基于单片机的温度和湿度数据采集系统的设计

基于单片机的温度和湿度数据采集系统的设计
基于单片机的温度和湿度数据采集系统的设计

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊

基于单片机的温度和湿度数据采集系统的设计

徐燕郭涛朱杰

(科学和动态测量仪器重点实验室(北大),教育部系、电子科技、北大学)太原、山西030051年,中国电子邮件: 27361014@https://www.360docs.net/doc/3114074611.html,

陈伟

(山西北惠丰机械电子有限公司第二学术机构)长治,山西,中国电子邮件:

xy.xy_2000@https://www.360docs.net/doc/3114074611.html,

摘要:在许多情况下,在实际生活生产活动考虑温度和湿度环境的影响和精确的控制,然后由采集系统传来数据。由于CAN总线可以提高抗干扰能力和可靠性的数据,因此,使用CAN总线接口,然后由上位机监测的数据传输。

本文介绍了数据采集系统的设计组成的温度和湿度传感器、单片机系统、计算机、CAN总线。在SHT75数字式温湿度传感器收集的温度和湿度测量数据,将数据传送到C8051F060单片机系统通过总线接口。C8051F060单片机做简单的快速处理的数据通过CAN总线接口,计算机实时监测。经过测试,该系统能够实现数据采集、处理和通信。

关键词温度和湿度传感器、C8051F060、数据采集、CAN总线

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊

I.介绍

对在实际生产中生活在很多时候都考虑温度、湿度的环境影响和精确的控制,如食物的储存和烟草生产,自动控制的空调、汽车等。

因为集成电路制造技术的不断提高,出现了高性能、高可靠性的单片机数据采集系统。数据采集技术已经成为了一种专门的技术,在工业领域得到了广泛的应用,数据采集系统所使用的更高级的模块式结构,根据不同的应用需求,通过简单的增加和更换组件,并结合系统编程,可以扩大或修改系统,迅速组成一个新的系统[1]。温湿度数据采集系统总是有关科研单位及公司致力于开发项目,它早期在8031单片机为核心构成的系统核心,采用热敏电阻和电容作为湿敏感温度传感器和湿度传感器,整个系统,而低成本,但大尺寸和低精度、通信距离限制,通用性差、克服缺点,本文研究了基于单片机的温度和湿度数据采集系统,实现对现场仓库房间温度和湿度监测,具有实时性好、精度高、测试简单方便,易于维护和使用信号收发器的优点[2]。

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊

II.温湿度数据采集系统简单易应用

A.C8051单片机简单介绍

为方便系统的扩展,并与其他相容性和系统的单芯片微控制器,使用C8051F060的单片机C8051F060是完全集成的混合信号芯片的系统类型,与59单片机的数字I/ O口引脚,片内集成两个16位的ADC,在系统编程,4352字节(RAM,寻址64KB地址空间的外部数据存储接口,硬件实现的SPI,SM总线/ I2C 和两个UART串行接口,控制器局域网控制器的16位定时器,5个一般的闪存64KB1MSPS可编程计数器阵列,VDD监视器和温度传感器,两个12的DAC,具有可编程数据更新方式。

B.C8051单片机简单介绍

为方便系统的扩展,并与其他相容性和系统的单芯片微控制器,使用C8051F060的单片机C8051F060是完全集成的混合信号芯片的系统类型,与59单片机的数字I/ O引脚,片内集成两个16位的ADC,在系统编程,4352字节(RAM,寻址64KB地址空间的外部数据存储接口,硬件实现的SPI,SM总线/ I2C 和两个UART串行接口,控制器局域网控制器的16位定时器,5个一般的闪存64KB1MSPS可编程计数器阵列,VDD监视器和温度传感器,两个12的DAC,具有可编程数据更新方式。

C. CAN

CAN都可以称为“控制器区域网络”,即控制器局域网的LAN,是目前世界上应用最广泛的现场总线。可以先在20世纪80年代末出现在汽车行业,德国博世公司是第一人提出,目的是为了解决现代汽车在大的问题之间的通信电子设备。它具有通信速率高,可靠性,连接方便,性能价格比高等特点,这是一种有效支持分布式控制或实时控制的串行通信网络,在同行业中得到了迅速发展。现在可以高速网络的应用范围遍及从低成本的多线路网络,可用于汽车系统,农业机械和技术设备和工业自动化中的几乎任何类型的数据通信。

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊

III.基于单片机的温度和湿度数据采集

通过C8051F060的单片机控制SHT75数字式温度和湿度传感器测量仓库室内温度和湿度,并通过总线接口单片机C8051F060单片机系统将发送数据,通过CAN总线接口瞬移后,微控制器简单快速处理的电脑显示器。

