遗传算法程序代码--多目标优化--函数最值问题

遗传算法程序代码--多目标优化--函数最值问题
遗传算法程序代码--多目标优化--函数最值问题

函数最值问题:F=X2+Y2-Z2,

clear

clc

%%初始化

pc=0.9; %交叉概率

pm=0.05; %变异概率

popsize=500;

chromlength1=21;

chromlength2=23;

chromlength3=20;

chromlength=chromlength1+chromlength2+chromlength3;

pop=initpop(popsize,chromlength);% 产生初始种群

for i=1:500

[objvalue]=calobjvalue(pop); %计算目标函数值

[fitvalue]=calfitvalue(objvalue);%计算个体适应度

[newpop]=selection(pop,fitvalue);%选择

[newpop1]=crossover(newpop,pc) ; %交叉

[newpop2]=mutation(newpop1,pm) ;%变异

[newobjvalue]=newcalobjvalue(newpop2); %计算最新代目标函数值

[newfitvalue]=newcalfitvalue(newobjvalue); % 计算新种群适应度值[bestindividual,bestfit]=best(newpop2,newfitvalue); %求出群体中适应值最大的个体及其适应值

y(i)=max(bestfit); %储存最优个体适应值

pop5=bestindividual; %储存最优个体

n(i)=i; %记录最优代位置

%解码

x1(i)=0+decodechrom(pop5,1,21)*2/(pow2(21)-1);

x2(i)=decodechrom(pop5,22,23)*6/(pow2(23)-1)-1;

x3(i)=decodechrom(pop5,45,20)*1/(pow2(20)-1);

pop=newpop2;

end

%%绘图

figure(1)%最优点变化趋势图

i=1:500;

plot(y(i),'-b*')

xlabel('迭代次数');

ylabel('最优个体适应值');

title('最优点变化趋势');

legend('最优点');

grid on

[z index]=max(y); %计算最大值及其位置

PO=n(index) %最优个体的位置

X=x1(index)

Y=x2(index)

Z=x3(index)

F=z

function [bestindividual,bestfit]=best(newpop2,newfitvalue)

% 求出群体中最大得适应值及其个体

%遗传算法子程序

%Name: best.m

[px,py]=size(newpop2);

bestindividual=newpop2(1,:);

bestfit=newfitvalue(1);

for i=2:px

if newfitvalue(i)>bestfit

bestindividual=newpop2(i,:);

bestfit=newfitvalue(i);

end

end

function [fitvalue]=calfitvalue(objvalue)

% 计算个体的适应值

%遗传算法子程序

%Name:calfitvalue.m

fitvalue=objvalue;

function [objvalue]=calobjvalue(pop)

% 计算目标函数值

%遗传算法子程序

%Name: calobjvalue.m

temp1=decodechrom(pop,1,21); %将pop每行转化成十进制数相当于X'

temp2=decodechrom(pop,22,23);

temp3=decodechrom(pop,45,20);

x1=temp1*2/(pow2(21)-1); %将二值域中的数转化为变量域的数相当于十进制的X

x2=temp2*6/(pow2(23)-1)-1;

x3=temp3*1/(pow2(20)-1);

objvalue=x1.^2+x2.^2-x3.^2; %计算目标函数值

function [newpop1]=crossover(newpop,pc)

%交叉

%遗传算法子程序

%Name: crossover.m

[px,py]=size(newpop);

newpop1=zeros(size(newpop));

for i=1:2:px-1

po=rand(1);

if po

cpoint=round(rand*py); %随机寻找交叉点

newpop1(i,:)=[newpop(i+1,1:cpoint),newpop(i,cpoint+1:py)]; %相邻两个染色体在交叉点位置交叉

newpop1(i+1,:)=[newpop(i,1:cpoint),newpop(i+1,cpoint+1:py)];

else

newpop1(i,:)=newpop(i,:);%不产生新染色体

newpop1(i+1,:)=newpop(i+1,:);

end

end

function pop2=decodebinary(pop)

% 将二进制数转化为十进制数(1)

