广义积分敛散性判别法的应用

广义积分敛散性判别法的应用
广义积分敛散性判别法的应用

安.师专攀报(自泊科学蔽)1995年旅魂翔

2)若、‘1,。

定理2对于瑕积分弃一,(x)d、,设vxe(a,b],r(x))0,.是瑕点,且l五m(x一a护f(x)

~d(0(d成+co)

l)若入

2)若入)l,0

当b是瑕点时,对极限lim

犷’f(·)d益收敛;

犷一“·,d·发散,

(b一x)人f(x)~d,也有同1)、2)的判别结果。需注意的是定理中

被积函数f(x)是非负的。

上述判别法是通过比较原则导出的,即是在比较原则中,选定g(x)=x一奉或(x一a)一盖作为比较对象,利用标准积分犷-努或介;粤二XJ.气X一a,(a>0)的敛散性推导得出的。这在分析教材

中都有介绍。

在使用判别法时,关键在于如何选取入与d,使得符合判别法的条件,从而得出相应的结

论—收敛或发散。一般来说.这种选取是较为困难的。因此,选取入、d,就成为教学中的难点,在分析教材中的例,都是预见选好了入,求出d,据判别法得出相应结论。具体做习题时,在选取入后;还要结合考虑x性(x)的极限,当入,d符合判别法条件l)或幻后,才有相应的结论。对入、d

用“尝试法洲对号入座”,一般不易掌握,但是考虑判别法的特点,还是有一定规律可循的。我们通过对下述例题的讨论,看怎样选取入与d。

例‘讨论几兴dx的敛散性

解一”是被积分函数‘(x,一兴的瑕点·”0<·<,时,in·<”,叮>”,

考虑极限31imx了

工一。+

一Inx

、反二一1im一Inx~1sm4x寺一。‘一。十x一皿一。十

。___3___.,~~,、,,‘,_

送里入~丁丈1,d~U,砍原积分收双。悦

分析讨论:能否取入一告呢?‘

由极限lim、奋

x~。+

一InX

V下~lim(一inx)~一co,不满足O<入<1,O簇d<十、的条件。x一O+

怎样确定入呢?我们考虑极限limx‘

x~。十

Inx

侧丁~1jm,要使该极限值为有限,而O<久

故可选取、任(告,,)的值,从而上述极限值为。,符合判断法条件.‘

再看下例

例2讨论介黔d·的敛散性解x一0为被积函数的瑕点。

考虑极限limx‘一InsinX

x~。十

x./10x~。+x一入+9/10

~~_一,_.9/。d,_,9,,.、一一.,~__,、I_翻.~.~、小。策了月又入俩足一入十下下盏之U,肚目入岌下万,田叹火)工、们U~十co,1旦入<、l,故刊别法大义又。1UtU

·

26·

安峨师专学报(自然科学版11995年第4期

从而对任意。任R,r(a)收敛。于是对。的范围就会得出错误的结论。

二0

3、不要以被积函数的分母在积分区间取零值,就判定它是无界函数的瑕点。

如:只恶‘一,.’黑恶存在丫一,不是瑕朴但一0是瑕点·

又如犷一竺粤鸟一当0<减,时,一o不是瑕点。二概竺架蜂一蚀笋·警

4、对判别法极限形式本质的认识

,)、要判另,犷一f(x)}‘·的敛散性,由极限式:竺乳}f(·)./赤,需考虑一+一时,f(·)一”

的速度:当它超过赤一。的速度,而、>1时,该,分收。;当它不超过赤一。的速度,而入、1 时,该积分发散,于是讨论f(x)一O的阶就成为判断积分是否收敛的关键。

例3

讨论犷一合·的敛散性考虑lim

x一+目

X.

l+x.~lim一x一十的X1一(轰+一,+x.一一x,可取入二n一m,就有】jmx一.一+的X.l+x. 当、-。一>l时,厂一品dX收熟当、-。一。时,犷一湍dX发散·

有时候不知道需要进行比较的六的次“、,可以利用泰勒公式看出.

例4积”方一万君清”否“敛考虑被积函数的分母、石二而哥

~

厄一厂万二要不蕊弃

虑石子一x‘海石不;可取、一音

于是,lim

*1‘_丫x+甘7二了._x百-一代不二二二二二二二=~1im

—=VZ一‘/-./,r一-;x~+,x了xVx一Vx一星这里、一合,d一吓,故原积分发散,2,、要判另”瑕积分丈,“·,‘d·(a是瑕点,的敛散性,由极限黑}f(x)}I

x入

,需考虑当x~a干

时,f(x)一+,的速度:

大时,积分发散;

当它的阶比,2二(、<;)小时,积分收敛;当它的阶比7牛认(、)1)火义一己产气汽一砚少

例5判别积分

瑕点是

dX

、/丁一。x

dx,,‘,~,.,.

