六价铬处理工艺流程

六价铬处理工艺流程
六价铬处理工艺流程

喷涂前处理废水处理工艺

一、原理

喷涂前处理废水中主要含有磷酸、氢氟酸、六价铬和三价铬,要除去以上杂质,首先要把含磷酸、硝酸、氢氟酸的废水和含六价铬、三价铬的废水分开收集,含磷酸、硝酸、氢氟酸的废水用氢氧化钙中和沉淀过滤处理;含六价铬、三价铬的废水用盐酸或硫酸酸化后,用亚硫酸氢钠或硫酸亚铁还原,再用氢氧化钙中和调PH值,沉淀三价铬过滤处理。

二、含铬废水处理工艺流程

收集含铬废水加硫酸调PH值1—3 加硫酸亚

铁加氢氧化钠或氢氧化钙调PH值8—10 加

絮凝剂抽到沉淀池压滤机压滤压滤废

水进含氟水池再处理

三、含氢氟酸的废水处理工艺流程

收集含氟废水加氢氧化钠调PH值6—9 加絮凝剂抽到沉淀池压滤机压滤压滤水进合格水池

排至污水处理厂

含六价铬废水的离子交换法处理系统及工艺

说明书摘要 本发明公开了一种含六价铬废水的离子交换法处理工艺,它将废水调pH值、吸附、再生、维护和Cr6+离子的回收相结合,实现了含铬废水中的Cr6+离子自动化处理,本发明工艺的自动化程度高,处理效果好,可应用于大规模水处理;除铬柱设计成三柱或多柱,各离子交换柱之间设有可调节pH值的中间槽,在两柱或多柱串联工作时,中间过程可以调节PH值,使废水处理效果更好,可以克服常规离子交换过程中,由于离子浓度的变化产生的PH变化,从而造成树脂对离子的吸附能力下降的问题;出水水质可稳定保持Cr6+<0.5 mg/L;离子交换树脂可以得到有效维护,可长期稳定工作;再生液可回收,节约资源。

摘要附图

1、一种含六价铬废水的离子交换法处理工艺,其特征在于该方法包括如下步骤: (1)将含六价铬废水送入pH调节池,调pH值至1~6; (2)废水送入n-1根串联的离子交换柱吸附Cr6+离子,n取3~10中的自然数,相邻两根离子交换柱之间设有可调节pH值的中间槽,保持pH值在1~6,第n-1根离子交换柱的出水口检测Cr6+离子的浓度,第n-1根离子交换柱的出水口流出的液体即为Cr6+离子达到排放标准的废水; (3)当第n-1根离子交换柱的出水口的Cr6+离子浓度达到0.5mg/L时, 将第1根离子交换柱与其它n-2根离子交换柱断开; 第n根离子交换柱与其它n-2根离子交换柱串联,第2根离子交换柱变为第1根离子交换柱,第3根离子交换柱变为第2根离子交换柱,以此类推,直至第n根离子交换柱变为第n-1根离子交换柱,返回步骤(2); 同时,原始第1根离子交换柱进行pH调节池—除铬柱—pH调节池的循环吸附,最大循环吸附时间按下式计算:循环时间T=η×树脂穿漏时间T1-树脂再生时间T2,η取0.6~1;循环吸附结束后,将原始第1根离子交换柱按如下程序进行再生:排空柱中水至pH调节池—碱液洗柱后排入再生液槽—柱中剩余碱液反抽到稀碱槽—用水清洗柱—清洗水排入pH调节池—酸液循环洗柱,再生完全的原始第1根离子交换柱变为第n根离子交换柱待用。 2、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于上述n 根离子交换柱装有大孔强碱性阴离子交换树脂。 3、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于步骤(3)中树脂再生所用的碱液为4~10%(w/w)的氢氧化钠,所述的酸液为0.3~10%(w/w)的盐酸。 4、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于步骤(3)中碱液洗柱过程以1倍床体积/h的速度洗柱。 5、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于步骤(3)中再生液中的Na2CrO4,经阳离子交换树脂处理后成为H2CrO4进行再利用或进一步加工回收固体Na2Cr2O7。 6、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于离子交换柱中的树脂的工作交换容量下降到原值的0.8时,启动如下树脂维护程序:单根离子交换柱再生程序—维护液循环打入单根离子交换柱2~12小时—用水清洗柱—清洗水排入pH调节池—酸液循环洗柱1~2小时,按照此程序依次维护每根离子交换柱。 7、根据权利要求6所述的含六价铬废水的离子交换法处理工艺,其特征在于树脂