%遗传算法子程序

%Name: decodebinary.m

%产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制

[px,py]=size(pop); %求pop行和列数

for i=1:py

pop1(:,i)=2.^(py-i).*pop(:,i);

end

pop2=sum(pop1,2); %求pop1的每行之和

function pop2=decodechrom(pop,spoint,length)

% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。)

% 参数1ength表示所截取的长度。

%Name: decodechrom.m

pop1=pop(:,spoint:spoint+length-1);

pop2=decodebinary(pop1);

function pop=initpop(popsize,chromlength)

% 初始化(编码)

% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度。

%遗传算法子程序

%Name: initpop.m

pop=round(rand(popsize,chromlength));% rand随机产生每个单元为{0,1} 行数为popsize,列数为chromlength的矩阵,

% round对矩阵的每个单元进行圆整。这样产生的初始种群。

function [newpop2]=mutation(newpop1,pm)

% 变异

%Name: mutation.m

[px,py]=size(newpop1);

newpop2=zeros(px,py);

for i=1:px

ps=rand;

if ps

mpoint=round(rand*py);

if mpoint<=0

mpoint=1;

end

if newpop1(i,mpoint)==0

newpop1(i,mpoint)=1;

else

newpop1(i,mpoint)=0;

end

else

end

end

newpop2=newpop1;

function [newpop2]=mutation(newpop1,pm) % 变异

%Name: mutation.m

[px,py]=size(newpop1);

newpop2=zeros(px,py);

for i=1:px

ps=rand;

if ps

mpoint=round(rand*py);

if mpoint<=0

mpoint=1;

end

if newpop1(i,mpoint)==0

newpop1(i,mpoint)=1;

else

newpop1(i,mpoint)=0;

end

else

end

end

newpop2=newpop1;

function [newobjvalue]=newcalobjvalue(newpop2)

% 计算目标函数值,最新代

%遗传算法子程序

%Name: newcalobjvalue.m

temp1=decodechrom(newpop2,1,21); %将pop每行转化成十进制数相当于X'

temp2=decodechrom(newpop2,22,23);

temp3=decodechrom(newpop2,45,20);

x1=temp1*2/(pow2(21)-1); %将二值域中的数转化为变量域的数相当于十进制的X x2=temp2*6/(pow2(23)-1)-1;

x3=temp3*1/(pow2(20)-1);

newobjvalue=x1.^2+x2.^2-x3.^2; %计算目标函数值

function [newpop]=selection(pop,fitvalue)

%选择操作

objvalue=calobjvalue(pop);

fitvalue=calfitvalue(objvalue);

totalfit=sum(fitvalue); %求适应度值之和

pfitvalue=fitvalue/totalfit; %单个个体被选择的概率

if pfitvalue<0

pfitvalue==0;

end

mfitvalue=cumsum(pfitvalue); %如fitvalue=[1 2 3 4],则cumsum(fitvalue)=[1 3 6 10] [px,py]=size(pop);

ms=sort(rand(px,1)); %从小到大排列

fitin=1;

newin=1;

newpop=zeros(px,py);

while newin<=px

if mfitvalue(fitin)>ms(newin)

newpop(newin,:)=pop(fitin,:);

newin=newin+1;

else

fitin=fitin+1;

end

end

遗传算法用于函数优化

遗传算法用于函数优化求解 一、实验目的 本实验要求在掌握遗传算法的基本思想、原理和算法流程的基础上,能够针对指定的单变量优化目标函数,设计相应的遗传算法优化程序,并求得全局最优解。 二、实验要求 针对目标函数 2 1(1),[0,2]y x x =--∈,设计利用遗传算法进行优化求解的程序,绘制迭代过程中最优解的变化情况,并分别改变算法中的编码位数、种群规模、交叉和变异概率,分析这些变量对算法精度及收敛性的影响。 三、实验步骤 1、初始化种群,确定种群规模M=20,编码位数n=5 和编码机制(二进制编码); 初始化种群:E = round(rand(M,n)); 每个编码对应的二进制数值: (1) 2i i i y y -=?∑ i y 为第i 位二进制代码; 二进制数y 转换为十进制数x : max min min *21n x x x y x -= +-; 2、根据给定的目标函数,计算各个种群的适应度值; 3、采用轮盘选择法对种群进行选择复制; 4、设定交叉概率为0.9,进行遗传操作(交叉); 5、设定变异概率0.05,进行遗传操作(变异); 6、产生下一代种群,与终止条件比较,不满足返回到步骤2直到满足条件退出。 算法的流程如图7.1所示。

