抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告
抽样定理和信号恢复实验报告

实际低通滤波器在截止频率附近频率特性曲线

在实际信号中,仅含有有限频率成分的信号是极少的,大多数信号的频率成分是无限的,并且实际低通滤波器在截止频率附近频率特性曲线不够陡峭(如图4-4所示),若使fs=2Bf

为了减小失真,应将抽样频率fs取高(fs>2Bf),低通滤波器满足

为了防止原信号的频带过宽而造成抽样后频谱混迭,实验中常采用前置低通滤波器滤除高频分量,如图

图5-9 抽样定理仿真

使用方法:

软件按装见实验17,选择“信号与系统”复选框中“抽样定理”,实验箱DSP运行在“虚拟仪器”线连接实验箱和PC机,点击软件“STOP”键,软件开始行运。

抽样频率和抽样脉冲占空比可调,恢复滤波器载止频率可调;

四、实验报告要求

1. 整理数据,正确填写表格,总结离散信号频谱的特点;

2. 整理在不同抽样频率(三种频率)情况下,F(t)与F′(t)波形,比较后得出结论;

3. 比较F(t)分别为正弦波和三角形,其Fs(t)的频谱特点;

4.用仿真软件分析4KHZ三角波抽样频率取值和恢复滤波器载止频率取值;

5. 通过本实验你有何体会。

戴维南定理实验报告

实验一戴维南定理 班级:17信息姓名:张晨瑞学号:20 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图的方法。 4.初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用方法以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用方法。 6.初步掌握Origin绘图软件的应用方法。 二、实验原理 一个含独立源、线性电阻的受控源的一端口网络,对外电路来说,可以用一个电压源和电子的床帘组合来等效置换,去等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于该一端口网络中所有独立源都置为零后的输入电阻。这一定理成为戴维南定理。 三、实验方法 1.比较测量法 戴维南定理是一个等效定理,因此应想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 实验中首先测量原电路的外特性,在测量等效电路的外特性,最后比较两者是否一致,等效电路中的等效参数的获取,可通过测量得到,并同根据电路结构所推到计算出的结果相比较。 实验中期间的参数应使用实际测量值。实际值和期间的标称值是有差别的,所有的理论计算应基于器件的实际值。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压,该电压就是等效电压。 等效电阻Ro:将电路中所有电压源短路,所有电流源开路,使用万用表阻挡测量。 3.测量点个数以及间距的选取 测试过程中测量的点个数以及间距的选取与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性特性应在变化陡峭处多测些点。测量的目的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程中测量的点个数以及间距的选取。 为了比较完整地反映特性和形状,一般选取10个以上的测量点。 本实验中由于特性曲线是直线形状,因此测量点应均匀选取。为了办政策亮点分布合理,迎新测量特性的最大值和最小值,再根据点数合理选择测量间距。 4.电路的外特性测量方法 在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 四、实验仪器与器件 1.计算机一台 2.通用电路板一块 3.万用表两只 4.直流稳压电源一台 5.电阻若干 五、实验内容 1.测量电阻的实际值,填表,并计算等效电源电压和等效电阻 2.Multisim仿真 (1)创建电路; (2)用万用表测量端口开路电压和短路电流,并计算等效电阻; (3)用万用表的Ω挡测量等效电阻,与(2)比较,将测量结果 填入表1中;

戴维南定理实验报告

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果

⒈计算等效电压和电阻 计算等效电压:电桥平衡。∴=,33 1131R R R R Θ Uoc=3 11 R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ??++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω 50% 2 4 J1Key = A XMM1 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据

等效电压Uoc=2.609V 等效电阻Ro=250.355Ω 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

通信原理实验四 实验报告 抽样定理与PAM系统实训

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训 一、实验目的 1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点; 3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。 二、实验原理 1.取样(抽样、采样) (1)取样 取样是把时间连续的模拟信号变换为时间离散信号的过程。 (2)抽样定理 一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽 样值完全确定。 (3)取样分类 ①理想取样、自然取样、平顶取样; ②低通取样和带通取样。 2.脉冲振幅调制电路原理(PAM) (1)脉冲幅度调制系统 系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。 图 1 脉冲振幅调制电路原理框图 (2)取样电路 取样电路是用4066模拟门电路实现。当取样脉冲为高电位时,