废水六价铬的检测

废水六价铬的检测 ROHS--EPA7196A六价铬检测方法-比色法 原子吸收分光光度法只能检测什么金属,不能检测价态,所以不严密 一、方法概要 在无特定高浓度的钼、钒和汞干扰物质下之酸性溶液中,六价铬与二苯基二氨(Diphenylcarbazide)反应生成紫红色物质,此反应相当灵敏,在波长540 nm下每摩尔铬原子约有40,000吸收指数,产生之紫红色物质在波长540 nm测其吸光度定量之。 二、适用范围 本方法适用于事业废弃物毒性特性溶出程序(TCLP)处理后萃出液中六价铬之检测。本方法检测六价铬浓度范围为0.5至50 mg/L,超过检量线范围,需稀释至适当倍数再行检测。 三、干扰 (一) 六价铬与二苯基二氨反应少有干扰,但当铬含量相对较低时,某些特定物质如六价钼或汞之盐类与试剂反应亦产生颜色而造成干扰;在特定之pH值下,此干扰并不太严重,钼及汞的浓度超过200 mg/L,才可能产生干扰效应。钒之干扰较强,但当浓度10倍于铬时,尚不至造成问题。 (二) 铁浓度大于1 mg/L会产生黄色,形成干扰,若选择适当的波长三价铁的颜色干扰较不严重。 四、设备 (一) 比色装置:可选择光径1 cm(含)或以上的540 ± 20 nm波长之分光光度计;或使用在波长约540 nm光径1 cm(含)或以上具有最大透光率的绿-黄色滤光镜之滤光光度计。 (二) pH计:能精确测量至± 0.2单位者。 五、试剂 所有检测时使用的试剂化合物除非另有说明,否则必须是分析试药级。若须使用其它等级试药,在使用前必须要确认该试剂的纯度足够高,使检测结果的准确度不致降低。(一) 试剂水:参照「事业废弃物检测方法总则」之规格。除非特别指定,否则本方法所指的水皆为试剂水。 (二) 六价铬储备溶液:溶解0.1414 g之重铬酸钾(已干燥处理)于水中,稀释至1,000 mL(1 mL = 50 μg Cr),亦可使用经确认之市售储备溶液。 (三) 六价铬标准溶液:取10.00 mL储备溶液以水稀释至100 mL(1 mL = 5 μg Cr)。 (四) 硝酸,10 %(v/v):取适量试剂水加入10 mL浓硝酸,最后定量至100 mL。 (五) 二苯基二氨(Diphenylcarbazide)溶液:溶解250 mg 1,5-二苯基二氨于50 mL丙酮,储存于棕色瓶中。溶液如褪色应弃置不用。

六价铬的测定方法(二苯碳酰二肼分光光度法)

GB/T 7467 六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml 容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.00μg六价铬。使用当天配制此溶液。

六价铬的测定 二苯碳酰二肼分光光度法

六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0 0μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5. 00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。 将尿素〔(NH2)2CO〕20g溶于水并稀释至100ml。 3.11 亚硝酸钠:20g/L溶液。

含六价铬废水的处理回收研究

离子交换法处理含铬废水 摘要:含铬废液pH=3-4时,流量为10BV/h时,采用双阴离子交换柱串联全饱和工艺处理回收含六价铬废水,出水能满足国家排放标准,穿透体积大。利用阳离子交换树脂柱除去再生液中的钠离子,去除率可达到83%,纯化后的含六价铬溶液能再次投入使用。关键词:六价铬;离子交换;回收 Abstract: The pH of Cr6 +wastewater was 3-4, flow rate was 10BV/h. Two negatively charged ion-exchange resin columns were serialized and saturated to recover Cr6+ wastewater. The permeability was high and processed water could meet national discharge standards. Then positively charged ion-exchange resin was employed to remove Na+ in the recovered water, and 83% of Na+ could be removed. After that the purified Cr6+solution could be reused. Keywords:Cr6+ ;ion-exchange ;recovery 铬是环境污染及影响人类健康的有害元素之一。六价铬为食入性毒物,饮水中超标400倍时,会发生口角糜烂、腹泻、消化紊乱等症状,引起呼吸急促,咳嗽及气喘,短暂的心脏休克,肾脏、肝脏、神经系统和造血器官的毒性反应等,更可能造成遗传性基因缺陷,并对环境有持久危险性。 六价铬一般分离方法有离子交换树脂、电渗析、电解氧化还原法、还原沉淀法、石灰絮凝和吸附法等几种手段。本文研究了六价铬在阴、阳离子交换树脂柱上的行为和分离条件,提出以离子交换为主的废水中铬形态分离及分析的系统流程,并研究了对六价铬的纯化和回收。 1、实验部分 1.1实验流程 废水首先通过活性炭柱,废水中存在杂质被活性炭柱吸附。此活性炭柱的流出液,然后依次通过串联的碱式(OH-型)强阴离子树脂柱进行交换反应。含六价铬废水净化回收流程示意图见图1。

六价铬的测定

实验六 六价铬的测定 一、实验目的 (1)学会六价铬的水样采集保存、预处理及测定方法。 (2)学会各种标准溶液的配制方法和标定方法。 二、概述 铬(Cr )的化合物常见的价态有三价和六价。在水体中,六价铬一般以- 24CrO 、HCrO - 4二种阴子形式存在,受水中pH 值、有机物、氧化还原物质、温度及硬度等条件影响,三价铬和六价铬的化合物可以互相转化。 铬是生物体所必需的微量元素之一。铬的毒性与其存在价态有关,通常认为六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且在体内蓄积。但即使是六价铬,不同化合物的毒性也不相同。当水中六价铬浓度为1mg/L 时,水呈淡黄色并有涩味,三价铬浓度为1mg/L 时,水的浊度明显增加,三价铬化合物对鱼的毒性比六价铬大。 铬的工业来源主要是含铬矿石的加工、金属表面处理、皮革鞣制、印染等行业。 三、水样保存 水样应用瓶壁光洁的玻璃瓶采集。如测总铬水样采集后,加入硝酸调节pH<2;如测六价铬,水样采集后,加NaOH 使pH 为8~9;均应尽快测定,如放置不得超过24h 。 四、干扰及清除 含铁量大于1mg/L 水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本方法的显色酸度下反应不灵敏。钼和汞达200mg/L 不干扰测定。钒有干扰,其含量高于4mg/L 即干扰测定。但钒与显色剂反应后10min ,可自行褪色。 氧化性及还原性物质,如:ClO —、Fe 2+、SO 32-、S 2O 32-等,以及水样有色或混浊时,对 测定均有干扰,须进行预处理。 五、方法的选择 铬的测定可采用二苯碳酰二胼分光光度法、原子吸收分光光度法和滴定法。清洁的水样可直接用二苯碳酰二肼分光光度法测六价铬。如测总铬,用高锰酸钾将三价铬氧化成六价铬,再用二苯碳酰二肼分光光度法测定。 六、测定方法(二苯碳酰二肼分光光度法) 1. 实验原理 在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色络合物,其最大吸收波长为540nm ,吸光度与浓度的关系符合比尔定律。反应式如下: 如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价,再用本法测定。 O =C NH —NH —C 6H 5 NH —NH —C 6H 5 二苯碳酰二肼 +Cr 6+→O =C NH —NH —C 6H 5 N = N —C 6H 5 苯肼羟基偶氮苯 +Cr 3+→紫色络合物