-丁二二一-‘日可叙欲任

一l

一,X

.nU

广、厂干!nx+几岸绎,;盯2VXjnX

解八|抑

安.一t攀报‘自价科攀版”9.5年结‘翔

一、‘~_一~二9,‘.,一,.、~、,“00.一,_~_、.~、,_...一~班远取入俩足一入十1下又U,从阅气育,六刀一二二~型。田歹必堵活州月得:二tI、月J

lim一Insinx

七O‘X

妈坑x

”贝丫‘详./l0’’t~O宁品,1imx,.+,“’二L厂犷、’_、工气一人州卜;下,X一川1Ulim:二导.9‘~,人-吧尸二lU吕InX(**)

从而应选取入

满足

若取、一斋<。,即、<斋·由(**)式有d一+co,而、<;.故判另,法失效.

、一斋>。·即。斋·由(**)式得到d一。,若取、):,判另,法也失效.

一。~~~9_._.一~_

卞足只能取下万吸人吸I.列取入,1U或等,由判别法可知,原积分绝对收敛。19一20 注:,、如果结合标准积分卫

从而考虑选取、在斋与;之、;

又户补,‘a是瑕点),当‘<,时收敛,就可初步判断有晶

比一19dx

2、在使用判别法时,如果遇到取久(l(或)l)得d二O,取入>l,得d~+co,说明判别法失

效,应当改用其它方法。

如对积分犷一摇汤,(a>。),由极限:呱一忌万-x入一1:二军益(Inx).+co,入>10,O<入提l,不能确定积分的敛散性·但用定义可得犷一蔽备一‘呱广蔽器歹一‘呱户豁

t工一

易不石

InA+co,0

0,a>l

于是,当a>1时,原积分收敛,当O

二、对判别法的进一步讨论

l、柯西极限判别法适用于非负函数的广义积分,对其敛散性判别有一定效果.但对变号函

数的广义积分,只能判别其是否绝对收敛,在使用过程中,必须对被积函数加绝对值,否则,d

就可能出现负值的情况。对变号函数的广义积分,会遇到条件收敛情况,可应用狄利克雷判别法或阿贝尔判别法:

2、对所给广义积分必须找出它的全部奇点,如果所讨论的广义积分在其定义区间的两端

点是无穷限或瑕点,或瑕点在区间内,则应把所讨论的广义积分分拆成几个广义积分之和,使每个广义积分都只在它的一个端点出现无穷限或瑕点,然后分别用判别法予以讨论。。

如对积”方一器‘一有两个奇“”“+一必须考虑且器‘·与厂一器‘:然””

别讨论。

另由狄利克雷判别法可知积分收敛。

事实上,.几一、dx}-:siox一’sinA’‘’,而六在(0,十二)单调,且Iim十一。+。Vx人0

又如oamma函数:P(a)=x~’e一xdx,+oo是奇点脚<1时,x=。是奇点,故必须分

|日勺心!门

别讨论只一‘与丁广-一xdx,从而得出a>。时,r(a)w敛。但如果用狄利克雷判别法,有.知一‘卜,价.言一如一)!

广义积分敛散性判别法的应用

本文讨论的广义积分指无穷积分与瑕积分,即函数在无穷

区间上的积分与无界函数的积分。它们是借助于可变上(或下)限

的黎曼积分的极限来定义的。要判别它们的敛散性,可考虑函数在

其任一内闭子区间上的黎曼可积性,借助积分性质以及积分方法:

换元法、分部积分法等直接计算,对于被积函数是单调函数或含有

周期函数因子的无穷积分,可利用广义积分与级数的关系讨论其

收敛性,即转化为级数的敛散性问题。但是在大多数的情况下.都

是通过使用判别方法、准则来确定,如柯西收敛准则,绝对收敛的

比较判别法、柯西判别法、积分判别法以及条件收敛的阿贝尔判别

法,狄利克雷判别法等来判别确定广义积分的敛散性。

现就常用的柯西判别法的极限形式判别广义积分的敛散性作

一些探讨,并予以推广。

一、对判别法的应用

为行文方便起见,给出柯西判别法的极限形式如下:

定理,对于无穷积分犷一f(·)d一设v·。[a,十一),f(·)