N Y 结束 输出结果 迭代次数达上限? 开始 初始化种群(编码) 计算适应度函数 交叉、变异 选择、复制 达到系统指标? 图7.1 算法流程图 四、实验结果及分析 我们采用遗传算法来寻求目标函数的最大值。初始化样本个数为20个,编码位数为5位,采用二进制编码,交叉概率为0.9,变异概率为0.05,最大迭代次数为1000次,初始样本随机选择,当父代与子代间适应度变化小于0.001时,达到系统指标。MATLAB 模拟运行输出迭代种群的平均适应度变化、种群的最优解与最差解,绘出图像(见图1),计算运行时间的平均值(见表1),由表可知,平均运行时间约为0.65秒左右,速度较快。由图可知,前期平均适应度是不断上升的,到达一定程度后即平均适应度在0.9以上后,就基本处于波动平衡状态。

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

多目标遗传算法代码

. % function nsga_2(pro) %% Main Function % Main program to run the NSGA-II MOEA. % Read the corresponding documentation to learn more about multiobjective % optimization using evolutionary algorithms. % initialize_variables has two arguments; First being the population size % and the second the problem number. '1' corresponds to MOP1 and '2' % corresponds to MOP2. %inp_para_definition=input_parameters_definition; %% Initialize the variables % Declare the variables and initialize their values % pop - population % gen - generations % pro - problem number %clear;clc;tic; pop = 100; % 每一代的种群数 gen = 100; % 总共的代数 pro = 2; % 问题选择1或者2,见switch switch pro case 1 % M is the number of objectives. M = 2; % V is the number of decision variables. In this case it is % difficult to visualize the decision variables space while the % objective space is just two dimensional. V = 6; case 2 M = 3; V = 12; case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case 3 为本工程所需; M = 2; %(output parameters 个数) V = 8; %(input parameters 个数) K = 10; end % Initialize the population chromosome = initialize_variables(pop,pro); %% Sort the initialized population % Sort the population using non-domination-sort. This returns two columns % for each individual which are the rank and the crowding distance

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

浅析多目标优化问题

浅析多目标优化问题 【摘要】本文介绍了多目标优化问题的问题定义。通过对多目标优化算法、评估方法和测试用例的研究,分析了多目标优化问题所面临的挑战和困难。 【关键词】多目标优化问题;多目标优化算法;评估方法;测试用例 多目标优化问题MOPs (Multiobjective Optimization Problems)是工程实践和科学研究中的主要问题形式之一,广泛存在于优化控制、机械设计、数据挖掘、移动网络规划和逻辑电路设计等问题中。MOPs有多个目标,且各目标相互冲突。对于MOPs,通常存在一个折衷的解集(即Pareto最优解集),解集中的各个解在多目标之间进行权衡。获取具有良好收敛性及分布性的解集是求解MOPs的关键。 1 问题定义 最小化MOPs的一般描述如下: 2 多目标优化算法 目前,大量算法用于求解MOPs。通常,可以将求解MOPs的算法分为两类。 第一类算法,将MOPs转化为单目标优化问题。算法为每个目标设置权值,通过加权的方式将多目标转化为单目标。经过改变权值大小,多次求解MOPs 可以得到多个最优解,构成非支配解集[1]。 第二类算法,直接求解MOPs。这类算法主要依靠进化算法。进化算法这种面向种群的全局搜索法,对于直接得到非支配解集是非常有效的。基于进化算法的多目标优化算法被称为多目标进化算法。根据其特性,多目标进化算法可以划分为两代[2]。 (1)第一代算法:以适应度共享机制为分布性策略,并利用Pareto支配关系设计适应度函数。代表算法如下。VEGA将种群划分为若干子种群,每个子种群相对于一个目标进行优化,最终将子种群合并。MOGA根据解的支配关系,为每个解分配等级,算法按照等级为解设置适应度函数。NSGA采用非支配排序的思想为每个解分配虚拟适应度值,在进化过程中,算法根据虚拟适应度值采用比例选择法选择下一代。NPGA根据支配关系采用锦标赛选择法,当解的支配关系相同时,算法使用小生境技术选择最优的解进入下一代。 (2)第二代算法:以精英解保留机制为特征,并提出了多种较好的分布性策略。代表算法如下。NSGA-II降低了非支配排序的复杂度,并提出了基于拥挤距离的分布性策略。SPEA2提出了新的适应度分配策略和基于环境选择的分布性策略。PESA-II根据网络超格选择个体并使用了基于拥挤系数的分布性策略。