A.传输驱动模块

可以传输驱动模块由单片机C8051F060的硬件,高速光TLP113隔离器TJA1050高速的CAN收发设备等组成。其中,C8051F060的实现,TJA1050的CAN 总线应用功能实现的CAN总线物理层和数据链路层的功能。这个模块主要用于向上放置机器的温度和湿度数据发送和接受控制命令。TJA1050的可以提供总线发送功能差,可提供差分接收控制器的功能,并完全符合“ISO 11898标准”标准,高利率,低电磁辐射,广泛的差分接收器输入,可打不上电,电磁干扰,自动发送数据(TXD)控制功能,保护总线引脚,输入级和3.3 V设备兼容,热功率和保护,防止短路功能。

B.电源电路

整个系统是稳定的,可靠的工作是一个稳定的电力供应的基础上,开关电源转换芯片MAX1658和电气隔离芯片B0505S设备等组成。 5V转3.3 V电源通过外部电源供电MAX1658电源模块将转换成5V电压3.3伏,C8051F060的单片机和SHT75数字式温度和湿度传感器供电。 5V电源隔离模块,通过将5V电源隔离成两部分,分别为每一个设备两端的光。

电源隔离芯片B0505S有定压输入,单输出隔离电压高效率的电源模块(80%),体积小,价格低,可靠性高,耐冲击,隔离特性,温度范围宽(-40℃?+85℃),为了确保有效和可靠的操作模块,可额定负载,输出的5%?100%之间的负载,应尽量避免在无负载条件下长期工作。

C.温度和湿度数据的采集和处理

温度和湿度数据采集系统由以下部分,1)和湿度传感器SHT752)C8051F60单片机,3)的CAN总线接口电路4)PC。系统框架如图1所示。

┊┊┊┊┊┊┊┊┊┊

┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊

图.1系统图表

使用单片机C8051F060单片机的P2.6口为虚拟数据,使用数据的P2.0口来虚拟时钟线,从而直接连接并进行控制SHT75数字式温度和湿度传感器后起来SHT75的权力,10ms的时间后进入睡眠模式,在此之前不应该发送任何命令。当在一个较高的水平,数据线,触发SCK的9倍以上(含9倍),然后发送一个“传输开始”命令来激活SHT75芯片是招魂。然后测量命令(命令为00000011的温度测量,测量相对湿度为00000101的订单),μC的开始,直到完整的测量SCK的。然后将进入到一个较低水平绘制,μC的再次重新启动SCK信号,然后传送测量数据字节。μC的数据必须被绘制成一个较低的水平,每个字节的能产生响应信号[4]。传输顺序从最高位(最高位)字节对齐(LSB)的。

当传感器电复位,程序将进入等待外部指令周期[5]。如果接受,让传感器的指示,传感器,测量过程将开始的温度和湿度的实时数据采集和存储,等待PC机。程序流程图如下。

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊

┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊

图2温度和湿度数据采集过程

由于温度和湿度SHT75收集到的数据必须得到实际的环境温度和湿度的非线性补偿。为补偿非线性的湿度传感器,以获得准确的数据,使用(1)修正产值以下类型:

RH1的= C1+ C2* SORH+ C3SORH2(1)

其中:补偿SORH湿度值,SHT75输出的8位或L2位湿度传感器值RH1的C1,C2和C2的值,如表1所示,输出湿度数据。

表1

当测量温度与25℃相差较大,为了补偿温度湿度测量的影响,使用式(2)校正产值RHtrue=( - 25)(T1 + T2* SORH)+ RH1

的(2)其中:RHtrue RH1的补偿温度影响后的湿度值,T1和T2值在图2所示,输出湿度数据位关注

表2温度补偿系数

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊表3温度转换系数

D.温湿度采集软件部分

本文中所使用的软件为Silicon Laboratories的IDE。方案主要是传感器的操作,收集的温度和湿度数据处理和thecan通信。湿度传感器接收PC发送数据传输命令,开始收集在C8051F060的内存来存储提取温度和湿度,温度和湿度的数据,然后启动thecan传输,向上的地方机传输数据[6]。

Silicon Labs公司工作的比特率可以达到1米比特/秒,实际利率可能会被影响,可以在选定的数据总线传输的物理限制。 thecan处理器32日消息对象,可以配置为发送或接收数据。输入数据,消息对象,其标志面膜储存在RAM中的信息。发送和接收的所有数据过滤协议可以处理所有的成品,不需要CIP控制器 - 51的干预,这将CPU可以使通信带宽是最小的。51通过特殊功能寄存器配置CAN控制器,读取接收到的数据和书面准备好发送数据。 CAN控制器的时钟等于单片机的时钟(SYSCLK)。

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊

IV.测试与分析的结果

调试好系统,并分别进行静态和动态测试,收集实验数据。从微控制器的存储器读出的数据图显示,该系统可实现温度和湿度数据采集,处理,可实时监测环境监测。

图3接收日期界面

除对单片机硬件系统的温度和湿度传感器信号电路调节,整个温度和湿度数据采集系统进行了测试。

图4为温度和湿度数据收集的数据采集试验。

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊

V.结论

本文主要采用C8051F060的单片机控制SHT75数字式温度和湿度传感器,以收集库的室内温度和湿度。

可以通过实时数据传送到PC显示器。在数据通信方面,采用,这样可以有效地提高了测量精度,温度和湿度传感器是一个集成的数字输出,使用电路简单,测量精度高。

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊参考文献

[1]湿度数据采集监控系统的设计.专业的硕士学位论文.江南大学,控制工

程. 2008年6月2?3

[2]一种温度和湿度数据采集系统的开发. (1。黑龙江八一和土地复垦工程学院.2齐齐哈尔化工有限公司3黑龙江省克山农场高级中等学校4.鸡西市公安局),2003.1?3