取出信号样值;当取样脉冲为低电位,输出电压为0。 图 2 抽样电路 图 3 低通滤波电路 三、实验步骤 1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs; 2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc; 3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形; 4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声 器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入 时钟信号频率,听辨音乐信号的质量. 四、实验内容及现象 1.测量点波形 图 4 TP301 模拟信号输入 图 5 TP302 抽样时钟波形(555稍有失真) fc=38.8kHz ①fc>>2fs,使fs=5KHz: 图 6 TP303 抽样信号输出1 图7 TP304 模拟信号还原输出1 ②fc=2fs,使fs=20KHz: 图8 TP303 抽样信号输出2 图9 TP304 模拟信号还原输出2 ③fc<2fs,使fs=25KHz: 图10 TP303 抽样信号输出3 图11 TP304 模拟信号还原输出3 2.电路Multisim仿真 图12 PAM调制解调仿真电路 图13 模拟信号输入 图14 抽样脉冲波形 图15 PAM信号 图16 低通滤波器特性 图17 还原波形 更多学习资料请见我的个人主页:

戴维南定理实验报告

戴维南定理 学号:1128403019 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计 算等效电压: 电桥平衡。∴=,331131R R R R Uoc=3 11 R R R +=2.6087V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355

(2)测量如下表中所列各电阻的实际值,并填入表格: 然后根据理论分析结果和表中世纪测量阻值计算出等效电源电压和等效电阻,如下所示: Uc=2.6087V R=250.355Ω (3)multisim仿真: a、按照下图所示在multisim软件中创建电路 b、用万用表测量端口的开路电压和短路电流,并计算等 效电阻,结果如下:Us= 2.609V I= 10.42mA R=250.38Ω

matlab验证时域采样定理实验报告

通信原理实验报告实验名称:采样定理 实验时间: 201211日年12月 指导老师:应娜 学院:计算机学院 级:班 学号: 姓名:

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t); 2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 四、数据分析 (1)部分程序分析: f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组 axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱 f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组 fz=eval(fy); %获取采样序列 FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换 TMN=ones(length(n),1)*t-n'*T*ones(1,length(t)); 由采样信号恢复原信号fh=fz*sinc(fs*TMN); %. (2)原信号的波形与幅度频谱:

戴维南定理实验报告

戴维南定理实验报告 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握和测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图。 4.初步掌握Multisim软件中的Multmeter,Voltmeter,Ammeter等仪表的使用以及DC Operating Point,Parameter等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用。 6.初步掌握Origin绘图软件的使用。 二、实验原理 三、一个含独立源,线性电阻和受控源的 一端口网络,对外电路来说,可以用一个 电压源和电阻的串联组合等效置换、其等 效电压源的电压等于该一端口网络的开路 电压,其等效电阻等于将该一端口网络中 所有独立源都置为零后的的输入电阻,这 一定理称为戴维南定理。如图实验方法 1.比较测量法 2.戴维南定理是一个等效定理,因此想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 3.整个实验过程首先测量原电路的外特性,再测量等效电路的外特性。最后进行比较两者是否一致。等效电路中等效参数的获取,可通过测量得到,并同根据 电路结构所推导计算出的结果想比较。 实验中期间的参数应使用实际测量值,实际值和器件的标称值是有差别的。 所有的理论计算应基于器件的实际值。 4.等效参数的获取 5.等效电压Uoc:直接测量被测电路的 开路电压,该电压就是等效电压。 6.等效电阻Ro:将电路中所有电压源 短路,所有电流源开路,使用万用 表电阻档测量。本实验采用下图的 实验电路。 7.电路的外特性测量方法8.在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 9.测量点个数以及间距的选取 10.测试过程中测量点个数以及间距的选取,与测量特性和形状有关。对于直线特性,应使测量点间隔尽量平均,对于非线性特性应在变化陡峭处多测些点。测量的目 的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程中测 量点个数及间距的选取。 四、实验注意事项 1.电流表的使用。由于电流表内阻很小,放置电流过大毁坏电流表,先使用大量程(A) 粗侧,再使用常规量程(mA)。