遗传算法在多目标优化的应用:公式,讨论,概述总括

遗传算法在多目标优化的应用:公式,讨论,概述/总括 概述 本文主要以适合度函数为基础的分配方法来阐述多目标遗传算法。传统的群落形成方法(niche formation method)在此也有适当的延伸,并提供了群落大小界定的理论根据。适合度分配方法可将外部决策者直接纳入问题研究范围,最终通过多目标遗传算法进行进一步总结:遗传算法在多目标优化圈中为是最优的解决方法,而且它还将决策者纳入在问题讨论范围内。适合度分配方法通过遗传算法和外部决策者的相互作用以找到问题最优的解决方案,并且详细解释遗传算法和外部决策者如何通过相互作用以得出最终结果。 1.简介 求非劣解集是多目标决策的基本手段。已有成熟的非劣解生成技术本质上都是以标量优化的手段通过多次计算得到非劣解集。目前遗传算法在多目标问题中的应用方法多数是根据决策偏好信息,先将多目标问题标量化处理为单目标问题后再以遗传算法求解,仍然没有脱离传统的多目标问题分步解决的方式。在没有偏好信息条件下直接使用遗传算法推求多目标非劣解的解集的研究尚不多见。 本文根据遗传算法每代均产生大量可行解和隐含的并行性这一特点,设计了一种基于排序的表现矩阵测度可行解对所有目标总体表现好坏的向量比较方法,并通过在个体适应度定标中引入该方法,控制优解替换和保持种群多样性,采用自适应变化的方式确定交叉和变异概率,设计了多目标遗传算法(Multi Objective Genetic Algorithm, MOGA)。该算法通过一次计算就可以得到问题的非劣解集, 简化了多目标问题的优化求解步骤。 多目标问题中在没有给出决策偏好信息的前提下,难以直接衡量解的优劣,这是遗传算法应用到多目标问题中的最大困难。根据遗传算法中每一代都有大量的可行解产生这一特点,我们考虑通过可行解之间相互比较淘汰劣解的办法来达到最 后对非劣解集的逼近。 考虑一个n维的多目标规划问题,且均为目标函数最大化, 其劣解可以定义为: f i (x * )≤f i (x t ) i=1,2,??,n (1) 且式(1)至少对一个i取“<”。即至少劣于一个可行解的x必为劣解。 对于遗传算法中产生大量的可行解,我们考虑对同一代中的个体基于目标函数相互比较,淘汰掉确定的劣解,并以生成的新解予以替换。经过数量足够大的种群一定次数的进化计算,可以得到一个接近非劣解集前沿面的解集,在一定精度要求下,可以近似的将其作为非劣解集。 个体的适应度计算方法确定后,为保证能得到非劣解集,算法设计中必须处理好以下问题:(1)保持种群的多样性及进化方向的控制。算法需要求出的是一组不同的非劣解,所以计算中要防止种群收敛到某一个解。与一般遗传算法进化到

遗传算法求复杂函数极值问题【精品毕业设计】(完整版)