)仃,a>0,且一smx入f(x)=d(0镇d镇+co)

,)若、>,,0、d<+co,贝。犷一“·)d·收敛;

安,师守攀报(自鹅科攀压》1995年筑4期

1

limx!一工一。+一

,去一一。.这里、一告,d一。,故「:弓些-收敛;

Vxlnx

盲Vxlnx

由一im(l一x)

:~l一

1

一侧丁Inx

x一1

11见万下=干甲x~1一VXlnX二l,这里入~l,d=l,

故e.二些一发散.从而原积分发散.d玄VxInx

有时候不知道(x一a)一‘的次数入,也可以通过泰勒公式看出。

“6积分且丙攀两是否收敛

解x~O是瑕点

由于俨x(扩一毛一‘):

=访x[Zx+o(xZ)]~x圣访2+o(‘),

一一…~~_2川省出胜联入=下Q

从而:im、圣二二冬二一去:~o+Vx(e“一e一‘)VZ

这里入~2气犷,O~J万,于是原积分收敛。

注:本例可借助极限lim

ex一e一‘

X

=2,从而得到一imx号

I~。+

ll

谓夏下之不二下寸万..

三、对柯西判别的推广

l、当柯西极限判别法中极限不存在时,可考虑x入}f(x)I的上确界(或下确界)的极限值情

况以及入的范围,从而可将该判别法推广如下:

定理3_____八.)若土乳s”px‘.f(x)l一d<+co,且入>’,则J.f(x)dx(a>0)绝对收敛,

2)若

证明

一imsnrxA}r(x)!~d>0,且入成l,则,~+.

l)已知lim

犷一,“·,,‘X发散·

supx入if(x)一Jl,则V。>o,日x。>a,Vx>x。,有x‘.f

(·).<科£,即.f(x),<宁,记M一升£,则M>0,而厂一令当。1时收敛,由比较判别法

可知,犷一f(·)dX绝对收敛;

2)已知土乳i”fx‘Ir(x)}=d>0,且入镇l,则v“>o,,.’竺>0,可限制£,使得0<‘飞,

于是“x。>一使得Vx>x。,有X、,,‘·,,>。一>“,即.,‘·).>宁,而犷一令当、、,

时发散,由比较判别法知厂一f(X).d·发散.证毕

注:l)当百=d时,表明柯西极限判别法中极限存在,于是可得出柯西判别法的极限形式;

2)判定出犷一f(x)d·发散、但犷一f(·)d·是否发散或条件收敛,还需另作判断,

3)对瑕积分也有类似定理3的推广形式.在具体应用推广的定理时容易判断广义积分的

敛散性.

例7讨论丁)一学d·的敛散性

安顺师专学报‘自然科学版)1995年第‘期

co,入>l

解由于

,·1e.恤加

1111】X

{不存在0,入

时,

1im

x~十.

~.,.2.

二入‘InIX一=‘2x二1.故原积分发散。2、考虑积分犷-liminfex~+创Jdxx(Inx)“(。>0) ,:m、入二共二一:一十二XLJ月X少+oo,久>l0,0<入成1,可证上述积分当a>l时绝对收敛,当0<。《l时发散;

以该积分为标准,可得出下述推广形式:

定理4设a)。,l)若一smsupxOnx护Ir(x)一万l,x~十“;则犷一f(X)dX绝对收‘; 2)若150snfx(Inx)‘!f(x)!~d>0,且入(l

x~十。J

,则犷一,(·,}‘·发散。(证‘,

由柯西判别法的应用可见,必须弄清判别法本质及形式特点,选取入,确定出d,还是有一

定规律可循。判别法的推广形式对二类广义积分分敛散性的判别,也是有效而简便的.

(上接15页)

根据定理3,定理4和定理6,我们得到:

推论2:假设下列条件成立:

(l)r(t,y,,…,yN)是强次线性的;(2)条件(H,)一(H、)成立

(3)条件(H。)(或H。)成立,且对充分大的t有g食(t)

那么方程(2)的所有解振动的必要与充分条件是(39)成立。

参考文献

[1〕x,oopa一samyandBG劝ang.05记lationandnonoseiuationinfirstorderneutra一d让介rontialegua-

tions.J.Mat卜^nal.and^PPI.151(1990),42一57

[2〕https://www.360docs.net/doc/3116960139.html,l一1andB.0zhang.osei一ationoffirstorderneutraldifferentiazequations^ppz.^nal,39 (1990),265一274.