[3]瑞士盛世瑞恩数字式温度和湿度传感器传感器公司.SHTI?SHT7x数据手册

[4]长飞漱.C8051系列单片机开发与C语言编程[M].北京:北京航空大学.2005 [6].赵文博,刘文涛.单片机C51编程语言[J].约翰·威利父子出版

社.2005.180?190

基于51单片机的温度控制系统

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

毕业论文设计 基于51单片机的温度控制系统

摘要 在日常生活中温度在我们身边无时不在,温度的控制和应用在各个领域都有重要的作用。很多行业中都有大量的用电加热设备,和温度控制设备,如用于报警的温度自动报警系统,热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,这些都采用单片机技术,利用单片机语言程序对它们进行控制。而单片机技术具有控制和操作使用方便、结构简单便于修改和维护、灵活性大且具有一定的智能性等特 点,可以精确的控 制技术标准,提高了温控指标,也大大的提高了产品的质量和性能。 由于单片机技术的优点突出,智能化温度控制技术正被广泛地采用。本文介绍了基于单片机AT89C51 的温度控制系统的设计方案与软硬件实现。采用温度传感器DS18B20 采集温度数据,7段数码管显示温度数据,按键设置温度上下限,当温度低于设定的下限时,点亮绿色发光二极管,当温度高于设定的上限时,点亮红色发光二极管。给出了系统总体框架、程序流程图和Protel 原理图,并在硬件平台上实现了所设计功能。 关键词:单片机温度控制系统温度传感器

Abstract In daily life, the temperature in our side the ever-present, the control of the temperature and the application in various fields all have important role. Many industry there are a large number of electric heating equipment, and the temperature control equipment, such as used for alarm automatic temperature alarm systems, heat treatment furnace, used to melt metal crucible resistance furnace, and all kinds of different USES of temperature box and so on, these using single chip microcomputer, using single chip computer language program to control them. And single-chip microcomputer technology has control and convenient in operation, easy to modify and maintenance of simple structure, flexibility is large and has some of the intelligence and other characteristics, we can accurately control technology standard to improve the temperature control index, also greatly improve the quality of the products and performance. Because of the advantages of the single chip microcomputer intelligent temperature control technology outstanding, is being widely adopted. This paper introduces the temperature control based on single chip microcomputer AT89C51 design scheme of the system and the hardware and software implementation. The temperature sensor DS18B20 collection temperature data, 7 period of digital pipe display, the upper and lower limits of temperature button when temperature below the setting of the lower limit, light green leds, when the temperature is higher than the set on the limit, light red leds. Given the system framework and program flow chart and principle chart, and in Protel hardware platform to realize the function of the design. Keywords:SCM Temperature control system Temperature sensors

单片机温度感应控制电路原理图

引言 在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。本文以它为例进行介绍,希望能收到举一反三和触类旁通的效果。 1硬件电路设计 以热电偶为检测元件的单片机温度控制系统电路原理图如图1所示。 1.1 温度检测和变送器 温度检测元件和变送器的类型选择与被控温度的范围和精度等级有关。镍铬/镍铝热电偶适用于 0℃-1000℃的温度检测范围,相应输出电压为0mV-41.32mV。 变送器由毫伏变送器和电流/电压变送器组成:毫伏变送器用于把热电偶输出的0mV-41.32mV变换成4mA-20mA的电流;电流/电压变送器用于把毫伏变送器输出的4mA-20mA电流变换成0-5V的电压。 为了提高测量精度,变送器可以进行零点迁移。例如:若温度测量范围为500℃-1000℃,则热电偶输出为20.6mV-41.32mV,毫伏变送器零点迁移后输出4mA-20mA范围电流。这样,采用8位A/D转换器就可使量化温度达到1.96℃以内。 1.2接口电路 接口电路采用MCS-51系列单片机8031,外围扩展并行接口8155,程序存储器EPROM2764,模数转换器ADC0809等芯片。 由图1可见,在P2.0=0和P2.1=0时,8155选中它内部的RAM工作;在P2.0=1和P2.1=0时,8155选中它内部的三个I/O端口工作。相应的地址分配为: 0000H - 00FFH 8155内部RAM 0100H 命令/状态口 0101H A 口 0102H B 口 0103H C 口 0104H 定时器低8位口 0105H 定时器高8位口 8155用作键盘/LED显示器接口电路。图2中键盘有30个按键,分成六行(L0-L5)五列(R0-R4),只要某键被按下,相应的行线和列线才会接通。图中30个按键分三类:一是数字键0-9,共10个;二是功能键18个;三是剩余两个键,可定义或设置成复位键等。为了减少硬件开销,提高系统可靠性和降低成本,采用动态扫描显示。A口和所有LED的八段引线相连,各LED的控制端G和8155C口相连,故A口为字形口,C口为字位口,8031可以通过C口控制LED是否点亮,通过A口显示字符。