遗传算法求复杂函数极值问题 中文摘要: 本文首先介绍遗传算法的历史背景,基本思想,对遗传算法的常见的编码解码方法进行了深入的阐述,并对算子选择方法进行深入分析和对比,在此基础上把遗传算法应用于求解复杂函数的极值计算。最后在MATLAB语言环境下编写程序,对求解函数的最大值进行了仿真,并对调试的结果进行了分析,得出了部分结论。 关键词:遗传算法最优解算子选择复杂函数 作者:xx xx 指导老师:xxxx xx

Using Genetic Algorithm to Solve Extreme Problem of Complex Function Abstract Firstly,the historical background and basic idea of genetic algorithm are introduced in this paper. The common coding and decoding method of genetic algorithm are discussed too. Secondly, the selection method of genetic operator is analyzed and compared deeply, based on which genetic algorithm is used to solve extreme problem of complex function. Finally, with MA TLAB software, the program is compiled and the maximum is sought out. At the end of the paper, the debugging result is analyzed and the conclusion is given. Keywords: Genetic Algorithm Optimal Solution Operator Selection Complex Function Written by : xx xx Supervised by: xxxx xx

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations', 200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

基于遗传算法的库位优化问题

Logistics Sci-Tech 2010.5 收稿日期:2010-02-07 作者简介:周兴建(1979-),男,湖北黄冈人,武汉科技学院经济管理学院,讲师,武汉理工大学交通学院博士研究生,研究方向:物流价值链、物流系统规划;刘元奇(1988-),男,甘肃天水人,武汉科技学院经济管理学院;李泉(1989-),男,湖北 武汉人,武汉科技学院经济管理学院。 文章编号:1002-3100(2010)05-0038-03 物流科技2010年第5期Logistics Sci-Tech No.5,2010 摘 要:应用遗传算法对邯运集团仓库库位进行优化。在充分考虑邯运集团仓库所存放的货物种类、货物数量、出入库频 率等因素的基础上进行库位预分区规划,建立了二次指派问题的数学模型。利用遗传算法对其求解,结合MATLAB 进行编程计算并得出最优划分方案。 关键词:遗传算法;预分区规划;库位优化中图分类号:F253.4 文献标识码:A Abstract:The paper optimize the storage position in warehouse of Hanyun Group based on genetic algorithm.With thinking of the factors such as goods categories,quantities and frequencies of I/O,etc,firstly,the storage district is planned.Then the model of quadratic assignment problems is build,and genetic algorithm is utilized to resolve the problem.The software MATLAB is used to program and figure out the best alternatives. Key words:genetic algorithm;district planning;storage position optimization 1 库位优化的提出 邯郸交通运输集团有限公司(简称“邯运集团”)是一家集多种业务为一体的大型综合性物流企业。邯运集团的主要业务板块有原料采购(天信运业及天昊、天诚、天恒等)、快递服务(飞马快运)、汽贸业务(天诚汽贸)及仓储配送(河北快运)等。其中,邯运集团的仓储配送业务由河北快运经营,现有仓库面积总共40000㎡,主要的业务范围为医药、日用百货、卷烟、陶瓷、化工产品的配送,其中以医药为主。邯运集团库存货物主要涉及两个方面:一个是大宗的供应商货物,如医药,化工产品等;另一方面主要是大规模的小件快递货物,如日用百货等[1]。经分析,邯运集团在仓储运作方面存在如下问题: (1)存储货物繁多而分拣速度低下。仓库每天到货近400箱,有近200多种规格,缺乏一套行之有效的仓储管理系统。(2)货架高度不当而货位分配混乱。现在采用的货架高度在2米以上,而且将整箱货物直接码垛在货架上,不严格按货位摆放。当需要往货架最上层码放货物需要借助梯子,增加操作难度且操作效率较低。货物在拣货区货架摆放是以件为单位的,分拣和搬运速度较慢。 (3)拣货货架设计不当而仓储效率低下。发货前装箱工作主要由人工协同完成,出库效率低,出错率难以控制。 (4)存储能力和分拣能力不能满足需求。根据邯运集团的业务发展现状及趋势,现有的仓库储存和分拣能力远远达不到集团公司对配送业务量的需求。 当前邯运集团的货位分配主要采用物理地址编码的方式,很少考虑货位分配对仓储管理员工作效率的影响。对其进行库位优化设计不仅直接影响到其库存量的大小、出入库的效率,还间接影响到邯运集团的整体经营效益。本文对邯运集团的仓库货位进行优化时,结合考虑仓库所存放的货物种类、货物数量、出入库频率等因素,对仓库货位进行规划,以提高仓储效率。 2库位预分区规划 在进行仓库货位规划时,作如下假设: (1)货物的存放种类已知; (2)货物每种类的单位时间内存放的数量己知; (3) 每一种货物的存取频率已知。 在仓库货位优化中一个重要的环节即预分区。所谓预分区,是指没有存放货物时的分区,分区时只考虑仓储作业人员的速基于遗传算法的库位优化问题 Optimization of Storage Position in Warehouse Based on Genetic Algorithm 周兴建1,2,刘元奇1,李泉1 ZHOU Xing-jian 1,2,LIU Yuan-qi 1,LI Quan 1 (1.武汉科技学院经济管理学院,湖北武汉430073;2.武汉理工大学交通学院,湖北武汉430063) (1.College of Economics &Management,Wuhan University of Science &Engineering,Wuhan 430073,China; 2.School of Transportation,Wuhan University of Technology,Wuhan 430063,China) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 38