〔3〕^,FIvanov。ndT.Kusano.osellationoftheso一utioosofacla,sof价storde:funetiona一di价rential

https://www.360docs.net/doc/3116960139.html,rMarhJ,41(1989).1370一1375·

[4〕^.F一vanovandT.kusano.ontheoseillationofthesoxationsorae纽ssordifferent认x一加netionaze-

https://www.360docs.net/doc/3116960139.html,r.Math.J.39(1987)717一721.

〔5〕王连文一阶中立型非线性泛函数微分方程解的振动性.应用数学学报.14(3)(1991),348一359。

【6」魏俊杰,一阶非线性偏差变无微分方程解的振动性,应用数学学报,11:l(1988).113一122 [7〕^.D.M”kisLineardsfferent认一eguationswithretardedargument.Nauka.Moseow.19了2

积分敛散性的判断

目录 摘要........................................................................................... (2) 引言........................................................................................... . (3) 1无穷积分........................................................................................... .. (5) 1.1无穷积分的概念........................................................................................... .. (5) 1.2无穷积分敛散性的柯西准则 (5) 1.3无穷积分敛散性的比较判别法 (6) 1.4无穷积分的敛散性的狄利克雷与阿贝尔判别法 (7) 2瑕积分........................................................................................... .. (8) 2.1瑕积分的定义........................................................................................... . (9) 2.2瑕积分的敛散性的比较判别法.................................................................... (10) 2.3.瑕积分敛散性的柯西判别法 (10) 2.4无穷积分的敛散性的狄利克雷与阿贝尔判别法.................... .. (12) 3瑕积分与无穷积分之间的关系............................................................ (13) 总结........................................................................................... ......... .. (13) 参考文献........................................................................................... ... .. (14)

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

广义积分的收敛性

§2 广义积分的收敛性 主要知识点:广义积分及其敛散性概念; 非负函数广义积分收敛性的比较判别法、柯西判别法; 一般函数广义积分收敛性的Abel 、Dilichlet 判别法; 广义积分与级数的关系。 1、 讨论积分1 121 (1)[ln(1)]x e dx x α β +∞ --+? 的敛散性。 解:211 ,x x x α β →+∞时 “分子”“分母” 。 2、 证明积分 420 1sin dx x x +∞ +? 收敛 。 1 0,02k k k k k k k k k I v v v πδπδπδ δδ+-- '↓=+ +≤= ≤∑∑? ?解:取则,其中 , 11 (1)(1)421 11()sin k k k k k k k k k k v k πδπδπδ πδ πδ+++-+-++ + '=≤ +?? 。4 3 1 ,k k v k δ=∑取则收敛; 114 433 () 0,k k k k M M v v k k πδδ+--'' ≤≤≤∑又可见 也收敛。 3、 证明积分 1 2 2 3 (1)(sin ) dx x x +∞ +? 收敛 。 解:注意到(1)2 2 3 3 (sin ) [sin()] ,n n n x x n I u π π π+=-==∑ ∑?故 ,由于 2 222 3 2 1 0,1sin n n u dx u n x π π≤≤ +∑?故 收敛。 4、 讨论积分 10 sin 1cos x dx k x π αα -+?的敛散性 。 解:⑴ -1< k <1时f(x)只可能以0,π为瑕点,且当x →∞时分别与1111 , ()x x α α π---同阶,故 当0α>时积分收敛。 ⑵ k = ±1时,f(x)的可能瑕点仍是0,π 。1 120 1 I I I π = +=+?? k = 1时,将cos x 在点π处展成Taylor 公式,可知1cos x +与2 ()x π-同阶。于是1I 仅当0α>时 收敛,2I 仅当0α<时收敛,从而原积分不收敛。 k = -1 时,将cos x 在点0处展成Taylor 公式,可知1-cos x 与2 x 同阶。于是1I 仅当0α<时 收敛,2I 仅当0α>时收敛,故原积分不收敛。

数项级数敛散性判别法。(总结)

