如何把癌细胞变成正常细胞

如何把癌细胞变成正常细胞
如何把癌细胞变成正常细胞

如何把癌细胞变回正常的细胞?转发可救人无数!

2014-02-08 中学校长之家管斌全

癌症的主因:食物中毒+细胞缺氧+消极忧伤

就超级中毒而言,例如吃入含重金属食品,因为重金属太重,血液搬不动,就留在组织中,而细胞遇到入侵的外来物,就会扭曲地团团围住而形成肿瘤!

癌细胞就是扭扭曲曲皱皱缩缩的细胞,借由:

1.乐观:例如和志同道合的人登山,大家谈天说地嘻嘻哈哈。

2.补氧:登山会喘气且满身流汗,乃最佳的补氧及排毒运动,借由灌氧,皱缩的细胞癌可像气球打氧一样,膨胀回来,成为正常细胞。

3.偏素食:五谷杂粮加蔬菜可把你的体质变成碱性体质及排毒,即可将癌细胞变回成正常圆润的细胞!

癌症(Cancer)正如其拉丁字头“蟹”(Cancri)的意思所指,稍不注意,便不声不响、致人于死地横行。

每四个人就有一个人可能得癌,过去十年,三十至五十九岁的壮年得癌人数成长81%,但40%的癌症是可以预防的。

其实每人每天均会产生七八千个癌细胞,尤其在焦虑、愤怒及压力下,癌细胞大增,放在人体内某部位的潘朵拉盒中。若在愉快的心情下,以氧气灌满皱缩的癌细胞使之膨胀,多吃抗癌食物即可天天修护皱皱的癌细胞变回成正常圆润的细胞。

一、多吃抗癌食物

罹患3期肺癌的吴永志医师采用生机饮食(吃90%全生和10%煮熟的食物),他每天喝6大杯以蕃茄、胡萝卜、红色甜菜根为主打成的 500毫升蔬果汁,以大量蔬果类为主食,可以强化免疫系统,1天排便3次,改变饮食及生活作息才半年,肿瘤即消失无踪。吴永志说,以每分钟3万转以上的果汁机打汁即可将蔬果的纤维和种子里所含有植物生化素牵释出,可抗氧化、消除自由基。他每天早上喝两杯蔬果汁当早餐,午餐前一小时再喝一杯,中午则吃蕃茄、胡萝卜、苜蓿芽等作蔬菜沙拉。柠檬(破坏12种癌细胞:包括结肠癌、乳腺癌、前列腺癌、肺癌和胰腺癌…)

地瓜(排毒最佳)大蒜(治胃癌黄豆)(治宫颈癌)金针菇(治子宫颈癌)菜花(治胰腺癌)菠菜(治肺癌)茭白(治肠癌)

海带(治乳腺癌)芦笋(治皮肤癌)花椰菜(治膀胱癌)毛豆(治乳癌)蔓越莓(治乳癌)开心果(防肺癌)熟番茄(治前列腺癌)蘑菇(治肝癌,但含重金属伤肾,每月最多可以吃 200g )

甜菜根、胡萝卜、优格、苹果、绿藻、葡萄、香蕉、奇异果、凤梨、草莓、绿茶、十谷米(治直肠癌:糙米、黑糯米、小米、小麦、荞麦、芡实、燕麦、莲子、麦片和红薏仁)、白芝麻、亚麻子、老姜、枸杞、玉米、杏仁、黑芝麻、南瓜子。请大家多吃含有这些有效成份的食物,让身体内蠢蠢欲动的癌细胞多多睡觉。

1.咖哩(抗癌成份是..姜黄素)

2.辣椒(抗癌成份是..辣椒素)

3.姜(抗癌成份是..姜油)

4.绿茶(抗癌成份是..儿茶素)

5.大豆(抗癌成份是..异黄酮)

6.蕃茄(抗癌成份是..茄红素)

7.葡萄(抗癌成份是..白黎芦醇)

8.大蒜(抗癌成份是..硫化物)

10.花椰菜(抗癌成份是..硫化物)

二、有氧运动

李丰女士罹患过淋巴癌。同病的,或辗转病榻,或早死了;她却能够好好地活着。她的秘诀就是:她天天爬山(登山喘气是最佳的补氧运动)及读佛经-其意义在于不要烦恼。

要为肺部提供充分的氧气,唯一的方法就是在空气好的地方勤加运动喘气,例如爬山。

三、愉快的心情

人在高兴时,细胞很圆润,就像十八岁的年轻人;人在生气时,细胞就像八十岁的老头,皱皱缩缩的!

我的一位好友在精神上遭受重大打击后,就患了淋巴腺癌,在医院折磨了生命最后的11个月,非常不幸!

癌细胞就是扭扭曲曲皱皱缩缩的,五谷杂粮加蔬菜、运动(氧)加乐观,即可将癌细胞回成正常圆润的细胞)。

在英国伦敦的一对夫妻,两人同时去做年度体检,太太被告知得到乳癌,寿命只有一年,先生被告知得到前列腺癌,同时有三条心脏主动脉血管阻塞了,寿命也只剩下一年。

二人经过讨论后决定什么都不做,再也不要听到西医说什么病了,他们在一张白纸上写下在这一年中他们将完全的五十件事,于是他们卖掉仅有的住家,拿了钱去做环游世界的旅行。因为这是他们第一件想要做的事,于是高兴的起程,经过半年的各地旅游后又再回到伦敦后因为身体感觉很好,于是再回到同一位医师那去检查,结果医师惊讶的发现二人的癌症已经消失了,同时丈夫的动脉血管阻塞也好了,这个结果让医师都无法明了为什么会这样呢!