(实例)matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B], 如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverO ps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

遗传算法多目标函数优化

多目标遗传算法优化 铣削正交试验结果 说明: 1.建立切削力和表面粗糙度模型 如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1) a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2) R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457 10002/c z p e Q v f a a D π=-????(3) 变量约束范围:401000.020.080.25 1.0210c z e p v f a a ≤≤??≤≤??≤≤? ?≤≤? 公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8 2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下: clear; clc; % 遗传算法直接求解多目标优化 D=8; % Function handle to the fitness function F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)]; Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)]; Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

第五章-遗传算法工具箱函数

第五章遗传算法工具箱函数 本章介绍英国设菲尔德大学开发的遗传算法工具箱函数。 由于MATLAB高级语言的通用性,对问题用M文件编码,与此配对的是MA TLAB先进的数据分析、可视化工具、特殊目的的应用领域工具箱和展现给使用者具有研究遗传算法可能性的一致环境。MATLAB遗传算法工具箱为遗传算法从业者和第一次实验遗传算法的人提供了广泛多样的有用函数。 遗传算法工具箱使用MA TLAB矩阵函数为实现广泛领域的遗传算法建立一套通用工具,这个遗传算法工具是用M文件写成的,是命令行形式的函数,能完成遗传算法大部分重要功能的程序的集合。用户可通过这些命令行函数,根据实际分析的需要,编写出功能强大的MATLAB程序。 5.1 工具箱结构 本节给出GA工具箱的主要程序。表5.1为遗传算法工具箱中的各种函数分类表。 表5.1 遗传算法工具箱中函数分类表

5.1.1 种群表示和初始化 种群表示和初始化函数有:crtbase,crtbp,crtrp。 GA工具箱支持二进制、整数和浮点数的基因表示。二进制和整数种群可以使用工具箱中的crtbp建立二进制种群。crtbase是附加的功能,它提供向量描述整数表示。种群的实值可用crtrp进行初始化。在二进制代码和实值之间的变换可使用函数bs2rv,它支持格雷码和对数编码。 5.1.2 适应度计算 适应度函数有:ranking,scaling。 适应度函数用于转换目标函数值,给每一个个体一个非负的价值数。这个工具箱支持Goldberg的偏移法(offsetting)和比率法以及贝克的线性评估算法。另外,ranking函数支持非线性评估。 5.1.3 选择函数 选择函数有:reins,rws,select,sus。 这些函数根据个体的适应度大小在已知种群中选择一定数量的个体,对它的索引返回一个列向量。现在最合适的是轮盘赌选择(即rws函数)和随机遍历抽样(即sus函数)。高级入口函数select为选择程序,特别为多种群的使用提供了一个方便的接口界面。在这种情况下,代沟是必须的,这就是整个种群在每一代中没有被完全复制,reins能使用均匀的随机数或基于适应度的重新插入。 5.1.4 交叉算子 交叉算子函数有:recdis,recint,reclin,recmut,recombin,xovdp,xovdprs,xovmp,xovsh,xovshrs,xovsp,xovsprs。 交叉是通过给定的概率重组一对个体产生后代。单点交叉、两点交叉和洗牌交叉是由xovsp、xovdp、xovsh函数分别完成的。缩小代理交叉函数分别是:xovdprs、xovshrs和xovsprs。通用的多点交叉函数是xovmp,它提供均匀交换的支持。为支持染色体实值表示,离散的、中间的和线性重组分别由函数recdis、recint、reclin完成。函数recmut提供具有突变特征的线性重组。函数recombin是一高级入口函数,对所有交叉操作提供多子群支持入口。 5.1.5 变异算子 变异算子函数有:mut,mutate,mutbga。