华北水利水电学院 数项级数敛散性判别法。(总结) 课程名称:高等数学(下) 专业班级: 成员组成 联系方式: 2012年5月18日

摘要:在学习数项级数的时候,对于单一的方法所出的例题,大家都知道用何种方法去解决。但是等到所有的方法学完之后,再给出题目,大家似乎一头雾水,不知道用哪一种方法。有些同学甚至挨个拭每一种方法,虽然也可行。但是对于同一个级数,用不同的方法判断敛散性的难易程度不同,如果选用合适的方式,可以到到事半功倍的效果,但是如果悬选择了错误的方法,可能费了九牛二虎之力之后,得出的结果还是错误的。所以我们有必要总结一下判断敛散性的方法,了解它们的特性,才能更好地运用它们。 关键词:数项级数,敛散性,判断,方法。 英文题目 Abstract:Single out examples to learn a number of series,we all know which way to go.But wait until all of the methods after completing their studies are given topics,everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible.But for one series,using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect,but if the hanging has chosen the wrong way,may have spent nine cattle tigers after the power, the result is wrong.So we need to sum up to determine the convergence and divergence,and to understand their characteristics,in order to make better use of them. Key words:A number of series,convergence and divergence of judgment. 引言:以下介绍书中所提到的判断数项级数敛散性的定理,并通过一些例题,讲解它们各自的适用范围。并总结出判断敛散性的一般思维过程。

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 定理11.1 无穷积分()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便 有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()221 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

无穷限反常积分敛散性及审敛法则(教案)

无穷限反常积分敛散性及审敛法则 一、教学目标分析 在开始本节课程学习之前,学生已经对定积分有所了解,并初步掌握定积分的基本知识,本节通过介绍反常积分,加深学生对积分的了解,使同学对积分的了解更加系统化,并通过讲解让同学们减轻对积分的迷惑。让学生反常积分在一些实际问题中的应运。 二、学情/学习者特征分析 学生通过对前面课程的学习,对积分已经有了初步的了解。但对于一些特殊积分或者有关实际问题的积分还是存在着一定的迷惑。由于本节内容有点枯燥,所以要积极调动学生的兴趣,培养好课堂气氛,使学生充分掌握本节课的内容。 三、学习内容分析 1.本节的作用和地位 通过对本节的学习来解决一些不属于定积分的问题,这些问题通常是一些实际问题。例如:常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分等问题。 2.本节主要内容 1. 无穷限反常积分的定义与计算方法 2. 无穷限反常积分的性质 3. 无穷限反常积分的比较审敛法则 4. 条件收敛与绝对收敛 3.重点难点分析 教学重点:无穷限反常积分计算,无穷限反常积分的比较审敛法则; 教学难点:无穷限反常积分的比较审敛法则。 4.课时要求:2课时 四、教学理念 学生在之前就已经掌握了一定的知识,通过本节对学生的教学使学生进一步了解反常积分,尤其是其在一些实际问题中的应运。 五、教学策略 在教学中主要讲清反常积分的定义及其性质,并适时举例讲解,引导学生互动,相互讨论解决问题。

六.教学环境 网络环境下的多媒体教室与课堂互动。 七、教学过程 一、无穷限反常积分的定义 定义1 设函数/定义在无穷区间[+∞,a )上,且在任何有限区间[u a ,]上可积.如果存在极限 J dx x f u a u =? +∞→)(lim 则称此极限J 为函数f 在[+∞,a )上的无穷限反常积分(简称无穷积分),记作 dx x f J a ?+∞ =)(,并称 dx x f a ?+∞ )(收敛.如果极限J dx x f u a u =? +∞→)(lim 不存在,亦称 dx x f a ?+∞ )(发散. 类似地,可定义f 在(b ,∞-]上的无穷积分:.)(lim )(dx x f dx x f b u u b ? ?-∞→∞-= 对于f 在(+∞∞-,)上的无穷积分,它用前面两种无穷积分来定义: ,)()()(dx x f dx x f dx x f a a ???+∞ ∞ -∞-+∞ +=其中a 为任一实数, 当且仅当右边两个无穷积分都收敛时它才是收敛的. 注: dx x f a ? +∞ )(收敛的几何意义是:若f 在],[+∞a 上为非负连续函数,则介于曲线 )(x f y =,直线a x =以及x 轴之间那一块向右无限延伸的阴影区域有面积J . 例1 讨论无穷积分.1) 10 2? +∞ +x dx ,.1)22 ?∞+∞-+x dx ,.)302 ?+∞-dx xe x 的收敛性. 例2 讨论下列无穷积分的收敛性:? +∞ 1 ) 1p x dx , ;)(ln )22?+∞p x x dx 二、无穷积分的性质 由定义知道,无穷积分 ?+∞ a dx x f )(收敛与否,取决于积分上限函数= )(u F ? u a dx x f )(在 +∞→u 时是否存在极限.因此可由函数极限的柯西准则导出无穷积分收敛的柯西准则. 定理11.1 无穷积分 ? +∞a dx x f )(收敛的充要条件是:任给ε>0,存在G ≥a ,只要 G u u >21,,便有 ε<= -? ? ?2 1 2 1 )()()(u u u a u a dx x f dx x f dx x f .