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM 调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM 脉冲调幅模块,位号:H (实物图片如下) 2.时钟与基带数据发生模块,位号:G (实物图片见第3页) 3.20M 双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时, 模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开, 无信号输出 图1-2 PAM 信道仿真电路示意图 32W01 C1 C2 32P03 R2 32TP0

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

戴维南定理实验报告

实验四戴维南定理 一、实验目的 1、验证戴维南定理 2、测定线性有源一端口网络的外特性和戴维南等效电路的外特性。 二、实验原理 戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电玉等于原一端口的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req,见图4-1。 图4- 1 图4- 2 1、开路电压的测量方法 方法一:直接测量法。当有源二端网络的等效内阻Req与电压表的内阻Rv 略不计时,可以直接用电压表测量开路电压。 方法二:补偿法。其测量电路如图4-2所示,E为高精度的标准电压源,R为标准分压电阻箱,G为高灵敏度的检流计。调节电阻箱的分压比,c、d两端的电压随之改变,当Ucd=Uab 时,流过检流计G的电流为零,因此

Uab=Ucd =[R2/(R1+ R2)]E=KE 式中 K= R2/(R1+ R2)为电阻箱的分压比。根据标准电压E 和分压比Κ就可求得开路电压Uab,因为电路平衡时I G= 0,不消耗电能,所以此法测量精度较高。 2、等效电阻Req的测量方法 对于已知的线性有源一端口网络,其入端等效电Req可以从原网络计算得出,也可以通过实验测出,下面介绍几种测量方法: 方法一:将有源二端网络中的独立源都去掉,在ab端外加一已知电压U, 测量一端口的总电流I总则等效电阻 Req= U/I总 实际的电压源和电流源具有一定的内阻,它并不能与电源本身分开,因此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,这将影响测量精度,因而这种方法只适用于电压源内阻较小和电流源内阻较大的情况。 方法二:测量ab端的开路电压Uoc及短路电流Isc则等效电阻 Req= Uoc/Isc 这种方法适用于ab端等效电阻Req较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。 图4 – 3 图 4-4 方法三:两次电压测量法 测量电路如图4-3所示,第一次测量ab端的开路Uoc,第二次在ab端接一已知电阻RL (负载电阻),测量此时a、b端的负载电压U,则a、b端的等效电阻Req为:

戴维南定理实验报告

戴维南定理 学号:19 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计算等效电压:电桥平衡。 ∴=,331131R R R R Θ Uoc=3 11 R R R +=。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R = (2)测量如下表中所列各电阻的实际值,并填入表格:

然后根据理论分析结果和表中世纪测量阻值计算出等效电源 电压和等效电阻,如下所示: Uc= R=Ω (3)multisim 仿真: a 、按照下图所示在multisim 软件中创建电路 b 、用万用表测量端口的开路电压和短路电流,并计算等效电阻,结果如下:Us= I= R=Ω c 、用万用表的欧姆档测量等效电阻,与b 中结果比较,将测量结果填入下表中:

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

信号与系统通信原理抽样定理实验报告

新疆师范大学 实验报告 2020年4月20日课程名称通信原理实验项目实验三:抽样定理实验物理与电子工程学院电子17-5 姓名赵广宇 同组实验者指导教师 一、实验目的 了解抽样定理在通信系统中的重要性。 掌握自然抽样及平顶抽样的实现方法。 理解低通采样定理的原理。 理解实际的抽样系统。 理解低通滤波器的幅频特性对抽样信号恢复的影响。 理解低通滤波器的相频特性对抽样信号恢复的影响。 理解带通采样定理的原理。 二、实验器材 主控&信号源 3号信源编译模块 示波器 三、实验原理 2、实验框图说明

抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证

基带信号+抽样脉冲输出 模拟滤波器恢复出的信号 数字滤波器恢复出的基带信号

五.心得与体会 1.通过本次实验进一步了解了抽样定理的内容 2.通过本次实验将理论与实践联系在了一起,不仅提高了动手实践能力,更加深了对课程的理解 3.通过实验现象可以更加深入的认识到,数字滤波器比模拟滤波器的恢复波形能力要强. 教师签字

验证戴维南定理实验报告

实验1 戴维南定理 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图。 4.初步掌握Multisim软件中的Multimeter、V oltmeter、等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析法。 5.掌握电路板的焊接技术及直流电源、万用表等仪器仪表的使用。 6.掌握origin绘图软件的使用。 二、实验原理 戴维南定理:任何线性有源(独立源、受控源)一端口网络对外电路来说,都可以用一个电压源Us与电阻R0 串联的等效电路替换。其中电压源US大小就是有源二端电路的开路电压UOC;电阻RO大小是有源二端电路除去电源的等效电阻RO 。 三、实验器材与仪器 计算机一台;通用电路板一块;万用表两只;直流稳压电源两只;电阻若干 四、实验方法 1.比较测量法 首先测量原电路的外特性,再测量等效电路的外特性。最后比较两者是否一致。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压。 等效电阻Ro:将电路中所有独立电压源短路,所有电流源开路,用万用表电阻档测量。 3.测量点个数及间距的选取 (测量点个数及间距的选取,与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性的特性应在变化陡峭处多测一些。且一般选取10个点以上) 本实验均匀选取。且应该先选取最大最小值然后均匀选取。 4.电路的外特性测量方法 在输出端口上改变R7的大小,测量端口电压和电流。 实验电路图 五、实验内容与数据记录 1.测量电阻的实际值。填入下表。

信号的采样与恢复实验报告

竭诚为您提供优质文档/双击可除信号的采样与恢复实验报告 篇一:实验2:连续信号的采样和恢复 电子科技大学 实验报告(二) 学生姓名:学号:指导教师:一、实验室名称:信号与系统实验室二、实验项目名称:连续信号的采样和恢复三、实验原理: 实际采样和恢复系统如图3.4-1所示。可以证明,奈奎斯特采样定理仍然成立。 xpT(t) ) 图3.4-1实际采样和恢复系统 采样脉冲:p(t)??F ?pT(j?)?T 2?T ?? ?

k???(:信号的采样与恢复实验报告) 2?ak?(??k?s) 其中,?s? ,ak? ?sin(k?s?/2)T k?s?/2 F ,???T。 采样后的信号:xs(t)???xs(j?)? 1T ? ?x(j(? k??? ?k?s) 当采样频率大于信号最高频率两倍,可以用低通滤波器hr(j?)由采样后的信号xs(t)恢复原始信号x(t)。 四、实验目的与任务: 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢 复的波形与频谱,并与观察结果比较。

五、实验内容: 1、采样定理验证 2、采样产生频谱交迭的验证 六、实验器材(设备、元器件): 数字信号处理实验箱、信号与系统实验板的低通滤波器模块u11和u22、采样保持器模块u43、pc机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。 七、实验步骤: 打开pc机端软件ssp.exe,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 【1.采样定理验证】 1、连接接口区的“输入信号1”和“输出信号”,如图1所示。 图1观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6khz”。按“F4”键把采样脉冲设为10khz。 3、点击ssp软件界面上的 按钮,观察原始正弦波。 4、按图2的模块连线示意图连接各模块。 图2观察采样波形的模块连线示意图

