苯乙醇酸(扁桃酸)的合成

苯乙醇酸(扁桃酸)的合成
苯乙醇酸(扁桃酸)的合成

苯乙醇酸(扁桃酸)的合成

摘要:

本实验使用5.2g新鲜蒸馏的苯甲醛、8mL氯仿作为原料,使用1.3g氯化苄基三乙铵为相转移催化剂,在50%的NaOH溶液中,发生卡宾反应生成(±)苯乙醇酸,得到略带淡黄色的白色片状晶体,产物重1.30g,产率为17%。

关键词:(±)苯乙醇酸相转移催化剂卡宾反应

一、实验目的: 1. 了解并掌握二氯卡宾的生成

2. 训练相转移催化反应

3. 复习巩固控制反应温度、混合溶剂重结晶等基本操作

二、反应方程式:

CHO

CHCl3

TEBAC H

OH

卡宾或称碳烯是一类具有6个价电子的两价碳活性中间体,通式:CR2,其中碳原子与两个原子或基团相连,另外还有一对没有参与成键的非键电子。最简单的卡宾是亚甲基:CH2,最常见的取代卡宾是二卤卡宾:CX2。由于碳周围只有六个电子,它是缺电子的,因此卡宾具有很强的亲电性,容易发生插入反应。

三、相转移催化反应原理:

相转移催化反应时20世纪70年代以来在有机合成中应用日趋广泛的一种新的合成方法。在有机合成中,均相反应通常容易进行,而水溶液的无机负离子和不溶于水的有机化合物之间的非均相反应,速率慢,产率低,甚至难以进行。但如果用水溶解无机盐,用极性小的有机溶剂溶解有机物,并加入少量的(通常是0.05mol以下)季铵盐或季磷盐,这反应很容易

进行。这些能促进反应并加快在两相之间转移负离子的化合物,称之为相转移催化剂。

常用的相转移催化剂有盐类、冠醚类和非环多醚类三种。

以季铵盐为代表的鎓盐如:

C6H5CH2N(CH2CH3)3Cl (CH3CH2CH2CH2)4NBr [CH3(CH2)6CH2]3NH2CH3Cl

三乙基苄基氯化铵四丁基溴化铵三辛基甲基氯化铵(TEBA)(TBAB)(TOMA)这些化合物具有同时在水相和有机相溶解的能力。其中烃基是油溶性基团,碳原子数一般不少于13,以保证具有足够的有用性,带正电的氮是水溶性基团。

季铵盐中的正离子与水溶液中具有反应活性的无机负离子形成离子对,可以将负离子从水相转移到有机相中。而在有机相中,负离子无溶剂化作用。由于正离子体积大,正负离子之间的间距也大,彼此间的作用弱,负离子可以看成是裸露的。因此反应活性大大增加。

本实验中用TEBAC作为相转移催化剂,加快卡宾的生成和反应,机理如下:

C6H5CH2N(C2H5)3Cl NaOH C

6

H5CH

2

H5)3

OH NaCl C6H5CH2N(C2H5)3Cl

CHCl3

Cl2C

C6H5CH22H5)3OH

C6H5CH2N(C2H5)3(CCl3)H2O 有机相反应

水相反应

四、实验步骤及实验现象:

将250mL三口瓶安装在磁力搅拌器上,三口分别装置回流冷凝管、滴液漏斗和温度计。在瓶中一次加入5mL(5.4g,0.049mol)新鲜蒸馏的苯甲醛、8mL(23.98g,0.10mol)氯仿和0.65g氯化苄基三乙铵。启动搅拌,用水浴加热至55℃,移去热源,自滴液漏斗慢慢滴加25mL50%的NaOH溶液,反应放出大量热量,反应液变淡黄色浑浊液。在滴加碱液的过程中,通过控制滴加速度,维持反应温度在60 ~ 65℃,约20min滴完。滴加完后,继续在水浴中维持反应温度在65 ~ 70℃继续搅拌40min。

