: 解:(4)有意义。 (1)(2)arcsin 4 π ;(3)sin(arcsin 2);(4)arcsin(sin 2)。 点评:arcsin x ——x [1,1]∈-。 例2:求下列反正弦函数值 (1)= 解:3 π (2)arcsin0= 解:0 (3)1arcsin()2-= 解:6π- (4)arcsin1= 解:2 π 点评:熟练记忆:0,1 2 ±、,,1±的反正弦值。 思考:1sin(arcsin )24 π +该如何求? 例3:用反正弦函数值的形式表示下列各式中的x (1)sin x 5= ,x [,]22ππ ∈- 解:x =arcsin 5 变式:x [,]2 π ∈π? 解:x [,]2π ∈π时,π-x [0,]2 π∈,sin(π-x)=sinx =5 ∴π-x =,则x =π- 变式:x [0,]∈π? 解:x =或x =π- (2)1 sin x 4 =-,x [,]22ππ∈- 解:1x arcsin 4=- 变式:1 sin x 4=-,3x [,2]2π∈π 解:3x [,2]2π∈π时,2π-x [0,]2π∈,sin(2π-x)=-sinx =1 4 ∴2π-x =arcsin 14,则x =2π-arcsin 1 4 点评:当x [,]22ππ ∈-时,x arcsina =;而当x [,]22ππ?-,可以将角转化到区间[,]22 ππ-上,再用诱导公式 处理对应角之三角比值即可。 练习: (1)sin x = ,x [,]22ππ ∈- 解:x 3π= (2)sin x =,x [0,]∈π 解:x =x =π- (3)3sin x 5=-,3x [,]22ππ∈ 解:3 x arcsin 5 =π+

对数及对数函数典型例题精讲

对数与对数函数 一、选择题(本大题共6小题,每小题6分,共36分) 1.方程lg x +lg(x +3)=1的解x 为 ( ) A .1 B .2 C .10 D .5 解析 B ∵lg x +lg(x +3)=lg 10,∴x (x +3)=10.∴x 2+3x -10=0. 解得x =2或-5(舍去). 2.“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的 ( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 解析 C 显然函数f (x )=lg(x +1),g (x )=lg(2x +1)在(0,+∞)上均单调递增,所以“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的充分不必要条件. 则a ,b ,c 的大小关系是 ( ) A .a 1)的值域是 ( ) A .(-∞,-2] B .[-2,+∞) C .(-∞,2] D .[2,+∞) 解析 A ∵x + 1x -1+1=x -1+1 x -1 +2≥2(x -1)·1 x -1 +2=4,∴y ≤-2. 5.函数f (x )=2|log2x |的图象大致是 ( )

解析 C f (x )=2|log2x |=???? ? x ,x ≥1,1 x ,0≤-1,01 ,88x x x ,g(x)=x 2log , 则f(x)与g(x)两函数的 图象的交点个数为 ( ) A 1 B 2 C 3 D 4 答案:B 8.函数f(x)=x a log (a>0,a ≠1),若)()(21x f x f -=1,则)()(2 221x f x f -等于 ( ) A 2 B 1 C 2 1 D 2log a 答案A 二、填空题(本大题共3小题,每小题8分,共24分) 9.lg 25+lg 2×lg 50+(lg 2)2=________. 解析 lg 25+lg 2×lg 50+(lg 2)2=2lg 5+lg 2×(2-lg 2)+(lg 2)2=2lg 5+2lg 2=2(lg 5+lg 2)=2. 【答案】 2 10.已知0n) 11.已知f(x)=x 2log ,则)2 3 ()83(f f += 2 12.已知)2(log ax y a -=在[]1,0上是x 的减函数,则a 的取值范围是 ()2,1 13.设m 为常数,如果)34lg(2-+-=m x mx y 的定义域为R ,则m 的取值范围是(]4,0 14.函数f (x )=log 1 2(2x 2 -3x +1)的增区间是____________. 解析 ∵2x 2 -3x +1>0,∴x <1 2或x >1.∵二次函数y =2x 2-3x +1的减区间是 ? ????-∞,34, ∴f (x )的增区间是? ????-∞,12. 【答案】 ? ? ? ??-∞,12

对数函数及其性质经典练习题

对数函数及其性质(一) 班级_____________姓名_______________座号___________ 1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 2.函数y =x |x | log 2|x |的大致图象是( ) 3.若log a 2<1,则实数a 的取值范围是( ) A .(1,2) B .(0,1)∪(2,+∞) C .(0,1)∪(1,2) D .(0,12 ) 4.设a =2log 3,b =2 1log 6,c =6log 5,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 5.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( ) 6.函数y =log 2x 在[1,2]上的值域是( ) A .R B .[0,+∞) C .(-∞,1] D .[0,1] 7.函数y =log 12(x -1)的定义域是________. 8.若函数f (x )=log a x (0≤???x x x x 则g [g (1 3)]=________. 10.f (x )=log 21+x a -x 的图象关于原点对称,则实数a 的值为________. 11.函数f (x )=log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,求实数a 的取值范围.

高一反函数·典型例题精析

反函数·例题解析 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1) =≤.=-≤≤-<≤11 2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵=≠-,∴≠,由=得-=--,∴=所求反函数为=≠.35211232 3521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222 解 (3)y (x 0)0y 1y x f (x)(0x 1)1 ∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1

得值域-≤<,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x 【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=-- ≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设= ,∴≠-,∵+=+,-=-,这里≠,31x x a ++

带答案对数与对数函数经典例题.

经典例题透析 类型一、指数式与对数式互化及其应用 1.将下列指数式与对数式互化: (1);(2);(3);(4);(5);(6). 思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5); (6). 总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段. 举一反三: 【变式1】求下列各式中x的值: (1)(2)(3)lg100=x (4) 思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x. 解:(1); (2); (3)10x=100=102,于是x=2; (4)由. 类型二、利用对数恒等式化简求值 2.求值:解:. 总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三: 【变式1】求的值(a,b,c∈R+,且不等于1,N>0) 思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算. 解:. 类型三、积、商、幂的对数 3.已知lg2=a,lg3=b,用a、b表示下列各式. (1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15 解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a (3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b (5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a

举一反三: 【变式1】求值 (1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 解: (1) (2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1 (3)原式=2lg5+lg2(1+lg5)+(lg2)2 =2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 【变式2】已知3a=5b=c,,求c的值. 解:由3a=c得: 同理可得 . 【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:. 证明: . 【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:. 证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb 即. 类型四、换底公式的运用 4.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x.

相关文档
最新文档