细胞周期调控

2001年诺贝尔生理学和医学奖

细胞周期调控 一、背景介绍 2001年诺贝尔生理学医学奖授予美国西雅图弗瑞德·哈钦森癌症研究中心的Leland H Hartwell、英国伦敦皇家癌症研究基金会的Sir Paul M. Nurse和R. Timothy Hunt,以表彰获奖者们在细胞周期调控方面的卓越发现和贡献。 Leland (1939年生)在上世纪60年代末便认识到用遗传学方法研究细胞周期的可能性。他采用啤酒酵母细胞建立系统模型,经过一系列试验,分离出细胞周期基因发生突变的酵母细胞。Hartwell和其他科学家相继发现了100多种与细胞周期调控相关的CDC基因族。其中,Hartwell发现的CDC28调控细胞周期G1期进程的第一步,故又称为“start”基因。另外,Hartwell在研究酵母细胞对辐射的敏感性基础上,提出了著名的“checkpoint”概念,即当DNA受损时,细胞周期会停止。这一现象的生理意义在于,在细胞进入下一个细胞周期之前能有足够的时间进行DNA修复。后来,Hartwell将“checkpoint”的概念扩展到调控并保障细胞周期各期之间的正确顺序。 Sir Paul (1949年生)继Hartwell之后在70年代中期采用非渊粟酒裂殖酵母细胞为模型,发现了cdc2基因在细胞分裂(从G2期到有丝分裂期)调控方面起重要作用。后来,他发现cdc2与Hartwell在啤酒酵母中发现的“start”基因相同,还可调控从G1期到S期的转变。因此,cdc2基因可调控细胞周期的不同阶段。 1987年,Nurse分离出人类的相应基因——CDK1。Nurse发现CDK的活性依赖可逆性的磷酸化反应。基于这些理论,又有一些人类的CDK分子相继被发现。R. Timothy Hunt(1943年生)在80年代早期发现了第一个周期蛋白分子。周期蛋白是一种在细胞周期中周期性产生和降解的蛋白质。周期蛋白与CDK分子结合,调节CDK的活性。Hunt首先发现,在海胆细胞中周期蛋白在细胞周期中会发生周期性的降解,这是调控细胞周期的重要机制。Hunt在其他物种中也发现了周期蛋白,这些周期蛋白在进化过程中高度保守。 3位诺贝尔奖获得者创建了细胞周期调控的分子机制。CDK分子的含量在细胞周期中是恒定的,但是它的活性却因周期蛋白的调控作用而不同。周期蛋白和CDK分子共同驱动细

癌细胞的十大特征

癌细胞的十大特征 2000年,Douglas Hanahan和Robert A. Weinberg在Cell上发表文章:The Hallmarks of Cancer,这篇综述性文章介绍了肿瘤细胞的六大基本特征:自给自足生长信号;抗生长信号的不敏感;抵抗细胞死亡;潜力无限的复制能力;持续的血管生成;组织浸润和转移。这篇论文被称为肿瘤学研究的经典论文,到目前为止,已经被引用了上万次。 在2011年3月出版的Cell杂志上,两位教授又发表了一篇升级版综述:Hallmarks of Cancer: The Next Generation,这篇论文长达29页,简述了最近10年肿瘤学中的热点和进展,在原有的六大特征的基础上,新增了四大特征,包括避免免疫摧毁、促进肿瘤的炎症、细胞能量异常和基因组不稳定和突变。

将原有的肿瘤细胞六大特征扩增到了十个,这十个特征分别是: 1.自给自足生长信号(Self-Sufficiency in Growth Signals), 2.抗生长信号的不敏感(Insensitivity to Antigrowth Signals), 3.抵抗细胞死亡(Resisting Cell Death), 4.潜力无限的复制能力(Limitless Replicative Potential), 5.持续的血管生成(Sustained Angiogenesis), 6.组织浸润和转移(Tissue Invasion and Metastasis), 7.避免免疫摧毁(Avoiding Immune Destruction), 8.促进肿瘤的炎症(Tumor Promotion Inflammation),

细胞周期调控蛋白在肿瘤放射治疗中的研究进展

周期调控蛋白在肿瘤放射治疗中的研究进展 摘要:细胞周期调控蛋白的异常表达是导致细胞周期调控机制受到破坏的原因 之一,与恶性肿瘤的发生密切相关。现认为,癌症等恶性肿瘤可能是一类细胞周期性疾病。细胞周期蛋白在肿瘤的发生发展中所扮演的角色日益成为人们关注的焦点, 很多相关蛋白和基因经射线照射后会导致细胞周期发生改变。细胞对电离辐射的敏感性,最重要的是DNA修复和电离辐射引发的信号转导机制,导致基因表达、细胞周期进程和细胞凋亡进程的改变。电离辐射能够激活DNA修复,阻止细胞周期进程过大引起细胞凋亡,而这些事件和效应的改变多与辐射敏感蛋白有关。可见,作为信号级联反应节点上的多种辐射敏感蛋白质的表达情况,对电离辐射抑制肿瘤细胞增殖和肿瘤发生发展,具有至关重要的作用。肿瘤对射线的反应称为肿瘤的放射敏感性,是肿瘤放射治疗的核心问题。同一类肿瘤,分化程度越低,增殖能力越强,即肿瘤细胞生长越快对放疗越敏感。处于G2期和M期的细胞对放疗最敏感,Gl期次之,S期不敏感,G0期对放射抗拒。因此,将肿瘤细胞同步化并使其处于一个对放射线敏感的细胞周期可能是一种提高肿瘤放射治疗效果的重要途径。 关键词:细胞周期调控蛋白;肿瘤细胞;辐射 1 引言 近年来,随着肿瘤综合治疗的理论和技术的发展,放疗和手术﹑化疗﹑生物治疗并列为肿瘤治疗的四大手段,70%以上的肿瘤病人在病情的不同阶段需要放射治疗。细胞周期的监控和驱动机制的紊乱是肿瘤细胞失控性生长的根本性原因,放射线对生物体的作用有直接作用和间接作用,肿瘤细胞及其他细胞﹑组织﹑器官等在经过一定剂量的放射线照射后会引起一系列的变化,来达到治疗的效果。尤其是作用于细胞周期效果更为显著,细胞周期是一系列的蛋白及相关酶的调控时期,因此照射后,对周期调控蛋白﹑基因及相关蛋白酶会有一定的影响。细胞周期的紊乱将导致肿瘤性增生。Cyclin是细胞周期活动及真核细胞关卡控制的中心因子之一,其异常原因包括基因突变﹑表达异常﹑自身结构异常稳定性改变以及表达时相紊乱等。Cyclin异常引起细胞周期失控,细胞无限增值,凋亡停止,最终导致细胞恶性转化和肿瘤形成。细胞周期监测点的功能缺陷为肿瘤细胞提供了生长优势,然而,有研究发现,许多抗癌药物或辐射会破坏G2期的检查点,从而导致肿瘤细胞死亡。本文对一些相关调控蛋白在不同肿瘤细胞中经临床辐射照射后的生物学特性变化作了简介,可作为相关实验的参考。 2 肿瘤细胞周期调控蛋白的特点 2.1 周期调控蛋白的生物学特性

细胞周期调控的研究进展(精)

细胞周期调控的研究进展 高燕,林莉萍,丁健 * (中国科学院上海生命科学研究院药物研究所,国家新药研究重点实验室, 中国科学院研究生院,上海 201203 摘要 :细胞周期是一种非常复杂和精细的调节过程,有大量调节蛋白参与其中。此过程的核心是细 胞周期依赖性蛋白激酶 (CDKs。 CDKs 的激活又依赖于另一类呈细胞周期特异性或时相性表达的细胞周期蛋白 (cyclins,而 CDKs 调节的关键步骤是细胞周期检查点。 PLKs 是多种细胞周期检查点的主要调节因子, Aurora 蛋白激酶主要在细胞有丝分裂期起作用。本文就上述因素在细胞周期进程中的作用作一综述。 关键词 :细胞周期;调控;细胞周期检查点中图分类号:Q253文献标识码:A A review: cell cycle regulation GAO Yan, LIN Li-Ping, DING Jian* (State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institues for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, China