六价铬废水检测方法

离子交换法 该方法利用一种高分子合成树脂进行离子交换,应用离子交换法处理含铬废水是使用离子交换树脂对废水中六价铬进行选择性吸附,使六价铬与水分离,然后再用试剂将六价铬洗脱下来,进行必要的净化,富集浓缩后回收利用。 需要知道的是,使用该方法处理镀铬废水比较容易,但处理其他含铬废水则比较困难,且投资费用大、操作管理复杂,一般的中小型企业运用会比较困难。 电解法 电解还原处理含铬废水是利用铁板作阳极,在电解过程中铁溶解生成亚铁离子,在酸性条件下,亚铁离子将六价铬离子还原成三价铬离子。 使用电解法占地面积较小、耗电不大,但是铁板的耗量较多,且产生的污泥中混有大量的氢氧化铁,利用价值低,需妥善处理。 六价铬废水排放标准 工业排放污水中六价铬含量不能超过0.5mg/L; 金属中六价铬的含量则是不能超过0.1mg/kg; 电机电子设备自2008年起就规定不得含有六价铬; 六价铬废水处理方法 还原法 该方法主要针对含有六价铬的废水,在废水中加入还原剂把六价铬还原为三价铬;

其特点是技术成熟、处理量大,但使用该方法时会产生大量的污泥,造成二次污染。 化学药剂法 这是对比了众多方法之后,较看好的一种。直接在废水中投加重金属捕捉剂,通过多种螯合基团等重金属离子螯合,产生疏水性结构而沉淀;同时,在体型结构的高分子作用下,通过絮集和网捕作用显著提高沉淀速度和去除率,从而摆脱了线性螯合沉淀的缺点。 深圳市华太检测有限公司现有场所面积3000多平方米,满足开展相应检验检测工作的需要。注册资金500万,拥有700余万元的固定资产,拥有国内先进的微机控制伺服泵源万能试验机,压力试验机,甲醛测试试件平衡预处理恒温恒湿室,甲醛释放量测试气候箱(智能式)、气相色谱质谱联用仪(GC-MS)、气相色谱仪(GC)、电感耦合等离子体发射光谱仪(ICP-OES)、原子吸收光谱仪、原子荧光光谱仪等大型仪器设备280多台,能满足现有检测项目的要求。

废水中六价铬处理方案

工业废水中六价铬处理方案 一.概述:六价铬是环境污染及影响人类健康的有害元素之一,六价铬为食入性毒物,废水中浓度超标会对环境产生加大危害,工业废水中铬离子一般为六价铬,常规的处理方案为:离子交换树脂法、过滤吸附法、硫酸亚铁还原沉淀法等。 二.需方提供水质中铬离子含量为:1.5g/L,PH值:5-7,要求处理后废水中铬离子达到国家标准,含量小于0.5.三.由于废水中铬离子过高,所以一般造价较低的过滤吸附法、硫酸亚铁还原沉淀法(只能处理水中铬离子含量小于15 mg/L的废水),不能处理到国家排放标准,最好的方法为:阴离子树脂交换法 四.采用阴离子树脂交换处理铬离子方案: 1.含铬离子量较大的废水首先通过吸附能力较强的活性炭交 换罐,活性炭除去水中杂物和部分色素,使水更加干净,考虑采用玻璃钢交换罐,定期反洗,具体型号及规格为: 1)出水量:15t/h 2)直径:¢900×2000mm 3)运行方式:电脑自动控制 4)材质:玻璃钢罐体 5)活性炭高度:大于1000mm 2.通过活性炭处理过的废水再经过碱式(OH-)强阴离子树脂

罐进行交换反应:含铬离子废水 处理后水 3.当PH 偏高时,六价铬主要是铬酸根CrO 2- 4形态存在,在酸性条件下重铬酸以Cr2O 2- 7形式存在,用阴离子树脂除去六价铬,酸性条件的废水比碱性条件下效果更好,方程式如下: Cr2O 2-7+RNCL=(RN2)Cr7+CL 当PH 值为:3-4时,与阴离子树脂交换效果好,废水中铬离子(CrO 2-4、Cr2O 2-7)能够基本除去,可以达到国家要求的排放标准。 4.化工厂废水中铬离子含量为:1.5g/L,阴离子树脂的交换容量为1.3moi/L,铬离子的原子量为52,每升阴离子树脂交换Cr 6+ 为:1.3×52=67.6g,失效后的阴离子交换树脂采用2%-10%的碱性溶液再生。 5.如果要求每天处理废水100吨,设备工作10小时,具体需要选择的规格及技术方案为:1).设备出水量为:10t/h 2).罐体采用¢900×1850数量:2只 3).阴离子交换树脂:2000L