基于单片机的温湿度控制系统设计

基于单片机的温湿度控制系统 目录 摘要 (2) 1、绪论 (2) 1.1课题背景 (2) 1.2立题的目的和意义 (2) 1.3植被栽培技术 (2) 温室环境的调节 (3) 1.4本系统主要研究内容 (3) 2 、系统总体分析与设计 (3) 2.1系统功能及系统的组成和工作原理 (3) 2.1.1.总体方案 (3) 2.1.2. 实施措施 (3) 2.1.3.硬件系统设计 (4) 主机与主要部件的选择: (4) 2.2温湿度采样与控制系统 (4) 2.2.1.温湿度采样系统 (5) 2.2.2.温湿度控制系统 (5) 2.3键盘显示系统 (5) 2.4报警系统 (7) 2.5硬件电路设计 (7) 2.5.1. 系统硬件配置 (7) 2.5.2. 主要组件简介 (7) 3 软件系统设计 (10) 3.1系统初始化模块 (10) 3.2键盘显示模块 (11) 3.3采样转换模块 (11) 3.4温湿度控制模块 (12) 3.5报警模块 (13) 4 硬件调试方案 (14) 4.1硬件电路的调试 (14) 4.2功能模块的调试方案 (15) 结论 (15) 致谢 (16) 参考文献 (16) 附录: (18)

基于单片机的温湿度控制系统设计 摘要 本文利用8051单片机设计一个温室的温湿度控制系统,对给定的温湿度进行控制并实时显示,其中温湿度信号各有四路,系统采用一定的算法对信号处理以确定采取某种控制手段,在本系统中采用温度优先模式,循环处理。 关键字:89C51 8729键盘显示 LCD显示 ADC0809 1、绪论 1.1 课题背景 改革开放以来,人们对生活质量要求显著提高,对美丽的植被和花卉的需求量也急剧上升,这对以种植植被为生计的园林工人是一个机遇,同时也对传统的手工植被种植是一个挑战,而基于单片机的温湿度控制系统对解决这些问题有着非常重大的意义。 前种植植被一般都用温室栽培,为了充分的利用好温室栽培这一高效技术,就必需有一套科学的,先进的管理方法,用以对不同种类植被生长的各个时期所需的温度及湿度等进行实时的监控。温湿度控制对于单片机的应用具有一定的实际意义,它代表了一类自动控制的方法。而且其应用十分广泛。 1.2 立题的目的和意义 8051单片机是常用于控制的芯片,在智能仪器仪表、工业检测控制、机电一体化等方面取得了令人瞩目的成果,用其作为温湿度控制系统的实例也很多。使用8051单片机能够实现温湿度全程的自动控制,而且8051单片机易于学习、掌握,性价比高。 使用8051型单片机设计温湿度控制系统,可以及时、精确的反映室内的温度以及湿度的变化。完成诸如升温到特定温度、降温到特定温度、在温度上下限范围内保持恒温等多种控制方式,在湿度控制方面也是如此。将此系统应用到温室当中无疑为植被的生长提供了更加适宜的环境。 1.3 植被栽培技术 植被“设施栽培”,即“保护地栽培”。它是指在某种类型的保护设施内(如阳畦、温室、大棚等),人为地创造适宜植被生长发育的最佳环境条件,在不同季节内,尤其是不利于植被生长的季节内进行植被栽培的一种措施[1]。设施栽培是人类利用自然、改造自然的一种创造。由于设施内的条件是可以人为控制的,使得植被调节的周年生产得以实现。玻璃温室和塑料薄

温湿度控制单片机课程设计

江苏师范大学物电学院课程设计报告 课程名称:单片机课程实训 题目:温湿度控制 专业班级: 11物41 学生姓名:易长祥 _ 学生学号: 11224032 日期: 2014年6月 指导教师:陈斯 物电学院教务部印制

指导教师签字: 年月日

目录 目录 (1) 摘要 (2) ABSTRACT (2) 1绪论 (3) 1.1设计目的 (3) 1.2设计背景 (3) 2 设计方案简述 (4) 2.1方案设计 (4) 2.2方案设计 (4) 3 设计部分 (5) 3.1硬件设计 (5) 3.1.1MCS08QG8芯片 (6) 3.1.2液晶显示模块电路设计 (7) 3.1.3蜂鸣器模块电路设计 (7) 3.1.4 DHT11温度湿度传感器电路设计 (8) 3.2软件设计 (9) 3.2.1系统软件设计说明 (9) 3.2.2编程语言的选择 (10) 3.2.3主程序流程图 (10) 3.2.3系统的软硬件的调试 (12) 4 设计结果及分析 (13) 5 总结 (14) 参考文献 (15) 附录1 (16) 附录2 (17)