Abstract: The cell cycle is a complex and elaborate process involving numerous regulatory proteins as directors.Central to this process are the cyclin-dependent kinases (CDKs, which are activated in a cyclin-dependentmanner at special points of the cell cycle. Cyclin protein levels rise and fall during the cell cycle and in the waythey periodically activate CDKs. Furthermore, the cell cycle checkpoint is also discussed as a key process inthe regulation of CDKs. PLKs are important mediators for various cell cycle checkpoints, while Aurora kinaseshave emerged as essential regulators of cell division. Here, we reviewed the effects of above factors on cellcycle regulation. Key words: cell cycle; regulation; cell cycle checkpoint 收稿日期 :2005-01-22; 修回日期 :2005-03-09 作者简介 :高燕 (1974— ,女,博士研究生;林莉萍 (1962— ,女,博士,副研究员;丁健 (1953— ,男, 研究员,博士生导师, *通讯作者。 文章编号 :1004-0374(200504-0318-05 1概述 细胞周期是指一次有丝分裂结束到下一次有丝分裂的结束 , 细胞由一个分裂为两个子细胞。细胞的分裂由两个连续的过程组成, 即 DNA 复制及染色体的分离。一个细胞周期包括准备阶段的间期和有丝分裂期 (图 1 。间期包括 G 1、 S 和 G 2期。 G 1期时,细胞为遗传物质 DNA 的合成作准备,而 DNA 的合成是在 S 期完成。 G 2期主要完成蛋白质的合成,为细胞进入有丝分裂期作准备。有丝分裂期 (M期又分为前期、中期、后期和末期,以完成染色体的凝集,中心粒移至细胞核对立的两极,核仁解体,核膜消失 (前期 ; 纺锤体形成和染色体排列于其间 (中期 ; 姐妹染色单体分开并移向两极 (后期 ; 子核形成和胞质分裂 (末期。另外, G 1期的 319

肿瘤细胞的十大特征

癌细胞的十大特征 癌细胞十大特征释义 众所周知,癌细胞几乎肆虐横行在人体的每一个部位,从大脑到各个器官,从表皮到骨骼,我们曾经在进化中得到的、在生物界引以为豪的人体,在癌细胞肆虐下往往显得那么脆弱,有时似乎变得不堪一击。 癌细胞并非入侵的外族,它们与组成人体各个器官的正常细胞同文同种,但不同的是癌细 胞基因结构和功能的变化赋予了它们十种特殊“器物”,从而使得它们能够在人体内纵横 捭阖,所向披靡。 1.自给自足生长信号(Self-Sufficiency in Growth Signals), 2.抗生长信号的不敏感(Insensitivity to Antigrowth Signals), 3.抵抗细胞死亡(Resisting Cell Death), 4.潜力无限的复制能力(Limitless Replicative Potential), 5.持续的血管生成(Sustained Angiogenesis), 6.组织浸润和转移(Tissue Invasion and Metastasis), 7.避免免疫摧毁(Avoiding Immune Destruction), 8.促进肿瘤的炎症(Tumor Promotion Inflammation), 9.细胞能量异常(Deregulating Cellular Energetics), 10.基因组不稳定和突变(Genome Instability and Mutation) 其一:生长信号的自给自足 在人体这个迄今为止最为复杂的系统中,倘若一个细胞想要改变其现有状态(如从静止到 生长分化状态的改变),必须接收到一系列相关指令,这一过程才能进行,就像军队中的 令行禁止一样。就这样,数以万亿计的细胞各司其职,在和谐统一的秩序中维系着人体的 健康。到目前为止,科学家在正常细胞中还没有发现一例例外。 这些改变细胞状态的指令,生物学上称之为信号分子,它们多是外源的,即由另一类细胞 产生,这也是人体保持自我平衡的重要机制。信号分子通过与靶细胞上相应指令接收器 (受体)相结合,细胞状态改变这一过程得以实施。 在这方面,癌细胞是截然不同的,它们通过种种“奇巧淫技”把自己对外源生长信号的依 赖降到了最低限度。首先癌细胞们获得自己发号施令的能力,也就是说它们可以自行其是 的合成生长分化所需的生长信号,无需依赖外源性信号。比如科学家们发现在神经胶母细 胞瘤和恶性肉瘤中的癌细胞就分别获得了合成PDGF(血小板源生长因子)和TGFα(肿瘤 生长因子α)的能力。其次癌细胞还会大量表达其表面的信号接收器,这样就可以富集周 围微环境中的生长信号从而进入生长分化状态(注:正常情况下,未经富集浓度的生长信 号不足以触发生长分化)。此外癌细胞还会改造它周围的一些正常细胞成为生长信号的生 产工厂供其使用,并招募一些帮凶细胞,如成纤维细胞和内皮细胞来帮助它们生长分化。 其二:对抑制生长信号不敏感 平衡似乎是人体系统中最重要的关键词。人体内除了有生长信号外,还存在着生长抑制信号。在细胞分裂的不同阶段,都有一些分子如同看家护院的“爱犬”一般时刻检测这些细 胞的“身体状况”和周边环境,根据情况来决定细胞的未来的命运:或是继续生长分化, 或是仍然处于静止期,抑或丧失生长分化能力进入有丝分裂的后期。这样正常细胞才能保 持动态平衡的状态,进行有序的生长分化。对于癌细胞来说,如果想要扩大自己的地盘, 不断地生长分化,必须逃避这些“爱犬”分子的监控。他们主要策略就是通过基因突变使 得这些“爱犬”分子失去活性,从而实现对抑制生长信号不敏感的目的。 其三:规避细胞凋亡 逃避细胞凋亡几乎是所有类型的癌细胞都具有的能力。负责细胞凋亡的信号分子大体上可 以分为两类:一类如同上文所述的“爱犬”分子,如一种名叫p53的蛋白就是其中最重要 的成员之一;另一类则负责执行细胞凋亡。前者监控细胞内外环境,一旦发现不正常情况 足以触发细胞凋亡,即指挥后者执行。目前科学研究证实,DNA损伤,信号分子的失衡以 及机体缺氧都有可能触发细胞凋亡。