积分敛散性的判断

目录 摘要 (2) 引言 (3) 1无穷积分 (5) 1.1无穷积分的概念 (5) 1.2无穷积分敛散性的柯西准则 (5) 1.3无穷积分敛散性的比较判别法 (6) 1.4无穷积分的敛散性的狄利克雷与阿贝尔判别法 (7) 2瑕积分 (8) 2.1瑕积分的定义 (9) 2.2瑕积分的敛散性的比较判别法.................................................................... (10) 2.3.瑕积分敛散性的柯西判别法 (10) 2.4无穷积分的敛散性的狄利克雷与阿贝尔判别法.................... .. (12) 3瑕积分与无穷积分之间的关系............................................................ (13) 总结.................................................................................................... .. (13) 参考文献.............................................................................................. .. (14)

判断反常积分敛散性的方法 谢鹏数学与计算机科学学院 摘要:反常积分的收敛性是数学分析中的难点之一,本文介绍了反常积分敛散性的定义和一些重要的反常积分收敛和发散的例子,以及绝对收敛和条件收敛的概念等,让读者能够用反常积分的柯西收敛原理、非负函数反常积分的比较判别法、柯西判别法,以及一般函数反常积分的狄利克雷、阿贝尔判别法判别法判别基本的反常积分敛散性,以便更好的掌握反常积分收敛先判断的方法. 关键词:无穷积分;瑕积分;敛散性;判别方法 On Convergence of The Method of Judging Abnormal Integral Name of student, School: XiePeng,School of Mathematics & Computer Science

无穷积分的敛散判别法

无穷积分的敛散判别法 摘 要:本文主要介绍了无穷积分的几种敛散判别方法,并对这些方法作一些规律性的分析,总结. 关键词:无穷积分;收敛;柯西准则;发散 The convergence and divergence method of infinite integral Abstract :this article mainly introduces several kinds of infinite integral convergence and divergence discrimination method ,and the method for some regularity analysis ,summary. Key Words :Infinite integral; Convergence ;Cauchy criterion;Divergence 前言 我们知道当讨论定积分时要考虑两个条件:一是积分区间时必须是有限闭区间;二是 被积函数必须是有界函数.但实际应用中会遇到积分的上限或下限趋于无穷大的情况,这时虽然可以用牛顿-莱布尼茨公式再求极限来解决,但是,如果被积函数的原函数不是初等函数,那么,就不能用上面的方法来解决问题了.这时,这个问题就变成积分上限函数当上限趋于无穷大时的极限是否存在的问题.这即是所谓的反常积分的敛散性问题.这里我们给出几种判断无穷积分敛散的方法. 1 无穷积分的定义 定义:设函数f 定义在无穷积分区间[,)a +∞上,且在任何有限区间[,]a u 上可积.如果存在极限 l i m ()u u a f x d x J →∞=? 则称此极限J 为函数f 在[,)a +∞上的无穷限反常积分(简称无穷积分),记作 ()a f x dx J +∞ =? 并称()a f x dx +∞? 收敛.如果极限不存在,为方便起见,亦称()a f x dx +∞? 发散. 类似地,可定义f 在(,]b -∞上的无穷积分: ()()lim b u b u f x dx f x dx →∞-∞=?? 对于在(,)-∞+∞上的无穷积分,他用前面两种无穷积分来定义: ()()()b a f x dx f x dx f x dx +∞ +∞ -∞-∞ =+??? , 其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.

数项级数敛散性判别方法

华北水利水电 大学 课题 : 数项级数敛散性判别方法(总结) 专业班级:水利港航39班 成员组成:丁哲祥 201203901 联系方式: 2012.05.23

数项级数敛散性判别法(总结) 摘要:数项级数是逼近理论中的重要内容之一,也是高等数学的重要组成部分。本章我们先介绍数项级数的一些基本性质和收敛判别方法然后讨论函数的幂级数展开和三角级数展开。我们这学期学习过的数项级数敛散性判别法有许多,本文对数项级数敛散性的判别方法进行了分析归纳总结,得到的解题方法。以便我们更好的掌握它。 关键词:数项级数敛散性判别方法总结 Several series gathered of the criterion scattered method (summary) Abstract:The sequence series is one of the main contents in the mathematical analysis. We learn this semester the several series gathered of the criterio n has many scattered method, this paper folding a series of logarithm scat tered discriminant method is analyzed sum-up, get the problem solving m ethod. Key words: Several series; Gathered scattered sex; Identifying method; a nalysis summary