摘要 本文主要以MC9S08QG8单片机为核心,并通过DHT11温湿度传感器的工作原理,实现了对当前环境中温度与湿度的测量,并且通过设置好的湿度的上限、下限的值对当前环境实施监控,超过预警值则实施自动报警。该系统由温度传感器模块、湿度传感模块和液晶显示模块组成,应用温湿度传感器的工作原理对当前环境实施监控,定时采集数据传送给单片机,单片机根据温湿度传感器采集到的数据进行处理,再将接收的数据显示到12864液晶显示屏上,若是超过预期设置的上限和下限,采用二极管模拟报警,由于制作和组合上的精细,使得本设计显得智能化、实用化。 关键词:单片机(MC9S08QG8);温度传感器;湿度传感器;12864液晶显示 Abstract The design MC9S08QG8microcontroller core, and through DHT11 temperature and humidity sensor works to achieve in the current environment, temperature and humidity measurements, and a good temperature and humidity by setting the upper limit, lower limit value of the temperature on the current environment implementation of monitoring and humidity, more than the value of implementing an early warning alarm. The system consists of temperature sensor module, humidity sensing module and liquid crystal display module, the application of temperature and humidity sensor works by monitoring the implementation of the current environment, regularly collected data to the microcontroller, microcontroller based temperature and humidity sensor for processing the data collected, and then will rece ive the data to the LCD screen on the 12864, if more than expected to set the upper and lower limits, the use of diode analog alarm, due to a combination of production and fine, making the design is intelligent, practical. Keywords:single chip(MC9S08QG8);temperature sensor;humidity sensor;12864 LCD

基于单片机的智能仓库温湿度控制系统

第一章引言 课题背景 在现代工业现场,随着科技的进步和自动化发展,温、湿度监测系统在某些行业中要求越来越高,特别是在大中型仓库管理系统中,由于温湿度过高或过低引起的仓库储藏物本身的水分过高或连续的高湿天气将导致储藏物新陈代谢加快而放出热量,放热引起的温升又是代谢进一步加剧以至发霉变质,因此仓库必 须重视对空气温湿度精确的而又方便的实时监测,长期以来,由于受经济条件限制,我国仓库环境较差,而且管理落后。 仓库管理的重点之一就是要合理布置测温点,经常检查温度变化,以便及时发现储藏物发热点,减少损失。然而,堆积物的热传递又是那样的缓慢,使人感知极差,需要管理人员经常进入闷热、呛人的仓库内观察温、湿度,不断进行翻仓、加湿、通风和降温设备来控制温湿度,这样不但控制精度低、实时性差,而且操作人员的劳动强度大。这种繁重的体力劳动,不仅对人体有极大的伤害,而且不科学、不及时。所以,仓库储藏物虫蛀、霉变的情况时有发生。 我国的储藏物现均集中存放在地方或国家的仓库中。按照国家储藏物保护法,必须定期抽样检查粮食的温、湿度,以确保储藏质量。这就迫切需要温湿度监控系统来控制仓库。 本课题即以上述问题为出发点,设计仓库温、湿度监控系统,该系统不仅能采集仓库内的温、湿度值,而且能够迅速做出相应的处理,并将数据及处理结果显示给用户,并储存数据以方便以后的对比研究。 仓库温、湿度控制技术的国内外研究状况 近年来,由于超大规模集成电路技术、网络通信技术和计算机技术的发展,是监控系统在工农业生产等领域得到广泛引用,因此,仓库温、湿度监控技术的研究在软、硬件等方面都得到了一定的发展。 硬件技术 早期仓库温湿度检测主要采用温度计量算法,它是将温度计放入特定的插杆中,根据经验插入仓库的多个测温点,工作人员定期拔出读数,决定采取相应的措施。这种方法由于温度计精度、人工读数的人为因素等原因,温度检测不仅速度慢而且精度低,抽样不彻底,局部粮食温度过高不易被及时发现,局部粮食发 霉变质引起大面积坏掉的情况时有发生