【细胞分子生物学】第六章 细胞周期及其调节

第六章细胞周期及其调节 细胞增殖(cell proliferation)与细胞生长分裂周期. 第一节细胞周期 一、细胞周期(cell cycle):指亲代细胞分裂结束到子代细胞分裂结束所经历的过程,这个过程所需的时间称为细胞周期时间。 细胞周期由G1、S、G2和M期组成(G1、S和G2期又合称为分裂间期)。 G1(Gap1)期:DNA合成前期(复制前期),从上次有丝分裂完成到DNA复制之前的阶段; S期:DNA复制期; G2期:合成后期,从DNA复制完成至有丝分裂开始; M期:有丝分裂(Mitosis)期,包括核分裂和胞质分裂. M期结束后形成两个新的子细胞。 注:①不同细胞的细胞周期时间不同,一般S+G2+M期较恒定,而G1期变化较大,因而它决定了细胞周期时间的长短; ②G1期细胞有三种可能的趋向:1)进入S期(即进入细胞周期).2)处于静止期即Co期(在一定条件下可重新进入增殖周期),3)分化、衰老、凋亡。 二、细胞周期中各时相的主要生化事件 细胞周期中每期都有其特殊功能,其中S期的DNA复制和M期细胞核的有丝分裂是细胞周期中2个最关键的过程: 1、G1期:为DNA复制作准备,G1早期合成各种RNA、结构蛋白和酶等,细胞通过一 1

个限制点(restriction point,R点)后在G1后期合成DNA复制有关的蛋白和酶。 在开始合成DNA之前有一个关卡(checkpoint),检查染色体DNA是否有损伤,如有则先要进行修复。 2、S期:DNA(包栝端粒)的复制及组蛋白合成、核小体装配.S期后每一染色体复制成2个染色单体· S→G2期关卡:检查DNA复制是否完成 3、G2期:为有丝分裂作准备.有RNA和非组蛋白合成。 4、M期:染色体浓缩一仿锤体形成→染色体分离并移向细胞两端→染色体解聚,形成两个新核→胞质分裂。 第二节周期素依赖性蛋白激晦与细胞周期调节 周期素依赖性蛋白激酶(cyclin-dependent kinases,CDKs) 通过使特异底物磷酸化调节细胞周期进行,其活性依赖与周期素(cyclin)结合形成复合物。 一、周期素-周期素依赖性蛋白激酶 周期素家族和周期素依赖蛋白激酶(CDK)家族. 细胞周期的不同时相表达不同cyc-CDK,这些cyc-CDK复合物在各不同的细胞周期过渡点起作用. 1、G1期cyc-CDK G1期表达的周期素为周期素C、D(D1、D2、D3)和E。 D族周期素主要与CDK4(以及CDK2、CDK5、CDK6)结合成活性的蛋白激酶复合物,对细胞通过R点(G0→G1过渡有重要作用。 E族周期素与CDK2形成复合物。 cycE-CDK2复合物调控G1→S过渡。 2

第14章细胞周期的调控与癌细胞

第十四章2012 细胞周期的调控与癌细胞 第一节细胞增殖的调控 一、MPF的发现及其作用(P421,299) MPF(maturation-promoting factor) ——促成熟因子 细胞促分裂因子(mitosis-promoting factor) M期促进因子(M phase-promoting factor) 染色体超前凝集现象(premature chromosome condensation,PCC)——M期细胞与间期细胞的融合实验,导致染色体不同程度的凝集。 G1期细胞与M期细胞融合 G1期PCC呈细单线状 S期细胞与M期细胞融合 S期PCC呈粉末状 G2期细胞与M期细胞融合 G2期PCC呈双线染色体状 (P424) 1988年,从非洲爪蟾中实验分离MPF,并证明主要成分为p32和p45两种蛋白,二者相互结合后,表现出蛋白激酶活性,可以使多种蛋白质底物磷酸化。 二、p34cdc2激酶的发现及其与MPF的关系(P424,301) 1、cdc基因(cell division cycle)的发现: L.Hartwell,P. Nurse;酵母温度敏感突变株 2、cdc基因的表达产物 p34cdc2 ,本身不具有蛋白激酶活性,当与p56cdc13结合后,可以使得多种蛋白底物磷酸化,又称p34cdc2激酶; 3、p34cdc2与MPF的关系(P424) 免疫实验和序列分析证明: p34cdc2与p32为同源蛋白 4、细胞周期蛋白(cyclin)与MPF(P425) 1983年,Tim Hunt在海胆中发现两种细胞周期蛋白(cyclin A,B),广泛分布于各种真核生物中,含量随细胞周期而变化,间期积累,分裂期消失。 序列分析表明,周期蛋白B与p45是同源物。

癌细胞的特点

特点介绍 (一)癌细胞的一般特点 ·单个癌细胞的形态特点 主要表现在细胞核上,可归纳为五大特征: 1、核大:癌细胞核可比正常大1-5倍。 2、核大小不等:由于各个癌细胞核增大程度不一致,同一视野的癌细胞核,大小相差悬殊。 3、核畸形核膜增厚:癌细胞核可出现明显的畸形,表现为细胞核形态不规则,呈结节状、分叶状等,核膜出现凹陷、皱褶,使核膜呈锯齿状。 4、核深染:由于癌细胞核染色质增多,颗粒变粗,核深染,有的可呈墨水滴样,同时因核内染色质分布不均,核的染色深浅不一。 5、核质比例失常:癌细胞核增大明显,超过细胞体积的增大,故核质比例失常。并且癌细胞分化愈差,核质比例失常愈明显。 此外,细胞核染色质边移,出现巨大核仁,异常核分裂,以及细胞体积增大,且大小不等,并出现梭形、蝌蚪形、星形等异常形态,亦可作为癌细胞的辅助诊断依据。 ·成堆癌细胞的排列特点

成片鳞癌细胞,仍可带有一定程度的鳞状上皮的排列特点,如平铺的鹅卵石样,但极性消失,排列不规则;腺癌可出现不规则的腺腔样排列;未分化癌则表现为束状(单行)排列及镶嵌样(成片)排列等特征,这些可作为诊断癌细胞和进行癌细胞分类的依据。 (二)涂片的“阳性背景” 由于肿瘤组织,特别是浸润癌和分化差的癌,易发生出血坏死。因此,涂片中常常可见成片的红细胞和坏死细胞碎片,这种背景往往提示涂片可能为阳性,所以称阳性背景。早期癌涂片背景多数干净,不易见到坏死细胞碎片。出血坏死并非肿瘤所独有,在某些严重的炎症病变中也可出现,所以在没找到癌细胞之前,决不能单凭阳性背景的有无,而诊断癌或排除癌。 (三)各种癌细胞的形态特点 癌细胞大致可分为三大类:鳞癌、腺癌、未分化癌。 ·鳞癌 一般起源于鳞状上皮,也可起源于已经发生鳞化的柱状上皮。根据涂片中大多数癌细胞的分化程度,可把鳞癌分为分化好和分化差两大类。 高分化(角化型)鳞癌以类似表层细胞的癌细胞为主,并可见少量中层癌细胞,这些癌细胞分化比较成熟,表现多形性,如纤维形、

让癌细胞变回正常细胞

让癌细胞变回正常细胞,转发即可救人无数! 发生在英国伦敦的一对夫妻,两人同时去做年度体检,太太被告知得到乳癌,寿命只有一年,先生被告知得到前列腺癌,同时有三条心脏主动脉血管阻塞了,寿命也只剩下一年。