遗传算法程序代码--多目标优化--函数最值问题

函数最值问题:F=X2+Y2-Z2, clear clc %%初始化 pc=0.9; %交叉概率 pm=0.05; %变异概率 popsize=500; chromlength1=21; chromlength2=23; chromlength3=20; chromlength=chromlength1+chromlength2+chromlength3; pop=initpop(popsize,chromlength);% 产生初始种群 for i=1:500 [objvalue]=calobjvalue(pop); %计算目标函数值 [fitvalue]=calfitvalue(objvalue);%计算个体适应度 [newpop]=selection(pop,fitvalue);%选择 [newpop1]=crossover(newpop,pc) ; %交叉 [newpop2]=mutation(newpop1,pm) ;%变异 [newobjvalue]=newcalobjvalue(newpop2); %计算最新代目标函数值 [newfitvalue]=newcalfitvalue(newobjvalue); % 计算新种群适应度值[bestindividual,bestfit]=best(newpop2,newfitvalue); %求出群体中适应值最大的个体及其适应值 y(i)=max(bestfit); %储存最优个体适应值 pop5=bestindividual; %储存最优个体 n(i)=i; %记录最优代位置 %解码 x1(i)=0+decodechrom(pop5,1,21)*2/(pow2(21)-1); x2(i)=decodechrom(pop5,22,23)*6/(pow2(23)-1)-1; x3(i)=decodechrom(pop5,45,20)*1/(pow2(20)-1); pop=newpop2; end %%绘图 figure(1)%最优点变化趋势图 i=1:500; plot(y(i),'-b*') xlabel('迭代次数'); ylabel('最优个体适应值'); title('最优点变化趋势'); legend('最优点');

遗传算法求解函数极值C语言代码

#include "stdio.h" #include "stdlib.h" #include "conio.h" #include "math.h" #include "time.h" #define num_C 12 //个体的个数,前6位表示x1,后6位表示x2 #define N 100 //群体规模为100 #define pc 0.9 //交叉概率为0.9 #define pm 0.1 //变异概率为10% #define ps 0.6 //进行选择时保留的比例 #define genmax 2000 //最大代数200 int RandomInteger(int low,int high); void Initial_gen(struct unit group[N]); void Sort(struct unit group[N]); void Copy_unit(struct unit *p1,struct unit *p2); void Cross(struct unit *p3,struct unit *p4); void Varation(struct unit group[N],int i); void Evolution(struct unit group[N]); float Calculate_cost(struct unit *p); void Print_optimum(struct unit group[N],int k); /* 定义个体信息*/ typedef struct unit { int path[num_C]; //每个个体的信息 double cost; //个体代价值 }; struct unit group[N]; //种群变量group int num_gen=0; //记录当前达到第几代 int main() { int i,j; srand((int)time(NULL)); //初始化随机数发生器 Initial_gen(group); //初始化种群 Evolution(group); //进化:选择、交叉、变异 getch(); return 0; } /* 初始化种群*/ void Initial_gen(struct unit group[N]) { int i,j; struct unit *p; for(i=0;i<=N-1;i++) //初始化种群里的100个个体 {