广义积分敛散性判别法的应用

安.师专攀报(自泊科学蔽)1995年旅魂翔 2)若、‘1,。0)的敛散性推导得出的。这在分析教材 中都有介绍。 在使用判别法时,关键在于如何选取入与d,使得符合判别法的条件,从而得出相应的结 论—收敛或发散。一般来说.这种选取是较为困难的。因此,选取入、d,就成为教学中的难点,在分析教材中的例,都是预见选好了入,求出d,据判别法得出相应结论。具体做习题时,在选取入后;还要结合考虑x性(x)的极限,当入,d符合判别法条件l)或幻后,才有相应的结论。对入、d 用“尝试法洲对号入座”,一般不易掌握,但是考虑判别法的特点,还是有一定规律可循的。我们通过对下述例题的讨论,看怎样选取入与d。 例‘讨论几兴dx的敛散性 解一”是被积分函数‘(x,一兴的瑕点·”0<·<,时,in·<”,叮>”, 考虑极限31imx了 工一。+ 一Inx 、反二一1im一Inx~1sm4x寺一。‘一。十x一皿一。十 。___3___.,~~,、,,‘,_ 送里入~丁丈1,d~U,砍原积分收双。悦 分析讨论:能否取入一告呢?‘ 由极限lim、奋 x~。+ 一InX V下~lim(一inx)~一co,不满足O<入<1,O簇d<十、的条件。x一O+ 怎样确定入呢?我们考虑极限limx‘ x~。十 Inx 侧丁~1jm,要使该极限值为有限,而O<久

无穷积分敛散性判别法

无穷积分敛散性的判别法 郑汉彬 摘 要:无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的—个先决条件。由于判别方法比较多,学生不易掌握,从而是数学分析的一个难点,也一直是一个重要的研究课题。本文就一些常见和不常见的判定方法做一个归纳,这样将有助于我们灵活地运用各种判别法判定无穷积分的敛散性。 关键词:无穷积分;瑕积分;收敛性;判别法 无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的一个先决条件。由于判断方法比较多,不易掌握,从而是数学分析和高等数学的一个难点。最原始的判别方法是对积分区间无穷型的反常积分先将积分限视为有限的积分区间,按常义积分处理,待积分求出原函数后再考查其极限是否存在,再用极限去判定原积分是否收敛。 本文以文献中相关定理为基础,并对相关的文献资料中给出的无穷积分敛散性判定方法的相关理论进行总结及一定的改进和补充,使之能够更广泛地应用于无穷积分敛散性判定中,对比了各种类型的无穷积分敛散性判定方法的应用以及在应用过程中应注意的一些巧妙方法,不仅使这些原本复杂的问题简单化,而且可避免出现错误。 1 无穷积分的敛散性 定义1 设函数)(x f 在 ),[+∞a 上有定义,且对)(,x f a b >?在上],[b a 可积,当 ()lim b a b f x dx J →+∞=? 存在,称此极限J 为函数)(x f 在区间),[+∞a 上的无穷限反常积分(简称无穷积分),记为 ()a J f x dx +∞ =? 这时称积分 ? +∞ a dx x f )(是收敛的.如果上述极限不存在,为方便起见,并称无穷积分? +∞a dx x f )(发散. 2 无穷积分敛散性的判别法 如何判断一个无穷积分的敛散性,这是无穷积分理论的重要内容之一。对此,我们首先建立一个收敛准则,然后再介绍几种常有的敛散性判别法。 柯西收敛准则 因为无穷积分 ? +∞ a dx x f )(的收敛问题即是极限? +∞→A a A dx x f )(lim 的存在问题,所以由极限的柯西收敛

(整理)9广义积分习题课

第九章广义积分习题课 一、主要容 1、基本概念 无穷限广义积分和无界函数广义积分敛散性的定义、绝对收敛、条件收敛。 2、敛散性判别法 Cauchy收敛准则、比较判别法、Cauchy判别法、Abel判别法、Dirichlet 判别法。 3、广义积分的计算 4、广义积分与数项级数的关系 5、广义积分敛散性的判别原则和程序 包括定义在的广义积分的各种判别法都有特定的作用对象和原则,定义既是定性的――用于判断简单的具体广义积分的敛散性,也是定量的――用于计算广义积分,其它判别法都是定性的,只能用于判断敛散性,Cauchy判别法可以用于抽象、半抽象及简单的具体广义积分的敛散性,比较判别法和Cauchy 判别法用于不变号函数的具体广义积分和抽象广义积分判别法,Abel判别法和Dirichlet判别法处理的广义积分结构更复杂、更一般。 对具体广义积分敛散性判别的程序: 1、比较法。 2、Cauchy法。