含六价铬废水方案

有限公司 含铬废水处理工程实施方案 二零一一年十二月

有限公司 含铬废水处理工程 一、工程概况: 某某有限公司是一家从事电镀行业的生产企业,该企业最大日产含铬废水20 m3/d,来自两个生产车间,每个10m3/d;现有配套200 m3/d废水处理站,现根据甲方要求,在车间内设置含铬废水预处理设施,对含铬废水进行车间处理,达到相关标准后排至现有污水处理站再次处理后外排。 二、设计依据: 1.甲方提供的废水水质水量情况 2.《中华人民共和国环境保护法》 3.《污水综合排放标准》GB8978-1996 4.《工业企业设计卫生标准》(GBZ1-2010) 5.该项目的环评报告及环境主管部门的批复 6.其他有关的设计规范和标准等 三、设计资料: 1、废水水质水量: 根据甲方提供的资料,该含铬废水每天最大外排量20m3。 2、排放标准 由于本项目为改造项目,排放标准仍执行原有标准,不做调整,六价铬执行《污水综合排放标准》GB8978-1996中车间排口相关规定。

四、设计原则: 1、设计满足环境保护的各项规定,采用工艺成熟、性能稳定、管理方便、运行灵活、适应性强的处理工艺,确保高浓度污水处理后可满足后续处理单元的要求。根据工程的具体情况和特点,结合当地实际,采用成熟可靠的污水处理工艺,积极慎重地采用新技术、新材料、新装备,实用性与先进性兼顾; 2、在设计中充分考虑二次污染的防治,处理构筑物及设备要耐腐蚀,低噪声,不致影响厂外的居民;污水处理工程的管理、运行和维修方便,劳动强度低; 3、污水处理系统有较长的寿命;污水处理工艺要具有较高的可靠性、稳定性、连续性,耐冲击负荷; 4、处理系统能自动运行,正常连续运行费用低;污水处理流程要简单、可靠,占地面积小,投资少,运转费用低; 5、新增的污水预处理系统的操作运行以自动和手动相结合的方式来控制,手动和自动都可单独完成控制,并显示工作状态和故障报警。 五、改造方案 针对废水处理存在的以上问题,并与现场操作人员详细沟通,我方经认真思考提出以下整改意见: 在现有场地条件下,在将两个车间的废水集中收集后,排至新增集水井,设置一座预处理装置处理后排至现有污水处理站,新增处理设施是在现有污泥干化池的基础上改造的,利用现有一座污泥干化池,保留另外两座,将现有污泥干化池加高至总深度2米,并做防渗处理,池内增加搅拌设备用于还原反应,主导工艺采用焦亚硫酸钠还原法进行处理。

废水中六价铬的测定

废水中六价铬的测定 摘要:文章提出一种前处理简单、操作方便、灵敏度高的测定高色度含铬废水中六价铬的分析方法。使用聚合氯化铝作为絮凝剂,利用三价铬在弱碱性条件下易产生沉淀的特点,实现样品溶液中三价铬与六价铬的定量分离,应用火焰原子吸收法测定溶液中的六价铬。实际样品中六价铬的加标回收率在95.8%~98.12%之间,定量分析下限为0.105 mg/ L。 关键词:六价铬;高色度含铬废水;原子吸收;沉降分离;聚合氯化铝 六价铬是致癌物质,属于第一类环境污染物,其排放受到严格控制。六价铬(铬酸盐、重铬酸盐)主要是通过电镀、表面处理、制革、冶金等工业废水(含铬废水)的排放而进入环境,污染水体和土壤环境,对人类健康和生态环境造成严重威胁。含铬工业废水中六价铬的测定是环境监测中的重要工作。目前测定六价铬的分析方法主要有分光光度法、原子吸收法(AAS)、高效液相色谱法(HPLC)、电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、流动注射/质谱法(FI-MS)等。其中,分光光度法是水中六价铬的经典分析方法,准确可靠而且灵敏度较高,操作简单,成本低廉,得到广泛应用,但是遇到混浊、色度较高(特别是红色)的样品时,方法受到限制,此时通常使用锌盐沉淀法分离干扰物,若经沉淀分离后仍存在有机物干扰,则需进一步使用高锰酸钾氧化法破坏有机物后再行测定。然而,在实际工作中,常遇到高色度样品不能通过锌盐沉淀/高锰酸钾氧化法有效解决基体干扰问题,如含有高浓度染料的含铬工业废水,分光光度法无法满足六价铬定量分析的需求。原子吸收法测定水中铬基本上不受共存有机物的影响,操作简单,但必须预先将六价铬与三价铬分离后才能测定。本文工作使用聚合氯化铝作为絮凝剂,利用三价铬离子在弱碱性条件下易产生沉淀的特点,实现样品溶液中三价铬与六价铬的定量分离,然后应用火焰原子 吸收法测定溶液中的六价铬。 1实验部分 1.1仪器与试剂 日立Z-5000型原子吸收分光光度计,工作条件:铬空心阴极灯,灯电流6 mA,波长35 913 nm,光谱通带0.4 nm;观测高度7 cm;乙炔2.8 L/min,压缩空气15.0 L/min。Mp220型酸度计(瑞士Mettler公司)。 六价铬标准使用液(100 mg/L):取10.0 mL 1 000 mg/L六价铬标准溶液(国家标准物质中心),以去离子水稀释至100 mL。 三价铬溶液(1 000 mg/L):称取1.0244 g的Cr(Cl)3•6H2O(99.8%,