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

基于单片机的温湿度控制系统

目录 目录 ........................................................................................................................................................ I 第1章绪论 (1) 1.1课题研究的背景 (1) 1.2课题研究的意义 (1) 1.3课题研究的主要内容 (2) 1.4课题研究的工作原理 (2) 第2章系统总体方案设计.................................................................................. 错误!未定义书签。 2.1功能要求 .................................................................................................... 错误!未定义书签。 2.2设计思路 .................................................................................................... 错误!未定义书签。 2.3方案选择 .................................................................................................... 错误!未定义书签。 2.3.1 传感器选择方案................................................................................ 错误!未定义书签。 2.3.2 显示器选择方案................................................................................ 错误!未定义书签。 2.3.3 单片机主芯片选择方案.................................................................... 错误!未定义书签。 2.4总体设计框图.............................................................................................. 错误!未定义书签。第3章系统硬件设计.......................................................................................... 错误!未定义书签。 3.1概述 ............................................................................................................ 错误!未定义书签。 3.2主控模块设计 ............................................................................................ 错误!未定义书签。 3.2.1 STC89C52芯片的简介....................................................................... 错误!未定义书签。 3.2.2 主控模块电路原理图........................................................................ 错误!未定义书签。第4章系统软件设计.......................................................................................... 错误!未定义书签。 4.11602液晶显示模块设计 ........................................................................... 错误!未定义书签。 4.2传感器模块设计 ........................................................................................ 错误!未定义书签。第5章系统分析与调试...................................................................................... 错误!未定义书签。第6章结论与展望 ............................................................................................. 错误!未定义书签。致谢 ..................................................................................................................... 错误!未定义书签。附录 . (4) 附录C 程序清单 (4)

相对湿度与露点对照表

室内温度25℃时露点与相对湿度对照表相对湿度露点相对湿度露点0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -2 4.49 1 5.0% -3.02 2.2% -24.02 1 6.0% -2.25 2.3% -23.57 1 7.0% -1.15 2.4% -23.14 1 8.0% -0.83 2.5% -22.73 1 9.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

空气温度湿度对照表

空气绝对湿度与空气相对湿度这两个物理量之间并无函数关系。例如,温度越高,水蒸发得越快,于是空气里的水蒸汽也就相应地增多。所以在一天之中,往往是中午的绝对湿度比夜晚大。而在一年之中,又是夏季的绝对湿度比冬季大。但由于空气的饱和水汽压也随着温度的变化而变化,所以又可能是中午的相对湿度比夜晚的小。由于在某一温度时的饱和水汽压可以从“不同温度时的饱和水汽压”表中查出数据,因此只要知道当前气温,算出当前空气中的水汽压,即可求出空气相对湿度来。 前言:空气有吸收水分的特征,PCB主料和辅料有相当部分也是对湿度十分敏感的材料,它们遇到空气中的相对湿度比工艺条件高或低时会吸湿或缩水造成自身形体变化,如黑菲林、重氮片、半固化片等。造成制程中不稳定的质量缺陷。今天我们来谈谈空气一个状态的参数——相对湿度。 生产中的相对湿度是由工业除湿机组和超声波加湿器自动调节的,当生产过程相对湿度局部出现小偏差,我们可以通过局部加减湿度来满足生产需求。例如直接喷水、开启超声波雾化加湿器设备、煮开水来增加空气湿度、开启除湿机及抽湿机,升温可以降低空气湿度。 湿度的概念是空气中含有水蒸气的多少。它有三种表示方法: 第一是绝对湿度,它表示每立方米空气中所含的水蒸气的量,单位是克/立方米;

第二是含湿量,它表示每千克干空气所含有的水蒸气量,单位是克/千克·干空气; 第三是相对湿度,表示空气中的绝对湿度与同温度下的饱和绝对湿度的比值,得数是一个百分比。(也就是指在一定时间内,某处空气中所含水汽量与该气温下饱和水汽量的百分比。) 相对湿度用RH表示。相对湿度的定义是单位体积空气内实际所含的水气密度(用d1 表示)和同温度下饱和水气密度(用d2 表示)的百分比,即RH(%)= d1/ d2 x 100%;另一种计算方法是:实际的空气水气压强(用p1 表示)和同温度下饱和水气压强(用p2表示)的百分比,即RH(%)= p1/ p2 x 100%。 前两种湿度表示它的计算结果是一个量化,并未能满足空气可利用的工艺状态,而我们工艺生产条件更注重空气状态,所以相对湿度是我们最常用衡量空气湿度的一种指标。饱和空气:一定温度和压力下,一定数量的空气只能容纳一定限度的水蒸气。当一定数量的空气在该温度和压力下最大限度容纳水蒸气,这样的空气称饱和空气;未能最大限度容纳水蒸气,这样的空气称未饱和空气。假如空气已达到饱和状态,人为的把温度下降,这时的空气进入一个过饱和状态,水蒸气开始以结露的形式从空气中分离出来变成液态水,这就是我们抽湿机的工作原理。

基于单片机水温控制系统

基于单片机水温控制系统 摘要:随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。本设计以保质、节能、安全和方便为基准设计了一套电热壶水温控制系统,能实现在40℃~90℃X围内设定控制温度,且95℃时高温报警,十进制数码管显示温度,在PC机上显示温度曲线等功能,并具有较快响应与较小的超调。整个系统核心为SPCE061A,前向通道包括传感器及信号放大电路,按键输入电路;后向通道包括三部分:LED显示电路,上位机通信电路以及控制加热器的继电器驱动电路。利用SPCE061A的8路10位精度的A/D转换器,完成对水温的实时采样与模数转换,通过数字滤波消除系统干扰,并对温度值进行PID运算处理,以调节加热功率大小。同时在下位机上通过数码管显示当前温度,通过USB接口传送信息至上位机,可以直接在PC端观察温度的变化曲线,并根据需要进行相应的数据分析和处理,由此完成对水温的采样和控制。通过验证取得了较满意的结果。