3、Abel 判别法和Dirichlet 判别法。 4、临界情况的定义法。 5、发散性判别的Cauchy 收敛准则。 注、对一个具体的广义积分敛散性的判别,比较法和Cauchy 法所起作用基本相同。 注、在判断广义积分敛散性时要求: 1、根据具体题型结构,分析特点,灵活选择方法。 2、处理问题的主要思想:简化矛盾,集中统一,重点处理。 3、重点要掌握的技巧:阶的分析方法。 二、典型例子 下述一系列例子,都是要求讨论其敛散性。注意判别法使用的顺序。 例1 判断广义积分?+∞ +=0q p x x dx I 的敛散性。 分析 从结构看,主要是分析分母中两个因子的作用。 解、记?+=1 01q p x x dx I ,?+∞+=12q p x x dx I 对1I ,先讨论简单情形。 q p =时,1

p 时,由于

关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1)(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

论广义积分的收敛性

论广义积分的收敛性 摘要 广义积分是定积分概念的推广至无限区间和有限区间上的无界函数的情形,而定积分的的主要特点是积分区间有界,并且在此区间上被积函数为有界函数,而这两个限制条件不能很好地解决实际中的有些问题,于是突破这两条限制的束缚便得到其推广形式即广义积分。大部分的广义积分不可被直接计算,有的虽然能计算出它的值,但计算过程十分麻烦,因此判断广义积分的收敛性就成为广义积分求值的一个决定性条件。本文就针对敛散性论述广义积分,针对几种不同类别的广义积分形式,讨论几种比较常用的判别方技巧。 1.首先我们可以利用收敛积分的余部可以判定所求积分是否收敛.对于 ?+∞ a dx x f )(和 ?+∞ b dx x f )(,如果b>a,则 ?+∞ b dx x f )(称为 ?+∞ a dx x f )(的余部。因为改变下限积 分的值(a 不是奇点),或对被积函数乘以非零常数,都不改变积分的敛散性,即?b>a,k ≠0,都有 ?+∞ a dx x f )(收敛??+∞ b dx x f )(收敛, ?+∞ a dx x f )(收敛? ?+∞ b dx x kf )(收敛. 另外,如果f (x ),g(x)的广义积分都收敛,那么线性组合αf(x)+βg(x)的广义积分也收敛,对于其余类型的广义积分,也有类似的结论. 2.对于两个端点都是奇点的广义积分,我们可以任取区间内的任意一点x 0,把积分分成两半,再分别判断这两半积分的收敛性.例如定义广义积分 f x dx +∞ ?∞,设函数f(x)在区间(?∞,+∞)上内闭有界可积,除端点外再没有奇点.取一点x 0,定义 ? +∞ ∞ -)(dx x f = f x dx x 0?∞+ f x dx +∞ x 0 , 如果右端这两个广义积分都收敛,就称左端的广义积分收敛(否则称其发散). 对于内闭有界可积,且在积分区间I 内有有限个奇点的广义积分,为了方便地得到广义积分是否收敛,我们可以把积分区间上的几点去掉,这样以奇点为分点,广义积分的区间就被分成许多个小区间I =I 1∪I 2∪···∪I n .于是就可以定义 ?I dx x f )(=? I dx x f 1 )(+?I dx x f 2 ) (+···+ ? I dx x f n )( 如果右端每个广义积分都收敛,就称左端这个广义积分收敛(否则就称发散). 3.对于广义积分 f x dx +∞ a ,如果函数f(x)在区间 a ,+∞ 上以+∞为唯一奇点,且内闭有 界可积,并且有原函数F (x ),那么

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发 散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性 定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。

广义积分的收敛判别法

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分? +∞a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数 )(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性

定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。 二 正项级数的收敛判别 各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。从基本定理出发,我们可以由此建立一系列基本的判别法 1 比较判别法 设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有 n n v u ≤,则 (i )级数∑n v 收敛,则级数∑n u 也收敛; (ii )若级数∑n u 发散,则级数∑n v 也发散。 例 1 . 设∑∞ =1 2 n n a 收敛,证明:∑ ∞ =2 ln n n n n a 收敛(n a >0). 证明:因为 0<∑∞ =1 2 n n a <)ln 1(212 2n n a n +

相关文档
最新文档