实验实验报告

PAM和PCM编译码器系统 一、实验目的 1.观察了解PAM信号形成的过程;验证抽样定理;了解混叠效应形成的原因; 2.验证PCM编译码原理;熟悉PCM抽样时钟、编码数据和输入/输出时钟之间的关系;了 解PCM专用大规模集成电路的工作原理和应用。 二、实验内容和步骤 1.PAM编译码器系统 1.1自然抽样脉冲序列测量 (1)准备工作; (2)PAM脉冲抽样序列观察; (3)PAM脉冲抽样序列重建信号观测。 1.2平顶抽样脉冲序列测量 (1)准备工作; (2)PAM平顶抽样序列观察; (3)平顶抽样重建信号观测。 1.3信号混叠观测 (1)准备工作 (2)用示波器观测重建信号输出的波形。 2.PCM编译码器系统 2.1PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号的观察; (2)抽样时钟信号与PCM编码数据测量; 2.2用示波器同时观察抽样时钟信号和编码输出数据信号端口(TP502),观测时以TP504 同步,分析掌握PCM编码输数据和抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系; 2.3PCM译码器输出模拟信号观测,定性观测解码信号与输入信号的关系:质量,电平, 延时。 2.4PCM频率响应测量:调整测试信号频率,定性观察解码恢复出的模拟信号电平,观测 输出信号电平相对变化随输入信号频率变化的相对关系; 2.5PCM动态范围测量:将测试信号频率固定在1000Hz,改变测试信号电平,定性观测解 码恢复出的模拟信号的质量。 三、实验数据处理与分析 1.PAM编译码器系统

(1)观察得到的抽样脉冲序列和正弦波输入信号如下所示: 上图中上方波形为输入的正弦波信号,下方为得到的抽样脉冲序列,可见抽样序列和正弦波信号基本同步。 (2)观测得到的重建信号和正弦波输入信号如下所示: 如上图所示,得到的重建信号也为正弦波,波形并没有失真。 (3)平顶抽样的脉冲序列如下所示:

信号取样与恢复实验报告概要

实验四信号取样与恢复 一、实验目的 1.了解模拟信号取样及恢复的基本方法。 2.理解和掌握时域取样定理,掌握无混叠和有混叠条件下信号取样与恢复的频域分析方法。 3.了解取样频率、取样脉冲宽度、恢复滤波器截止频率等对取样信号和恢复信号的影响。 4.熟悉DDS-3X25虚拟信号发生器的使用方法。 二、实验内容 1.无混叠条件下正弦信号取样与恢复测试分析,比较不同取样频率和取样脉冲宽度对取样及恢复信号的影响。 2.有混叠条件下正弦信号的取样与恢复测试分析。 3.非正弦周期信号的取样与恢复测试分析,比较不同恢复滤波器截止频率对恢复信号的影响。 三、实验仪器 1.信号与系统实验硬件平台一台 2.信号取样与恢复实验电路板一块 3.DSO-3064虚拟示波器一台 4.DDS-3X25虚拟信号发生器二台 5.PC机(含DSO-3064、DDS-3X25驱动及软件)一台 四、实验原理 1. 信号取样 信号取样与恢复实验电路板,如图4.1所示。该电路板通过背面的两个DB9公头插接到硬件实验平台上使用。