关键词:码分多址、walsh扩频、pn扩频、电路设计、程序设计、仿真 目录 1 引言1 1.1水温控制系统概述1 1.2本设计任务和主要内容2 2 基于单片机水温控制系统设计过程2 2.1水温控制系统总体框图2 2.2总体方案论证3 2.3 各部分电路方案论证4 2.4键盘及数字显示结合5 2.5温度设定和传送电路6 3硬件电路设计与计算6 3.1 温度采样和转换电路6 3.2 温度控制电路8 3.3 单片机控制部分9 3.4键盘及数字显示部分9 参考文献9

水温控制在工业及日常生活中应用广泛,分类较多,不同水温控制系统的控制方法也不尽相同,其中以PID控制法最为常见。单片机控制部分采用AT89C51单片机为核心,采用软件编程,实现用PID算法来控制PWM波的产生,进而控制电炉的加热来实现温度控制。然而,单纯的PID算法无法适应不同的温度环境,在某个特定场合运行性能非常良好的温度控制器,到了新环境往往无法很好胜任,甚至使系统变得不稳定,需要重新改变PID 调节参数值以取得佳性能。 本文首先用PID算法来控制PWM波的产生,进而控制电炉的加热来实现温度控制。然后在模型参考自适应算法MRAC基础上,用单片机实现了自适应控制,弥补了传统PID控制结构在特定场合下性能下降的不足,设计了一套实用的温度测控系统,使它在不同时间常数下均可以达到技术指标。此外还有效减少了输出继电器的开关次数,适用于环境参数经常变化的小型水温控制系统。

基于单片机的温湿度控制系统

\ 基于单片机的温湿度控制系统 一、研究背景 温度、湿度和人类的生产、生活有着密切的关系,同时也是工业生产中最常见最基本的工艺参数,例如机械、电子、石油、化工等各类工业中广泛需要对温度湿度的检测与控制。并且随着人们生活水平的提高,人们对自己的生存环境越来越关注。而空气中温湿度的变化与人体的舒适度和情绪都有直接的影响,所以对温度湿度的检测及控制就非常有必要了。 随着科技的飞速发展和普及,高性能设备越来越多,各行各业对温湿度的要求也越来越高。传统的温湿度检测模式是以人为基础,依靠人工轮流值班,人工巡回查看等方式来测量和记录环境状况信息。在这种模式下,不仅效率低不利于人才资源的充分利用,而且缺乏科学性,许多重大事故都是由人为因素造成的,人工维护缺乏完整的管理系统。而问世监控系统就可以解决这样人才资源浪费,管理不及时的问题,这是由于它的智能化设计所决定的。故本次设计对于类似项目还具有普遍意义。 二、国内外研究现状 (1)温度传感器 智能温度传感器(亦称数字温度传感器)在20世纪90年代中期问世。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶。目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,温度计也越来越智能化。 (2)湿度传感器 湿度传感器产品及湿度测量属于90年代兴起的行业。湿度传感器主要分为电阻式和电容式两种,产品的基本形式都是在基片上涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附在感湿材料上后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。近年来,国内外在湿度传感器研发领域取得了较大的发展。湿敏传感器正从简单的湿敏元件向集成化、智能化、多参数检测的方向迅速发展。国内外各厂家的湿度传感器产品水平不一,质量价格都相差较大,用户如何选择性能价格比最优的理想产品确有一定难度,需要在这方面作深入的了解。现在国内市场上出现了不少国内外湿度传感器产品,电容式湿敏元件较为多见,感湿材料种类主要为高分子聚合物,氯化锂和金属氧化物。 三、研究方案 首先明了了设计思路以后,着手硬件电路设计。采用学校统一发放的STC89C52单片机学习板做为课题设计的主控模块。实现围绕着单片机的各个元器件正常工作并且实现所要的功能。温湿度传感器不在使用分开使用。而是采用DHT11数字温湿度一体传感器进型温湿度的测量。一方面在简化了设计流程的同时增加的系统的稳定性;另一方面为降低了设计的成本消耗。借鉴前人经验,传感器使用方法,用字符液晶显示可实现系统设计。主要内容有: ⑴学习强化单片机知识 ⑵掌握智能温湿度检测系统,提出硬件电路设计方案 ⑶画出原理图

AT89C51单片机温度控制系统

毕业设计(论文) 论文题目:AT89C51单片机温度控制系统 所属系部:电子工程系 指导老师:职称: 学生姓名:班级、学号: 专业:应用电子技术 2012 年05 月15 日

毕业设计(论文)任务书 题目:AT89C51单片机温度控制系统 任务与要求:设计并制作一个能够控制1KW电炉的温度控制系统,控制温度恒定在37--38度之间。 时间:年月日至年月日 所属系部:电子工程系 学生姓名:学号: 专业:应用电子技术 指导单位或教研室:测控技术教研室 指导教师:职称: 年月日