含六价铬废水的离子交换法处理系统及工艺

本发明公开了一种含六价铬废水的离子交换法处理工艺,它将废水调pH值、吸附、再生、维护和Cr6+离子的回收相结合,实现了含铬废水中的Cr6+离子自动化处理,本发明工艺的自动化程度高,处理效果好,可应用于大规模水处理;除铬柱设计成三柱或多柱,各离子交换柱之间设有可调节pH值的中间槽,在两柱或多柱串联工作时,中间过程可以调节PH值,使废水处理效果更好,可以克服常规离子交换过程中,由于离子浓度的变化产生的PH变化,从而造成树脂对离子的吸附能力下降的问题;出水水质可稳定保持Cr6+<0.5 mg/L;离子交换树脂可以得到有效维护,可长期稳定工作;再生液可回收,节约资源。

1、一种含六价铬废水的离子交换法处理工艺,其特征在于该方法包括如下步骤: (1)将含六价铬废水送入pH调节池,调pH值至1~6; (2)废水送入n-1根串联的离子交换柱吸附Cr6+离子,n取3~10中的自然数,相邻两根离子交换柱之间设有可调节pH值的中间槽,保持pH值在1~6,第n-1根离子交换柱的出水口检测Cr6+离子的浓度,第n-1根离子交换柱的出水口流出的液体即为Cr6+离子达到排放标准的废水; (3)当第n-1根离子交换柱的出水口的Cr6+离子浓度达到0.5mg/L时, 将第1根离子交换柱与其它n-2根离子交换柱断开; 第n根离子交换柱与其它n-2根离子交换柱串联,第2根离子交换柱变为第1根离子交换柱,第3根离子交换柱变为第2根离子交换柱,以此类推,直至第n根离子交换柱变为第n-1根离子交换柱,返回步骤(2); 同时,原始第1根离子交换柱进行pH调节池—除铬柱—pH调节池的循环吸附,最大循环吸附时间按下式计算:循环时间T=η×树脂穿漏时间T1-树脂再生时间T2,η取0.6~1;循环吸附结束后,将原始第1根离子交换柱按如下程序进行再生:排空柱中水至pH调节池—碱液洗柱后排入再生液槽—柱中剩余碱液反抽到稀碱槽—用水清洗柱—清洗水排入pH调节池—酸液循环洗柱,再生完全的原始第1根离子交换柱变为第n根离子交换柱待用。 2、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于上述n 根离子交换柱装有大孔强碱性阴离子交换树脂。 3、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于步骤(3)中树脂再生所用的碱液为4~10%(w/w)的氢氧化钠,所述的酸液为0.3~10%(w/w)的盐酸。 4、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于步骤(3)中碱液洗柱过程以1倍床体积/h的速度洗柱。 5、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于步骤(3)中再生液中的Na2CrO4,经阳离子交换树脂处理后成为H2CrO4进行再利用或进一步加工回收固体Na2Cr2O7。 6、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于离子交换柱中的树脂的工作交换容量下降到原值的0.8时,启动如下树脂维护程序:单根离子交换柱再生程序—维护液循环打入单根离子交换柱2~12小时—用水清洗柱—清洗水排入pH调节池—酸液循环洗柱1~2小时,按照此程序依次维护每根离子交换柱。 7、根据权利要求6所述的含六价铬废水的离子交换法处理工艺,其特征在于树脂

含铬电镀废水处理技术方案

含铬电镀废水处理技术方案 1. 项目概况 揭阳市广润五金实业有限公司位于揭东县埔田镇溪南山村月山顶工业区,主要从事五金类配件电镀、成品制作。 废水主要来源于镀锌、镀铬、钝化、粗化、还原后续清洗等 工序废水,废水中主要含Cr3+、Cr6+、总锌、酸、碱。由于在 生产过程中,将排放一定量的致癌、致畸废水,因此,必须 认真处理,以减少或消除其对环境的污染。为贯彻落实国家 环境保护方针政策,加强环境污染防治,严格执行“三同时” 的要求,该公司特委托我公司进行生产废水处理工程设计方 案的编制。 受业主委托,我公司经安排工程师、技术人员等现场踏勘并结合我公司在同类废水处理工程设计经验,编制本设计方案,供业主及有关部门领导决策。 2. 设计原则与标准 2.1 设计原则 ⑴按照国家有关环保治理的设计规范、标准、要求进行设计,确保各种污染物经治理设施处理后执行国家《电镀污染物排放标准》(GB21900-2008)。 ⑵贯彻执行国家现行的经济建设方针、政策,结合实际情况,充分利用现有的设施(设备)、水、电供应以及管理、技术、维修与

运输条件,合理选定方案,降低工程造价、减少建设投资,降低后期运行维护费用。 ⑶合理系统选用的设备运行安全可靠,管理、操作方便。 ⑷技术先进,工艺合理,适用性强,有较好的耐冲击性、可操作性。 ⑸治理系统自动化程度高,关键环节实行自动控制。 ⑹因地制宜提高土地利用率,总平面布置做到合理、紧凑与周围景观相协调。 ⑺处理效果稳定,有害物去除率高,处理后的废水稳定达到国家排放标准。 2.2 设计范围 本技术方案工作内容:工艺及非标设备设计、提供废水处理工艺设备、电气控制设备,并负责安装、调试及人员培训。工程范围从废水调节池入口至系统末级处理出水达标排放口之间的工艺、设备、电气自动控制的设计及设备制造、安装、调试。 2.3 主要规范、标准及依据 ⑴《电镀污染物排放标准》(GB21900-2008)。 ⑵《电镀废水治理规范》(GBJ136-90)。 ⑶厂方提供的一些基础数据。 ⑷废水处理产生的污泥执行《中华人民共和国固体废物污染环境防治法》中的有关规定。 3. 设计参数