二人经过讨论后决定什么都不做,再也不要听到西医说什么病了,他们在一张白纸上写下在这一年中他们将完成的五十件事,于是他们卖掉仅有的房子,拿着钱去环游世界。 因为这是他们第一件想要做的事,于是高兴的起程,经过半年的各地旅游后再次回到伦敦。因为身体感觉很好,于是再回到同一位医师那去检查,结果医师惊讶的发现二人的癌症已经消失了,同时丈夫的动脉血管阻塞也好了,这个结果让医师都无法明了为什么会这样? 【癌症的主因】:超级中毒+组织缺氧+忧伤 就超级中毒而言,例如吃入含重金属食品,因为重金属太重,血液搬不动,就留在组织中,而细胞遇到入侵的外来物,就会扭曲地团团围住而形成肿瘤癌症! 癌细胞就是扭扭曲曲皱皱缩缩的细胞,借由: 1.乐观:例如和志同道合登山队登山大家谈天说地嘻嘻哈哈。 2.补氧:登山会喘气且满身流汗乃最佳的补氧及排毒运动,借由灌氧,皱缩的细胞癌可像气球打氧一样,膨胀回来,成为正常细胞。

3.偏素食:五谷杂粮加蔬菜可改成碱性体质及排毒。即可将癌细胞变回成正常圆润的细胞! 癌症(Cancer)正如其拉丁字头「蟹」(Cancri)的意思所指,稍不注意,便不声不响、致人于死地横行。 一生中每四个人就有一个人可能得癌,过去十年,三十至五十九岁的壮年得癌人数成长81%,但40%的癌症是可以预防的。 然而在第三期的癌症之后,如从前法务部长陈定南、舞蹈家罗曼菲、王文洋的妻子陈静文、电影导演杨德昌、到鸿海准董事长郭台成,一颗颗舞台上的明星,在正要大放光芒时,因癌倒下。 其实每人每天均会产生七八千个癌细胞,尤其在焦虑、愤怒及压力下,癌细胞大增,放在人体内某部位的潘朵拉盒中。若在愉快的心情下,以氧气灌满皱缩的癌细胞使之膨胀,多吃抗癌食物即可天天修护皱皱的癌细胞变回成正常圆润的细胞,在第三期的癌症之前,均能康复。 【A.抗癌食物】: 柠檬(破坏12种癌细胞:包括结肠癌、乳腺癌、前列 腺癌、肺癌和胰腺癌…);地瓜(排毒最佳);大蒜(治胃 癌);黄豆(治子宫颈癌);金针菰(治子宫颈癌);菜花(治 胰腺癌);菠菜(治肺癌);茭白(治肠癌);海带(治乳腺

细胞周期调控与肿瘤发生

细胞周期调控与肿瘤发生 细胞周期(cell cycle)是细胞生命活动的基本过程,指从细胞分裂结束开始,到下一次细胞分裂结束为止的过程,DNA合成和细胞分裂是细胞周期的两个主要事件。在进化过程中,细胞发展并建立了一系列的调控机制,以确保细胞周期严格有序地交替和各时期依次有序变更。细胞的调控机制主要以蛋白质的相互作用为基础,以信号传递引起一系列级联反应为主要过程,以对整个过程的监督和控制为主要表现形式。 人们对细胞周期的调控是从MPF的发现开始的。最初,人们对MPF有以下两种解释: 1、细胞分裂期(M期)细胞中的一种能够使染色体凝集的因子,称为细胞促分裂因子(mitosis-promoting factor,MPF)或M期促进因子(M-phase-promoting factor,MPF)。 2、成熟的卵细胞中的一种可以诱导卵母细胞成熟的物质,称为卵细胞促成熟因子(matuation-promoting factor,MPF)。 但是,随着对MPF的深入研究,科学家又给出了新的解释:MPF是一种能够促进细胞有丝分裂或G2/M转换的周期蛋白激酶,含有两个亚单位,一个是催化亚单位,一个是调节亚单位。催化亚单位的激酶活性要通过与调节亚单位的结合才能体现出来。MPF的调节亚单位就是细胞周期蛋白(cyclin)。 cyclin是一类随细胞周期变化周而复始出现和消失的蛋白质。目前,人们已相继克隆和分离数十种cyclin,这些不同的cyclin在细胞周期中表达的时期不同,执行的功能各异。但各种周期蛋白之间有共同的结构特点,即均含有一段约100个氨基酸残基的保守序列,称为周期蛋白框(cyclin box)。周期蛋白框介导cyclin 与CDK(周期蛋白依赖性蛋白激酶)的结合,不同的周期蛋白框识别不同的CDK,组成不同的周期蛋白-CDK复合体,表现不同的CDK激酶活性。M期cyclin白分子的近N端含有一段9个氨基酸组成的特殊序列,称为破坏框(destruction box),参与泛素介导的周期蛋白A和B的降解。G1期cyclin分子的C端含有一段特殊的序列,可能与G1期cyclin的更新有关。 而周期蛋白依赖性蛋白激酶(cyclin-dependent kinase,CDK),是蛋白质激酶家族中的一员,有三个重要的功能域,其中第二功能域结合cyclin,和cyclin 协同作用,是细胞周期调控中的重要因子。CDK可以和cyclin结合形成异二聚体,其中CDK为催化亚基,cyclin为调节亚基,不同的cyclin-CDK复合物,通过CDK活性调节不同底物磷酸化,从而实现对细胞周期的调控。 在细胞周期中,CDK激酶的活性受到多种因素的综合调节。cyclin与CDK 的结合是CDK激酶活性的必要条件和先决条件,但并不是充分条件。如果仅仅是cyclin和CDK的结合,并不能激活CDK激酶的活性,因为激酶活性的体现还需要激酶本身的修饰(如磷酸化和去磷酸化)及一些细胞周期蛋白依赖性激酶抑制因子(CDK inhibition,CDKI,可以通过抑制CDK激酶的活性,对细胞周期起负调控作用)的去除等。 细胞周期是一个高度有序的运转过程。如前所述,它的正确运转是在适宜的环境中通过对cyclin-CDK复合物的活性进行精确调控来实现的。cyclin、CDK 的异常表达、CDK抑制因子的缺失等都将使细胞周期发生紊乱,细胞的增殖失控,最终发生癌变。 肿瘤是一类以细胞生长和增殖失控为主要特征的疾病,细胞在增殖、分化和