摘要 本设计是以一个1KW电炉为控制对象,以AT89C51为控制系统核心,通过单片机系统设计实现对保电炉温度的显示和控制功能。本温度控制系统是一个闭环反馈调节系统,由温度传感器DS18B20对保炉内温度进行检测,经过调理电路得到合适的电压信号。经A/D转换芯片得到相应的温度值,将所得的温度值与设定温度值相比较得到偏差。通过对偏差信号的处理获得控制信号,去调节加热器的通断,从而实现对保温箱温度的显示和控制。本文主要介绍了电炉温度控制系统的工作原理和设计方法,论文主要由三部分构成。①系统整体方案设计。②硬件设计,主要包括温度检测电路、A/D转换电路、显示电路、键盘设计和控制电路。③系统软件设计,软件的设计采用模块化设计,主要包括A/D转换模块、显示模块等。 关键词:单片机传感器温度控制

目录 绪论 (1) 第一章温度控制系统设计和思路 (2) 1.1温度控制系统设计思路 (2) 1.2 系统框图 (2) 第二章 AT89C51单片机 (3) 2.1 AT89C51单片机的简介 (3) 2.2 AT89C51单片机的主要特性 (3) 2.3 AT89C51单片机管脚说明 (4) 第三章温度控制的硬件设备 (6) 3.1温度传感器简介 (6) 3.2 DS18B20工作原理 (7) 3.3 DS18B20使用中注意事项 (8) 第四章系统硬件设计 (9) 4.1温度采集电路 (9) 4.2 数码管温度显示电路 (9) 4.2.1 数码管的分类 (9) 4.2.2 数码管的驱动方式 (10) 4.2.3 恒流驱动与非恒流驱动对数码管的影响 (11) 4.3 单片机接口电路 (12) 4.3.1 P0口的上拉电阻原理 (12) 4.3.2 上拉电阻的选择 (14) 4.4 单片机电源及下载线电路 (14) 4.5 温度控制电路 (15) 第五章温度控制的软件设计 (17) 5.1 数码管动态显示 (17) 5.2 DS18B20初始化 (17) 5.3 系统流程图 (19) 谢辞 (20) 参考文献 (21) 附录 (22)

基于单片机的温湿度控制

目录 1.绪论 (1) 1.1课题的选题背景 (1) 1.2 课题研究的目的和意义 (1) 1.3 本论文主要研究内容 (1) 1.4系统的工作原理简介 (2) 2 系统总体方案设计 (2) 2.1系统总框图 (2) 2.2方案选择 (2) 2.2.1单片机的选择方案选择 (3) 2.2.2 传感器的选择 (3) 2.2.3 显示器选择方案 (4) 3 系统硬件电路的设计 (5) 3.1系统硬件概述 (5) 3.2主控模块设计 (5) 3.2.1单片机的发展 (5) 3.2.2 STC89C52单片机引脚介绍 (6) 3.3DHT11传感器模块设计 (9) 3.3.1 DHT11传感器简介 (9) 3.3.2 DHT11传感器模块电路设计 (12) 3.4 液晶显示模块设计 (12) 3.4.1 液晶显示屏简介 (12) 3.4.2 液晶显示模块电路原理图 (14) 3.5 继电器模块 (14) 3.6 阀值设定模块 (15) 4 系统软件程序的设计 (16) 4.1 液晶显示模块设计 (17) 4.2 传感器模块设计 (18) 5系统分析与调试 (19) 6 结论与展望 (21) 致谢..................................................... . (21) 参考文献.................................... .错误!未定义书签。外文翻译..................................... 错误!未定义书签。附录 1电路图 ................................ 错误!未定义书签。附录 2程序 .................................. 错误!未定义书签。

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计 摘要:这次综合设计,主要是设计一个温度控制系统,用STC89C52单片机控制,用智能温度传感器DS18B20对温度进行采集,用LCD1602液晶显示屏将采集到的温度显示出来。系统可以有效的将温度控制在设定的范围内。如果实际温度超出了控制范围,则系统会有自动的提示信号,并且相应的继电器会动作。我们的实际生活离不开对温度的控制,在很多情况下我们都要对我们所处的环境进行温度检测,然后通过一定的措施进行调节,从而达到我们自己想要的温度,使我们的生活环境更加适宜。 关键字:单片机;液晶显示屏;温度传感器;继电器;提示信号 Abstract:This integrated design is the design of a temperature control system. A smart temperature sensor DS18B20 is used to collect temperature and a LCD1602 Liquid Screen is used to display the collected temperature. The system controlled by STC89C52 can effectively control the temperature within the setting limits. If the actual temperature exceeds the setting range, the system will automatically give signal, and the corresponding Relay will take related actions. It is necessary for us to control the temperature because in many situations the temperature around us is not proper for us. So we need to detect it and take some actions to adjust it to the temperature we want to make the environment around us better. Key Words:DS18B20;LCD1602;STC89C52;Relay;Signal 引言

相关文档
最新文档