六价铬测试方法

4.11 六价铬测试 4.11.1 试验目的 评估磁铁镀层钝化膜的六价铬环保风险,进行定性测试 4.11.2 引用标准 《GGS0058器件产品环保技术标准》、《IEC 62321-7-1:2015》 4.11.3 试验准备 4.11.3.1测试样品: 抽样频次: 1)正常生产产品:至少1批次/天/钝化槽 2)长期库存(库存时间超过1月):出货之前每批次测试 3)长期库存(库存时间超过2月):出货前需反钝化并重新检测环保,且重新进行镀层粘接试验 样品总表面积之和50 cm2±5 cm2;磁铁不充磁,无磁性;样品表面不能有任何污染物、指印或其它外来污点,周转和取放时避免二次污染 4.11.3.2显色试剂:用50mL丙酮溶解0.5g二苯碳酰二肼。搅拌均匀,并以50mL去离 子水缓慢稀释。为实现最大稳定性,溶液储存在棕色玻璃瓶中冷藏;当溶液变色 时废弃 4.11.3.3空白对比样品:将50ml蒸馏水倒入烧杯中作为显色对比标样,与样品检测过程 相同处理。 4.11.3.4加热装置:2只100ml烧杯。 4.11.4 试验实施 4.11.4.1在一个100ml 烧杯中加入50ml 蒸馏水或超纯水,加热至沸腾,并继续加热至少10min后,将待测样品放入烧杯,确保样品完全浸没在沸水中,并用表面皿盖住烧杯,防止水分蒸发。 4.11.4.2继续加热,保持水沸腾10±0.5 min 后停止加热,将样品移出或将待测溶液转移 至另一个干燥烧杯并冷却至室温。若因水分蒸发导致待测溶液不足50ml,需重新 添加去蒸馏水或超纯水至50 mL。如果溶液呈乳状或有沉淀,用过滤膜过滤至另一

个干燥烧杯。 ◆ 4.11.4.3用移液管在待测溶液中分别加入1 mL 正磷酸溶液(75% m/m)和2ml <4.11.3.2>中配置的显色试剂,溶液充分混合,并放置5 min 至10 min 再观察颜 色。 ● 4.11.5 判定标准 ◆试验溶液<4.11.4.3>与空白对比样品<4.11.3.3>一同放在光照度800~1600Lx的日 光灯下对比并拍照:若溶液显示变色或红色(即阳性Positive),证明含有六价铬,判 定不合格;若溶液不变色(即阴性,Negative),判定合格。 注:以上是根据IEC62321沸水萃取法检测金属表面六价铬方法而制定的简易方法,不需要使用UV-Vis设备,但不能定量。推荐供方完全按照IEC 62321-7-1:2015进行金属表面镀层六价铬测试,需要购买UV-Vis设备,但可以实现定量,结果更准确。

铬的污水处理

?六价铬离子浓度的排放标准:0.5 毫克/ 升 ?酸液的排放标准:P H 值在6-9 之间 ?六价铬离子处理方案 六价铬对人体有毒,含铬废水要经化学处理后才能排放,方法是用绿矾把废水中的六价铬还原为三价铬离子,再加入过量的石灰水,使铬离子转变为氢氧化铬 沉淀。其主要反应的化学方程式如下: 现用上法处理含铬(+6 价) 的废水(Cr 原子量52 ),试回答: (1 )处理后,沉淀物中除外,还有_______ ,________ (用化学式表示)。 (2 )需用绿矾多少千克? 解答:(1 ), (2 )废水中含铬的物质的量需要绿矾的 质量为即12.51kg 。 [ 解析] 与发生氧化还原反应生成及。再加入后 、均转化为、。又与大量的形成沉淀。 4 、处理方案 用石灰水来处理:+ = 沉淀 ?PH 值的处理方案