如何把癌细胞变成正常细胞

如何把癌细胞变回正常的细胞?转发可救人无数! 2014-02-08 中学校长之家管斌全 癌症的主因:食物中毒+细胞缺氧+消极忧伤 就超级中毒而言,例如吃入含重金属食品,因为重金属太重,血液搬不动,就留在组织中,而细胞遇到入侵的外来物,就会扭曲地团团围住而形成肿瘤! 癌细胞就是扭扭曲曲皱皱缩缩的细胞,借由: 1.乐观:例如和志同道合的人登山,大家谈天说地嘻嘻哈哈。 2.补氧:登山会喘气且满身流汗,乃最佳的补氧及排毒运动,借由灌氧,皱缩的细胞癌可像气球打氧一样,膨胀回来,成为正常细胞。 3.偏素食:五谷杂粮加蔬菜可把你的体质变成碱性体质及排毒,即可将癌细胞变回成正常圆润的细胞! 癌症(Cancer)正如其拉丁字头“蟹”(Cancri)的意思所指,稍不注意,便不声不响、致人于死地横行。

每四个人就有一个人可能得癌,过去十年,三十至五十九岁的壮年得癌人数成长81%,但40%的癌症是可以预防的。 其实每人每天均会产生七八千个癌细胞,尤其在焦虑、愤怒及压力下,癌细胞大增,放在人体内某部位的潘朵拉盒中。若在愉快的心情下,以氧气灌满皱缩的癌细胞使之膨胀,多吃抗癌食物即可天天修护皱皱的癌细胞变回成正常圆润的细胞。 一、多吃抗癌食物 罹患3期肺癌的吴永志医师采用生机饮食(吃90%全生和10%煮熟的食物),他每天喝6大杯以蕃茄、胡萝卜、红色甜菜根为主打成的 500毫升蔬果汁,以大量蔬果类为主食,可以强化免疫系统,1天排便3次,改变饮食及生活作息才半年,肿瘤即消失无踪。吴永志说,以每分钟3万转以上的果汁机打汁即可将蔬果的纤维和种子里所含有植物生化素牵释出,可抗氧化、消除自由基。他每天早上喝两杯蔬果汁当早餐,午餐前一小时再喝一杯,中午则吃蕃茄、胡萝卜、苜蓿芽等作蔬菜沙拉。柠檬(破坏12种癌细胞:包括结肠癌、乳腺癌、前列腺癌、肺癌和胰腺癌…) 地瓜(排毒最佳)大蒜(治胃癌黄豆)(治宫颈癌)金针菇(治子宫颈癌)菜花(治胰腺癌)菠菜(治肺癌)茭白(治肠癌)

浅谈细胞周期调控

浅谈细胞周期调控 朱春森 摘要:近年来有关细胞周期调控机制研究进展较快,细胞周期调控可分为G1期调控和非G1期调控。在G1期调控中,细胞周期蛋白依赖性激酶复合体CDK激活后,通过Rb蛋白和转录因子启动基因转录。P16、p21、p15等蛋白通过抑制CDK的活性而发挥作用。P53蛋白和mdm2蛋白协同调节细胞周期活动。细胞周期的停滞或细胞凋亡对维护基因组稳定有重要意义。 关键词:细胞周期调控 Cyclin CDK CDI 调控机制 细胞周期调控是指各种调控因子通过自身的激活和灭活,使细胞启动和完成细胞周期重要事件,并保障这些事件按次序正常进行。细胞周期调控对维护基因组的稳定有着重要的意义。 1. 细胞周期调控的分子基础 细胞周期调控的分子基础包括细胞周期蛋白(Cyclin)、细胞周期蛋白依赖蛋白激酶(CDK)和细胞周期蛋白依赖蛋白激酶抑制物(CDI)。它们分别包括CyclinA、CDK17和p21、p27、p18等,p53和视网膜母细胞瘤蛋白(pRb)也参与细胞周期调控。 1.1 Cyclin 周期蛋白不仅仅起激活CDK的作用,还决定了CDK何时、何处、将何种底物磷酸化,从而推动细胞周期的前进。目前从芽殖酵母、裂殖酵母和各类动物中分离出的周期蛋白有30余种,在 脊椎动物中为A 1-2、B 1-3 、C、 D 1-3 、E 1-2 、F、G、H等。分为G 1 型、G 1 /S型S型和M型4类(见表 1)。各类周期蛋白均含有一段约100个氨基酸的保守序列,称为周期蛋白框,介导周期蛋白与CDK结合。 表1不同类型的周期蛋白 *包括D1-3,各亚型cyclin D,在不同细胞中的表达量不同,但具有相同的功效 1.2 CDK CDC2与细胞周期蛋白结合才具有激酶的活性,称为细胞周期蛋白依赖性激酶(CDK),因此CDC2又被称为CDK1,激活的CDK1可将靶蛋白磷酸化而产生相应的生理效应。这些效应的最终结果是细胞周期的不断运行。因此,CDK激酶和其调节因子又被称作细胞周期引擎。目前发现的CDK 在动物中有7种。各种CDK分子均含有一段相似的激酶结构域,这一区域有一段保守序列,即PSTAIRE,与周期蛋白的结合有关。 1.3 CDKI CDKI家族即细胞周期蛋白依赖激酶抑制剂家族,目前发现的CDKIS按其结构和功能不同分为两类:一类为INK4(Inhibito:of CDK4)家族,包括pl6、pls、p18、p19四名成员,其蛋白结

癌细胞的来源及名称与危害

癌细胞的来源及名称与危害 一、苯并芘是一种强烈的化学致癌物。广泛存在于人类的外环境中,如空气、水、土壤、食品、烟草等处。它是食管癌的形成之一。 二、串珠镰刀菌是从霉变的玉米中分离出来的,它是形成食管癌的主要原因,这是我国医学专家在小鼠喂养中得到的证实。 三、黄曲霉菌致肝癌是通过释放黄曲霉毒素,其毒素在人体代谢过程中被活化,而后与细胞内大分子特别是脱氧核糖核酸DNA结合而致癌。它主污染的对象有玉米、大米、花生、麦子、豆类,及其制品,主要是从破裂处入手。 四、亚硝胺来源到盐渍肉中,如存放长时间的咸鱼、香肠、膜肉,这样的肉使其霉菌还源硝酸盐,为亚硝酸盐能促进亚硝胺的合成,使蛋白质分解为氨基酸,二级胺等为合成亚硝胺提供了必要的原料,所以应吃鲜肉,少吃盐肉,不吃存放时间太长,甚至长了毛虫的腊肉。另外:高浓度的食盐容易降低胃粘膜中多糖的粘滞性,损伤胃粘膜屏障,而有利于致癌物的渗入,引起胃癌的发生。 五、砷是一种致癌物,它主要来源于一些农药中,如:六六六、敌敌畏等含砷成份的农药。 六、丙醛是一种强烈的致癌物质,它来源于牛肉中,特别是病牛肉成年老年肉、小嫩牛肉,小嫩羊肉要少得多,所以希望人们要吃少,吃新鲜的牛羊肉,少吃甚至不吃存放太久