) ()()(t s t f t f s =图4.1 信号取样与恢复实验电路板 电路板左侧为一个采用模拟开关进行取样的信号取样电路,取样脉冲序列为高电平(高电平对应电压应大于+1V )时模拟开关接通、为低电平(低电平电压应小于-1V )时模拟开关断开。在“信号输入”端接入被取样模拟信号,通过改变取样脉冲序列(通常为矩形脉冲序列)的频率(该电路取样频率不宜超过256kHz )和占空比,即可在“取样输出”端获得不同频率和不同取样脉冲宽度的取样信号。取样信号()s f t 可用(4-1)式来描述 (4-1) 式中()f t 表示被取样模拟信号,()s t 为模拟开关的开关函数,当模拟开关接通时,()1s t =,反之则 ()0s t =。 电路板右侧是两个用作恢复滤波器的低通滤波器,可根据实验需要选用。其中“恢复滤波器1”是一个截止频率约为1kHz 、通带增益等于4的二阶低通滤波器,其截止频率不可调节。“恢复滤波器2”是一个截止频率可调,通带增益等于1的八阶巴特沃斯滤波器,其截止频率(转折频率)调节范围为0.1Hz~25kHz ,通过外接“控制时钟”信号f0来调节,滤波器转折频率为f0时钟频率的1/100。 由(4-1)式获取的取样信号()s f t 依然是一个时域信号。设()f t 的频谱为()F j ω,()s t 的频谱为()S j ω,则根据频域卷积定理,()s f t 的频谱 1 ()()*()2s F j F j S j ωωωπ = (4-2) 设取样脉冲序列的周期为s T 、脉冲宽度为τ,则 ()()Sa 2s s s n n S j n ωτωτωδωω∞ =-∞ ?? =- ??? ∑ (4-3) 式中2s s ωπ=为取样角频率、Sa()g 为取样函数,即()S j ω为取样函数包络下的冲激序列。此时 ()()1()()*()Sa 222 Sa 2s s s s n s s n s n F j F j S j F j n n F j n T ωωτ ωωωτωωππωττωω∞=-∞∞ =-∞?? ==-?? ????? ?? = -?? ?? ???∑∑ (4-4) 因此,取样信号的频谱()s F j ω是将原信号频谱()F j ω在ω轴上以s ω为间隔的非等幅周期延拓,如图4.2所示。若()F j ω的幅度归一化为1,则第n 个延拓()s F j n ωω-???? 的幅度为 ()Sa 2 s s n A n T ωτ τ ??= ??? (4-5)

戴维南定理实验报告

戴维南定理及其应用实验报告书 戴维南定理及其应用 一、实验目的 1、掌握戴维南定理及其应用方法。 2、验证戴维南定理。 二、实验器材 直流电压源 1个 电压表 1个 电流表 1个 电阻 4个 三、实验原理 在电路理论中等效电路定理具有非常重要的意义,它包括戴维南定理和诺顿定理。戴维南定理可描述为:任何一个线性单端口电路N (如图2-5-1(a )所示),它对外电路的作用,都可以用一个电压源和电阻的串联组合来等效,这个等效电路称为戴维南等效电路(也称为等效电压源),见图2-5-1(b )所示。其中,该等效电压源的电压值等于单端口电路N 在端口处的开路电压U OC ;电阻R O 等于单端口电路N 内所有独立源为零的条件下,从端口处看进去的等效电阻。电阻R O 也称为戴维南等效电阻。 (a) (b) 图2-5-1 戴维南等效电路原理

(a)(b) (c)(d)R U OC 图2-5-2 戴维南等效电路 图2-5-2(a)给出了一个线性单端口电路,其中,R L为负载。首先求该电路的戴维南等效电阻R O。将该电路的电压源短路,见图2-5-2(b),可求得 R O=R1//R2+R3=25Ω+50Ω=75Ω 其次,求端口ao处的开路电压U OC=6V(见图2-5-2(c))。所以该电路的等效电路见图2-5-2(d)所示。 四、实验步骤 1. 单端口电路测试 按图2-5-3连线,电源电压设置为12V。按表2-5-1中给出的数据改变R L之值,测量负载电阻R L的电压U L和流过电阻R L的电流I L,并填写表2-5-1。 图2-5-3 单端口电路 表2-5-1单端口电路的测量数据 2. 等效电路测试 按图2-5-4连线,电源电压设置为6V。按表2-5-2中给出的数据改变R L之值,测量负载电阻R L的电压U L和流过电阻R L的电流I L,并填写表2-5-2。

通信系统仿真实验报告(DOC)

通信系统实验报告——基于SystemView的仿真实验 班级: 学号: 姓名: 时间:

目录 实验一、模拟调制系统设计分析 -------------------------3 一、实验内容-------------------------------------------3 二、实验要求-------------------------------------------3 三、实验原理-------------------------------------------3 四、实验步骤与结果-------------------------------------4 五、实验心得------------------------------------------10 实验二、模拟信号的数字传输系统设计分析------------11 一、实验内容------------------------------------------11 二、实验要求------------------------------------------11 三、实验原理------------------------------------------11 四、实验步骤与结果------------------------------------12 五、实验心得------------------------------------------16 实验三、数字载波通信系统设计分析------------------17 一、实验内容------------------------------------------17 二、实验要求------------------------------------------17 三、实验原理------------------------------------------17 四、实验步骤与结果------------------------------------18 五、实验心得------------------------------------------27