多目标优化算法与求解策略

多目标优化算法与求解策略 2多目标优化综述 2.1多目标优化的基本概念 多目标优化问题(Multi-objective Optimization Problem,MOP)起源于许多实际复杂系统的设计、建模和规划问题,这些系统所在的领域包括工业制造、城市运输、资本预算、森林管理、水库管理、新城市的布局和美化、能量分配等等。几乎每个重要的现实生活中的决策问题都要在考虑不同的约束的同时处理若干相互冲突的目标,这些问题都涉及多个目标的优化,这些目标并不是独立存在的,它们往往是祸合在一起的互相竞争的目标,每个目标具有不同的物理意义和量纲。它们的竞争性和复杂性使得对其优化变得困难。 多目标最优化是近20多年来迅速发展起来的应用数学的一门新兴学科。它研究向量目标函数满足一定约束条件时在某种意义下的最优化问题。由于现实世界的大量问题,都可归结为含有多个目标的最优化问题,自70年代以来,对于多目标最优化的研究,在国内和国际上都引起了人们极大的关注和重视。特别是近10多年来,理论探索不断深入,应用范围日益广泛,研究队伍迅速壮大,显示出勃勃生机。同时,随着对社会经济和工程设计中大型复杂系统研究的深入,多目标最优化的理论和方法也不断地受到严峻挑战并得到快速发展。近几年来,将遗传算法(Genetic Algorithm,GA)应用于多目标优化问题成为研究热点,这种算法通常称作多目标优化进化算法或多目标优化遗传算法。由于遗传算法的基本特点是多方向和全局搜索,这使得带有潜在解的种群能够一代一代地维持下来。从种群到种群的方法对于搜索Pareto解来说是十分有益的。 一般说来,科学研究与工程实践中许多优化问题大都是多目标优化问题。多目标优化问题中各目标之间通过决策变量相互制约,对其中一个目标优化必须以其它目标作为代价,而且各目标的单位又往往不一致,因此很难客观地评价多目标问题解的优劣性。与单目标优化问题的本质区别在于,多目标优化问题的解不是唯一的,而是存在一个最优解集合,集合中

遗传算法函数ga用法

matlab 遗传算法工具箱函数ga matlab 遗传算法工具箱函数及实例讲解 核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)-- 初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options-- 选择编码形式( 浮点编码或是二进制编码)[precisionF_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1 时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function[x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的 options 参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs-- 交叉函数名称表,以空格分开,如['arithXover heuristicXoversimpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0] mutFNs-- 变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0] 注意】matlab 工具箱函数必须放在工作目录下运算借过为:x =同的初始群体)一定可以得到近似最优解。

多目标遗传算法代码

% function nsga_2(pro) %% Main Function % Main program to run the NSGA-II MOEA. % Read the corresponding documentation to learn more about multiobjective % optimization using evolutionary algorithms. % initialize_variables has two arguments; First being the population size % and the second the problem number. '1' corresponds to MOP1 and '2' % corresponds to MOP2. %inp_para_definition=input_parameters_definition; %% Initialize the variables % Declare the variables and initialize their values % pop - population % gen - generations % pro - problem number %clear;clc;tic; pop = 100; % 每一代的种群数 gen = 100; % 总共的代数 pro = 2; % 问题选择1或者2,见switch switch pro case 1 % M is the number of objectives. M = 2; % V is the number of decision variables. In this case it is % difficult to visualize the decision variables space while the % objective space is just two dimensional. V = 6; case 2 M = 3; V = 12; case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case 3 为本工程所需; M = 2; %(output parameters 个数) V = 8; %(input parameters 个数) K = 10; end % Initialize the population chromosome = initialize_variables(pop,pro); %% Sort the initialized population % Sort the population using non-domination-sort. This returns two columns % for each individual which are the rank and the crowding distance % corresponding to their position in the front they belong. 真是牛X了。 chromosome = non_domination_sort_mod(chromosome,pro); %% Start the evolution process

相关文档
最新文档