的牛羊肉是因为存放的时间越久,丙醛含量越大。

七、苯并芘二甲基苯蒽,3甲基萘胺等这些致癌化合物中的致癌作用,比较强含量比较多的苯并芘主要来源于各种烟内。是形成人体肺癌的原因之一。 抗癌物质的名称种类及来源 一、脂肪酸来源于红薯中它的抗癌作用是由一些在回肠中不易被消化的淀粉所产生的。这些抗消化性淀粉在进入结肠后某些细菌开始迅速繁殖产生发酵作用产生短链脂肪酸,尢其是丁酸盐有两种方式抑制结肠癌发生:一是细菌在吞噬淀粉时大量产生繁殖因而增加了粪便,使潜在致癌物由粪便排出减少肠道停留时间。二是细菌在发酵过程中产生的丁酸盐直接抑制结肠上皮潜在的恶性肿瘤细胞的繁殖,从而达到防结肠癌的作用。 二、维生素C来源于辣椒、鲜红薯、青菜中主要功能是直接杀灭癌细胞。其一维生素C可以阻断体内亚硝胺的合成;其二,可以阻断外来致癌物的活化在肝内的活化作用,可以解除外来致癌物的毒性,可以提高机体免疫功能,其中最重要的是增加淋巴细胞的数量与活力。从而对抗或消灭癌细胞。维生素C是一种氧化剂由此发挥着抗癌作用。维生素C 有抗癌的辐射作用。维生素C能增强细胞间质从而包围癌细胞在瘢痕组织内无所作为。维生素C的氧化物可能具有重要的抗癌作用,维生素通过促进干扰素的合成对抗癌细胞及致病毒。注:绿茶中的维生素特高。

癌细胞如何变回正常的细胞.-细胞分化

癌细胞如何变回正常的细胞.|细胞分化 癌细胞如何变回正常的细胞. 癌症的主因~超级中毒+组织缺氧+忧伤就超级中毒而言,例如吃入含重金属食品,因为重金属太重,血液搬不动,就留在组织中,而细胞遇到入侵的外来物(重金属),就会扭曲地团团围住而形成肿瘤(癌症)! 癌细胞就是扭扭曲曲皱皱缩缩的细胞,藉由 1.乐观:例如和志同道合登山队登山大家谈天说地嘻嘻哈哈。 2.补氧:登山会喘气且满身流汗乃最佳的补氧及排毒运动,藉由灌氧,皱缩的细胞癌可像气球打氧一样,膨胀回来,成为正常细胞。 3.偏素食:五榖杂粮加蔬菜可改成硷性体质及排毒。 即可将癌细胞变回成正常圆润的细胞! 癌症(Cancer)正如其拉丁字头「蟹」(Cancri)的意思所指,稍不注意,便不声不响、致人于死地横行。一生中每四个人就有一个人可能得癌,过去十年,台湾叁十至五十九岁的壮年得癌人数成长八一%,但四○%的癌症是可以预防的。然而在第叁期的癌症之后,如从前法务部长陈定南、舞蹈家罗曼菲、王文洋的妻子陈静文、电影导演杨德昌、到鸿海準董事长郭台成,一颗颗舞台上的明星,在正要大放光芒时,因癌倒下。 其实每人每天均会产生七八千个癌细胞,尤其在焦虑、愤怒及压力下,癌细胞大增,放在人体内某部位的潘朵拉盒中;若在愉快的心情下,以氧气灌满皱缩的癌细胞使之膨胀,多吃抗癌食物即可天天修

护皱皱的癌细胞变回成正常圆润的细胞,在第叁期的癌症之前,均能康復。 A.抗癌食物: 柠檬(破坏12种癌细胞:包括结肠癌、乳腺癌、前列腺癌、肺癌和胰腺癌…)、地瓜(排毒最佳)、大蒜(治胃癌)、黄豆(治子宫颈癌)、金针菇(治子宫颈癌)、菜花(治胰腺癌)、菠菜(治肺癌)、茭白(治肠癌)、海带(治乳腺癌)、芦笋(治皮肤癌)、花椰菜(治膀胱癌)、毛豆(治乳癌)、蔓越莓(治乳癌)、开心果(防肺癌)、熟番茄(治摄护腺癌)、蘑菇(治肝癌,但含重金属伤肾,每月最多可以吃200g )、甜菜根、胡萝蔔、优格、苹果、绿藻、葡萄、香蕉、奇异果、凤梨、草莓、绿茶、十榖米(治直肠癌:糙米、黑糯米、小米、小麦、荞麦、芡实、燕麦、莲子、麦片和红薏仁)、白芝麻、亚麻子、老姜、枸杞、玉米、杏仁、黑芝麻、南瓜子。 请大家多吃含有这些有效成份的食物,让身体内蠢蠢欲动的癌细胞多多睡觉。 1.咖哩(抗癌成份是「姜黄素」) 2.辣椒(抗癌成份是「辣椒素」) 3.姜(抗癌成份是「姜油」) 4.绿茶(抗癌成份是「儿茶素」) 5.大豆(抗癌成份是「异黄酮」) 6.蕃茄(抗癌成份是「茄红素」) 7.葡萄(抗癌成份是「白黎芦醇」) 8.大蒜(抗癌成份是「硫化物」) 9.高丽菜(抗癌成份是「??」) 10.花椰菜(抗癌成份是「硫化物」) B.以氧气灌满:人坐在椅子上时,每次唿吸进的空气才半公升,只用了肺臟的十二分之一,李丰说,「就像一个人有一栋十二个房间的房子,可是每天

正常细胞是怎样一步步变成癌细胞的

炎症(inflammation) 炎症就是平时人们所说的“发炎”,是机体对于刺激的一种防御反应,表现为红、肿、热、痛和功能障碍。炎症是具有血管系统的活体组织对损伤因子所发生的防御反应。细菌、病毒和寄生虫等为炎症最常见的原因,放射性物质及紫外线等和机械损伤,外源性化学物质,以及各种途径进入人体的异物均可引起炎症。血管反应是炎症过程的中心环节,炎症的基本病理变化通常概括为局部组织的变质、渗出和增生。实质细胞常出现的变质包括细胞水肿、脂肪变性、凝固性或液化性坏死等;局部组织血管内的液体、蛋白质和血细胞通过血管壁渗出进入间质、休腔、体表或粘膜表面;致炎因子、组织崩解产物或某些理化因子刺激下,炎症局部的巨噬细胞、内皮细胞和纤维母细胞可增生。 增生( hyperplasiai) 也可称为再生或新生(neogenesis),是指为修复缺损而发生的同种细胞的增生。炎症、再生、代偿等可引起组织细胞新生,本质上是为了修复缺损,而不是为了吸收坏死物质或消除致炎因子,再生的细胞与缺损的实质细胞完全相同。淋巴细胞新生对淋巴细胞白血病发生,血管新生对恶性实体肿瘤的生长、转移乃至预后都有着极其重要的意义。新生可发生于皮肤或粘膜表面的鳞状上皮,也可发生于腺上皮。上皮细胞异乎常态的增生,表现为增生的细胞大小不一,形态多