戴维南定理实验报告doc

戴维南定理实验报告 篇一:验证戴维南定理实验报告 一、实验目的 1. 验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流ISC,其等效内阻R0定义同戴维南定理。 Uoc(Us)和R0或者ISC(IS)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R0 在有源二端网络输出端开路时,用电压表直接测其输出

端的开路电压Uoc,然后再将其输出端短路,用电流表测其短路电流Isc,则等效内阻为 如果二端网络的内阻很小,若将其输出端口短路则易损坏其内部元件,因此不宜用此法。 (2) 伏安法测R0 用电压表、电流表测出有源二端网络的外特性曲线,如图3-1所示。根据外特性曲线求出斜率tgφ,则内阻图3-1也可以先测量开路电压Uoc,再测量电流为额定值IN时的输出端电压值UN,则内阻为 (3) 半电压法测R0 如图3-2所示,当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。 图3-2 (4) 零示法测UOC 在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。为了消除电压表内阻的影响,往往采用零示测量法,如图3-3所示。零示法测量原理是用一低阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压UOC。 三、仪器设备和选用挂箱 四、实验内容

信号抽样实验报告

大连理工大学实验报告 学院(系):专业:班级: 姓名:学号:组: ___ 实验时间:实验室:实验台: 指导教师签字:成绩: 实验三信号抽样 一、实验目的 1 学会运用MATLAB完成信号抽样及对抽样信号的频谱进行分析; 2 学会运用MATLAB改变抽样间隔,观察抽样后信号的频谱变化; 3 学会运用MATLAB对抽样后的信号进行重建。 二、习题 1. 设有三个不同频率的正弦信号,频率分别为 。现在用抽样频率对这三个正弦信号进行抽样,用MATLAB命令画出各抽样信号的波形及频谱,并分析频率混叠现象。 解:分别写出三个频率正弦波的代码与图形: (f1=100HZ的正弦信号) 代码如下: Ts=1/3800; dt=0.0001; t1= -0.008:dt:0.008; ft=sin(2*pi*100*t1).*(uCT(t1+0.005)-uCT(t1-0.005)); subplot(221); plot(t1,ft), grid on; axis([-0.006 0.006 -1.1 1.1]); xlabel('Time(sec)'),ylabel('f(t)') title('正弦信号波形 '); N=5000;

k = -N:N; W = 2*pi*k/((2*N+1)*dt); Fw= dt*ft*exp(-j*t1'*W); subplot(222); plot(W,abs(Fw)); grid on; axis([-30000 30000 0 0.006]); xlabel('\omega'),ylabel('F(w)'); title('正弦信号的频谱'); t2=-0.008:Ts:0.008; fst=sin(2*pi*100*t2).*(uCT(t2+0.005)-uCT(t2-0.005)); subplot(223); plot(t1,ft,':'),hold on; stem(t2,fst),grid on; axis([-0.005 0.005 -1.1 1.1]); xlabel('Time(sec)'),ylabel('fs(t)'); title('抽样后的信号'),hold off; Fsw= Ts*fst*exp(-j*t2'*W); subplot(224); plot(W,abs(Fsw)), grid on; axis([-30000 30000 0 0.006]); xlabel('\omega'),ylabel('Fs(w)'); title('抽样信号的频谱'); matlab波形如下: 其中单个正弦信号(未经抽样)的频谱放大后如下: (200HZ的正弦信号) 代码如下: Ts=1/3800; dt=0.0001; t1= -0.003:dt:0.003;

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果 ⒈计算等效电压和电阻

计算等效电压:电桥平衡。∴=,33 11 31R R R R Uoc=311R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω RL 4.7kΩ Key=A 50% 2 4 J1Key = A XMM1 XMM2 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据 等效电压Uoc=2.609V 等效电阻Ro=250.355Ω

原电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 等效电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

相关文档
最新文档