用石灰水来处理直到PH 值在6-9 之间即可。 调整PH值到8左右,絮凝同时加NAOH沉淀,我现在在做一个6价铬的工程,就是这方法,出水能达1级排放 钡盐就可以直接沉淀六价铬啊 含六价铬的废液处理 注意事项 1).要戴防护眼镜、橡皮手套,在通风橱内进行操作。 2).把Cr(Ⅵ)还原成Cr(Ⅲ)后,也可以将其与其它的重金属废液一起处理。 3).铬酸混合液系强酸性物质,故要把它稀释到约1%的浓度之后才进行还原。并且,待全部溶液被还原变成绿色时,查明确实不含六价铬后,才按操作步骤中 从第四点开始进行处理。 处理方法[还原、中和法(亚硫酸氢钠法)] [原理] Cr(Ⅵ)不管在酸性还是碱性条件下,总以稳定的铬酸根离子状态存在。因此,可按照下式将Cr(Ⅵ)还原成Cr(Ⅲ)后进行中和,使之生成难溶性的Cr(OH) 3沉淀而除去。 4H2CrO4+6NaHSO3+3H2SO4→2Cr2(SO4)3+3Na2SO4+10H2O (1) Cr2(SO4)3+6NaOH→2Cr(OH)3↓+3Na2SO4 (2) (1)式还原反应,若pH值在3以下,反应在短时间内即进行结束。如果使(2)式中和反应pH在7.5~8.5范围内进行,则Cr(Ⅲ)即以Cr(OH)3形式沉淀析出. [操作步骤] 1).于废液中加入H2SO4,充分搅拌,调整溶液pH在3以下(采用pH试纸或pH计测定。对铬酸混合液之类废液,已是酸性物质,不必调整pH)。 2).分次少量加入NaHSO3结晶,至溶液由黄色变成绿色为止,要一面搅拌一面加入(如果使用氧化——还原光电计测定,则很方便)。 3).除Cr以外还含有其它金属时,确证Cr(Ⅵ)转化后,作含重金属的废液处理。 4).废液只含Cr重金属时,加入浓度为5%的NaOH溶液,调节pH至7.5~8.5(注意,pH过高沉淀会再溶解)。 5).放置一夜,将沉淀滤出并妥善保存(如果滤液为黄色时,要再次进行还原)。 6).对滤液进行全铬检测,确证滤液不含铬后才可排放。 [Cr(Ⅵ)的分析] 定性分析采用二苯基碳酰二肼试纸或检测箱进行检测;定量分析则用二苯基碳酰二肼吸光光度法[详见“日本工业标准规格”(以下简称JIS) K 0102 51.2.1]和原子吸收光谱分析法进行测定。但要注意Cu、Cd、V、Mo、Hg、Fe等离子的干扰。 [全Cr分析] 用高锰酸钾氧化Cr(Ⅲ)使之变成Cr(Ⅵ),然后进行分析。 [备注] 1).除上述处理方法外,还有用强碱性阴离子交换树脂吸附Cr(Ⅵ)的方法。此法即使废液含铬浓度较低也很有效。 2).用作还原Cr(Ⅵ)的还原剂。而作为中和剂,也可以用Ca(OH)2。不过,其泥浆沉淀物较多。

六价铬实验作业指导书

六价铬的测定 1、方法依据 水质六价铬的测定二苯碳酰二肼分光光度法GB7476-87 2、适用范围 2.1本标准适用于地面水和工业废水中六价铬的测定。 2.2测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 2.3干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 3、原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 4、试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析

纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 4.1丙酮。 4.2硫酸 4.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 4.3磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 4.4氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 4.5氢氧化锌共沉淀剂 4.5.1硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 4.5.2氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。用时将4.5.1和4.5.2两溶液混合。 4.6高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 4.7铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,

含铬废水处理方法

含六价铬的废液处理(来源于网络) 注意事项 1).要戴防护眼镜、橡皮手套,在通风橱内进行操作。 2).把Cr(Ⅵ)还原成Cr(Ⅲ)后,也可以将其与其它的重金属废液一起处理。 3).铬酸混合液系强酸性物质,故要把它稀释到约1%的浓度之后才进行还原。并且,待全部溶液被还原变成绿色时,查明确实不含六价铬后,才按操作步骤中从第四点开始进行处理。 处理方法[还原、中和法(亚硫酸氢钠法)] [原理] Cr(Ⅵ)不管在酸性还是碱性条件下,总以稳定的铬酸根离子状态存在。因此,可按照下式将Cr(Ⅵ)还原成Cr(Ⅲ)后进行中和,使之生成难溶性的Cr(OH)3沉淀而除去。 4H2CrO4+6NaHSO3+3H2SO4→2Cr2(SO4)3+3Na2SO4+10H2O (1) Cr2(SO4)3+6NaOH→2Cr(OH)3↓+3Na2SO4 (2) (1)式还原反应,若pH值在3以下,反应在短时间内即进行结束。如果使(2)式中和反应pH在7.5~8.5范围内进行,则Cr(Ⅲ)即以Cr(OH)3形式沉淀析出. [操作步骤] 1).于废液中加入H2SO4,充分搅拌,调整溶液pH在3以下(采用pH试纸或pH 计测定。对铬酸混合液之类废液,已是酸性物质,不必调整pH)。 2).分次少量加入NaHSO3结晶,至溶液由黄色变成绿色为止,要一面搅拌一面加入(如果使用氧化——还原光电计测定,则很方便)。 3).除Cr以外还含有其它金属时,确证Cr(Ⅵ)转化后,作含重金属的废液处理。 4).废液只含Cr重金属时,加入浓度为5%的NaOH溶液,调节pH至7.5~8.5(注意,pH过高沉淀会再溶解)。 5).放置一夜,将沉淀滤出并妥善保存(如果滤液为黄色时,要再次进行还原)。 6).对滤液进行全铬检测,确证滤液不含铬后才可排放。 [Cr(Ⅵ)的分析] 定性分析采用二苯基碳酰二肼试纸或检测箱进行检测;定量分析则用二苯基碳酰二肼吸光光度法[详见“日本工业标准规格”(以下简称JIS) K 0102 51.2.1]和原子吸收光谱分析法进行测定。但要注意Cu、Cd、V、Mo、Hg、Fe等离子的干扰。 [全Cr分析] 用高锰酸钾氧化Cr(Ⅲ)使之变成Cr(Ⅵ),然后进行分析。 [备注] 1).除上述处理方法外,还有用强碱性阴离子交换树脂吸附Cr(Ⅵ)的方法。此法即使废液含铬浓度较低也很有效。 2).用作还原Cr(Ⅵ)的还原剂。而作为中和剂,也可以用Ca(OH)2。不过,其泥浆沉淀物较多。