样,核大而浓染,核浆比例增大,核分裂可增多但多呈正常核分裂像。细胞排列较乱,细胞层次增多,极向消失,但一般不见病理性核分裂;细胞增生从良性改变到恶性改变的中间站,是由量变到质变的关键点,因此,将非典型增生称之为“癌前病变”。 赘生(neoplasia) 指机体局部组织细胞增生可形成的呈占位性块状突起,也称赘生物(neoplasm)。通常把生长在人体粘膜表面上正常结构的赘生物称为息肉,是粘膜面突出的一种赘生物,包括增生性、炎症性、错构瘤、腺瘤及其他肿瘤等。息肉临床表现多见腺瘤性息肉和某些胃肠道息肉综合征,这些病变虽属良性,但其中一部分有恶变倾向。胆固醇沉着于胆囊黏膜固有膜的巨噬细胞内使黏膜上皮增生、罗-阿窦增多及肌层增厚可形成息肉。胆固醇息肉、为炎症刺激可肉芽肿、非炎症腺瘤样增生,黏膜上皮局部变化、肌纤维增生与局限性腺肌瘤;腺瘤多为单发的有蒂息肉,外形可呈乳头状或非乳头状。 化生(metaplasia) 化生也称为“癌前病变”,是指一种已分化组织转变为另一种分化组织的过程,并非由已分化的细胞直接转变为另一种细胞,而是由具有分裂能力的未分化细胞向另一方向分化而成,一般只能转变为性质相似的细胞。机体的一种组织由于细胞生活环境改变或理化因素刺激,在形态和机能上变为另一种组织的过程,是机体的一种适应现象。如支气管黏膜的柱状上皮组织长期受刺激变为鳞状上皮组织。常见的化生有上皮化生、骨与软骨化生、浆膜化生、脂肪化生和骨髓化生。

癌细胞word

第七类:癌细胞 1、2002简2# /2004简4#——体外培养的癌细胞为什么能悬浮培养,而正常细胞却只能贴壁培养 正常细胞的天性,它总是要固定在底物上,才开始生长,其中粘着斑的形成是细胞增殖所必需的。 癌细胞就没有这些特性,癌细胞是一种变异的细胞,是产生癌症的病源,癌细胞与正常细胞不同,有无限生长、转化和转移三大特点,在体外培养时贴壁性下降,失去接触抑制,培养时对血清依赖性降低可以悬浮培养。 2、2002简5#——肿瘤细胞与同类型组织正常细胞融合而成的杂交细胞,会出现什么细胞生理变化,为什么? 肿瘤细胞与同类型组织正常细胞融合而成的杂交细胞,会出现下列细胞生理变化: ①具有无限增殖的潜能②在体外培养时贴壁性下降③失去接触抑制④培养时对血清依赖性降低 因为杂交后的细胞会具有肿瘤细胞的特性 3、2006简3#——人类许多癌症患者(约30%)是与ras基因(编码Ras蛋白)突变有关,试分析其机理 作为原癌基因的ras基因被激活以后就变成有致癌活性的癌基因.ras基因激活的方式有3种:基因点突变,基因大量表达,基因插入及转位.其中ras基因被激活最常见的方式就是点突变,多发生在N端第12,13和61密码子,其中又以第12密码子突变最常见,而且多为GGT突变成GTT.不同突变位点对P21的活化机制不同,第12密码子突变可以减弱P21内在的GTP酶活性,并使细胞凋亡减少,细胞间接触抑制减弱;第61密码子突变可削弱GAP对P21的内在GTP酶活性,并可减弱GAP与P21结合的稳定性. ras基因突变致癌的机制 ras基因激活构成癌基因,其表达产物Ras蛋白发生构型改变,功能也随之改变,与GDP的结合能力减弱,和GTP结合后不需外界生长信号的刺激便自身活化.此时Ras蛋白内在的GTP 酶活性降低,或影响了GAP的活性,使Ras蛋白和GTP解离减少,失去了GTP与GDP的有节制的调节,活化状态的Ras蛋白持续地激活PLC产生第二信使,造成细胞不可控制地增殖,恶变.同时细胞凋亡减少,细胞间接触抑制增强也加速了这一过程.

细胞周期,癌症与诺贝尔奖

细胞周期,癌症与诺贝尔奖 2001年的诺贝尔生理医学奖授予了3位研究细胞周期并取得卓越成就的科学家,他们的工作使我们对细胞增殖及其与癌症的关系有了更深刻的理解,从而为我们找到治愈癌症之路指明方向。但是,他们的工作究竟有多重要,而有那么多的科学家在这一领域中工作,为什么独独是这3位而不是其它人得到这个全世界科学家都梦寐以求的这个荣誉呢?我们就来看看他们到底都做了些什么。 2001年诺贝尔生理医学奖获奖者(从左至右)Leland Hartwell、Tim Hunt和Paul Nurse。 一、细胞周期 所谓细胞周期(cell cycle)是指连续分裂细胞从一次有丝分裂结束到下一次有丝分裂结束所经历的整个过程。在这个过程中,细胞遗传物质复制并加倍,且在分裂结束时平均分配到两个子细胞中去。细胞周期又可以分为间期(interphase)和有丝分裂期(M phase)。从一次有丝分裂结束到下一次有丝分裂开始的时期就是间期。这一时期,在光学显微镜下看不到细胞有明显的变化,但此时期的细胞内却正在进行一系列的生化活动,主要的活动围绕制造完全相同的又一套遗传物质展开。这一期以DNA合成为标志,又分为G1期,S期和G2期。而在光学显微镜下可以看到的只是M期,经过分裂期,加倍的染色体和其他细胞组分被平均分配到两个完全一样的子细胞中。换句话,通过分裂,形成了一个新细胞。 事实上早在1841年,时任职于柏林大学的波兰神经内科学家和生物学家罗伯特·里麦克(Robert Remak,1815-1865)就报道了细胞分裂现象,并得出结论,细胞分裂是细胞增殖的方式也是机体生长发育的“根本动力”;更有意义的是,他在此时就已经认为肿瘤组织中细胞的形成机制“几乎与正常动物组织相同”。不过,由于受观察手段得的限制,人们还不可能了解到有丝分裂间期中发生的生化事件,而又由于在显微镜下染色体的变化是如此规律,因此,认为细胞的增殖活动主要发生在形态变化明显的有丝分裂期就不难理解了。直到1953年,Howard和Pelc才发现蚕豆根尖细胞分裂中遗传物质DNA的复制发生于静止期中的一个时期,这一时期与有丝分裂期在时间上存在前后两个间隙。由此,他们第一次明确的提出了细胞周期的概念,并将细胞周期划分为上述的4个时期,其中的S期即是DNA合成的时

相关文档
最新文档