六价铬的分析方法

六价铬的分析操作规程 一、适用范围及规范说明 本规程规定了电镀废水六价铬分析的方法、设施、设备、工具、试剂和操作步骤。 本规程是依据国标GB_7467-87《水质六价铬的测定—二苯碳酰二肼分光光度法》制定,用于电镀车间电镀废水的六价铬的测量。试份体积为 50ml,使用光程长为 30mm 的比色皿,本方法的最小检出量为 0.2μg六价铬,最低检出浓度为 0.004mg/L,使用光程为 10mm 的比色皿,测定上限浓度为 1.0mg/L。 二、原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 三、实验使用试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 丙酮,1+1 硫酸溶液,1+1 磷酸溶液,4g/L 氢氧化钠溶液 3.1 氢氧化锌共沉淀剂 3.1.1 硫酸锌:8%(m/v)硫酸锌溶液 称取硫酸锌(ZnSO 4·7H 2 O)8g,溶于 100ml水中 3.1.2 氢氧化钠:2%(m/v)溶液。 称取 2.4g 氢氧化钠,溶于 120ml水中用时将 3.1.1 和 3.1.2 两溶液混合3.2 铬标准贮备液 称取于 110℃干燥2h的重铬酸钾(K 2Cr 2 O 7 ,优级纯)0.2829±0.0001g,用水溶 解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液 1ml含 0.10mg 六价铬。 3.3 铬标准溶液 称取25.0ml铬标准贮备液置于 500ml 容量瓶中,用水稀释至标线,摇匀。此溶液 1ml 含 5.0μg六价铬。使用当天配制此溶液。 将亚硝酸钠(NaNO 2 )2g 溶于水并稀释至 100ml。 3.4 显色剂 称取二苯碳酰二肼0.2g,溶于50ml丙酮中,加水稀释至100ml,摇匀。贮于棕色瓶,置冰箱中。色变深后,不能使用。 3.5 尿素:200g/L 尿素溶液。 将尿素〔(NH 2) 2 CO〕20g 溶于水并稀释至 100ml。 3.6 亚硝酸钠:20g/L 溶液。 将亚硝酸钠(NaNO 2 ) 2g 溶于水并稀释至 100ml。 3.7丙酮, 3.8 1+1 硫酸溶液 1+1 磷酸溶液

六价铬的测定

水质六价铬的测定二苯碳酰二肼分光光度法(GB 7467-87) 1 适用范围 1.1本标准适用于地面水和工业废水中六价铬的测定。 1.2 测定范围 试样体积为50 mL,使用光程长为30 mm的比色皿,本方法的最小检出量为0.2 μg六价铬,最低检出浓度为0.004 mg/L,使用光程为10 mm的比色皿,测定上限浓度为1.0 mg/L。 1.3 干扰 含铁量大于1 mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200 mg/L不影响测定。钒有干扰,其含量高于4 mg/L即干扰显色。但钒与显色剂反应后10 min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540 nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水,所有试剂应不含铬。 3.1丙酮。 3.2硫酸:1+1硫酸溶液。将硫酸(ρ=1.84 g/mL,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。将磷酸(ρ=1.69 g/mL,优级纯)与水等体积混合。 3.4 氢氧化钠:4 g/L氢氧化钠溶液。将氢氧化钠1 g溶于水并稀释至250 mL。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/V)硫酸锌溶液。称取硫酸锌(ZnSO4·7H2O)8 g,溶于100 mL水中。

3.5.2 氢氧化钠:2%(m/V)溶液。称取2.4 g氢氧化钠,溶于120 mL水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40 g/L溶液。称取高锰酸钾4 g,在加热搅拌下溶于水,最后稀释至100 mL。 3.7 铬标准储备液:称取于110℃干燥 2 h的重铬酸钾(优级纯)0.2829±0.0001 g,用水溶解后,移入1000 mL容量瓶中,用水稀释至标线,摇匀。此溶液1 mL含0.10 mg六价铬。 3.8 铬标准溶液:吸取5.00 mL铬标准储备液(3.7)置于500 mL容量瓶中,用水稀释至标线,摇匀。此溶液1 mL含1.00 μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液:吸取25.00 mL铬标准储备液(3.7)置于500 mL容量瓶中,用水稀释至标线,摇匀。此溶液1 mL含5.00 μg六价铬。使用当天配制此溶液。 3.10 尿素:200 g/L溶液。将尿素((NH2)2CO)20 g溶于水并稀释至100 mL。 3.11 亚硝酸钠:20 g/L溶液。将亚硝酸钠2 g溶于水并稀释至100 mL。 3.12 显色剂(Ⅰ):称取二苯碳酰二肼(C13H14N4O)0.2 g,溶于50 mL丙酮(3.1)中,加水稀释至100 mL,摇匀,贮于棕色瓶,置冰箱中。色变深后,不能使用。 3.13 显色剂(Ⅱ):称取二苯碳酰二肼2 g,溶于50 mL丙酮(3.1)中,加水稀释至100 mL,摇匀,贮于棕色瓶,置冰箱中。色变深后,不能使用。 注:显色剂(Ⅰ)也可按下法配制:称取4.0 g苯二甲酸酐(C6H4O),加到80 mL乙醇中,搅拌溶解(必要时可用水浴微温),加入0.5 g二苯碳酰二肼,用乙醇稀释至100 mL。此溶液于暗处可保存六个月。使用时要注意加入显色剂后立即摇匀,以免六价铬被还原。 4 仪器 一般实验室仪器和分光光度计。 注:所有玻璃器皿内壁须光洁,以免吸附铬离子。不得用重铬酸钾洗液洗涤。可用硝酸、硫酸混合液或合成洗涤剂洗涤,洗涤后要冲洗干净。 5 采样与样品 实验室样品应该用玻璃瓶采集。采集时,加入氢氧化钠,调节样品pH值约为8,并在采样后尽快测定,如放置,不要超过24 h。

相关文档
最新文档