反应完后,溶液分层,上层为淡黄色乳白色溶液,下层为蛋黄油状物。加入100mL水将反应物稀释,上层变澄清透明,下层仍为蛋黄油状物,然后用乙醚萃取两次,每次30mL,除去未反应的氯仿等有机物,将乙醚萃取液倒入回收瓶。水层用50%H2SO4溶液酸化至pH=1~2,再用乙酸乙酯萃取两次,每次40mL。萃取后乙酸乙酯层溶液略带淡黄色。乙酸乙

燃料乙醇生产工艺初步毕业设计

燃料乙醇生产工艺初步毕业设计 第一章前言 1乙醇的主要性质与用途 1.1 乙醇的物理性质 乙醇(ethan)又称酒精,是由C、H、O 3种元素组成的有机化合物,乙醇分子由烃基(-C2H5)和官能团羟基(-OH)两部分构成,分子式为C2H50H,相对分子量为46.07,常温常压下,乙醇是无色透明的液体,具有特殊的芳香味和刺激味、吸湿性很强。可与水以任何比例混合并产生热量,混合时总体积缩小。纯乙醇的相对密度为0.79,沸点78.3℃,凝固点为-130℃。燃点为424℃,乙醇易挥发、易燃烧。 乙醇能使细胞蛋白凝固,尤以体积分数为75%的乙醇作用最为强烈,浓度过高。细胞表面的蛋白质迅速凝固形成一层薄膜,阻止乙醇向组织内部渗透,作用效果反而降低,浓度过低则不能使蛋白质凝固。因此,常用75%(体积分数)的乙醇作消毒杀茵荆。[4] 乙醇易被人体肠胃吸收,吸收后迅速分解放出热量。少量乙醇对大脑有兴奋作用。若数量较大则有麻醉作用,大量乙醇对肝脏和神经系统有毒害作用。工业酒精含乙醇约95%.含乙醇达99.5%以上的酒精称为无水乙醇。含乙醇95.6%、水4%的酒精是恒沸混合液,沸点为78.15℃,其中少量的水无法用蒸馏法除去。制取无水乙醇时。通常把工业酒精与新制生石灰混合,加热蒸馏才能得到。工业酒精和医用酒精中含有少量甲醇,有毒.不能掺水饮用。 1.2 乙醇的化学性质 乙醇属于饱和一元醇。乙醇能够燃烧。能够和多种物质如强氧化物、酸类、酸酐、碱金属、胺类发生化学反应。在乙醇分子中,由于氧原子的电负性比较大。使C-0键和O-H 键具有较强的极性而容易断裂,这是乙醇易发生反应的两个部位。 1.2.1乙醇燃烧反应机理 乙醇燃烧反应机理和烃的燃烧反应机理有很多相似的地方,都是先裂解成为碳和氢气,然后燃烧,所以从燃烧机理上来讲乙醇也适合用作内燃机燃料。在较高的温度下.乙醇可以发生分子内脱水生成烯烃,可以认为,乙醇燃烧的反应首先是分子内脱水形成烯烃,烃再裂解形成碳和氢气,然后碳和氢气在空气中燃烧,生成二氧化碳和水,乙醇燃烧反应的总反应式: CH3CH2OH+3O2--2CO2+3H2O+Q 1.2.2乙醇的着火和燃烧特性

苯乙醇的制备实验报告

苯乙醇的制备实验报告 篇一:消旋体1-苯乙醇的合成 硼氢化钠还原苯乙酮合成外消旋体1-苯乙醇 背景知识:背景知识:薄层色谱,柱色谱,外消旋体,手性HPLC的使用准备实验:用丙酮洗涤搅拌头和50 mL烧瓶 一.实验目的 1. 掌握硼氢化钠还原苯乙酮合成外消旋体1-苯乙醇的反应原理和实验方法; 2. 掌握采用TLC(薄层色谱)监测反应过程的方法; 3. 进一步掌握柱色谱分离提纯方法; 4. 学会采用手性HPLC分析外消旋化合物。 二.反应原理

三.仪器与试剂 玻璃仪器:烧瓶,量筒,锥形瓶,分液漏斗,层析柱,层析缸 药品和试剂:苯乙酮,硼氢化钠,柱色谱硅胶(200-300目),乙醇 四.实验步骤 1. 在50 mL烧瓶中加入硼氢化钠(g, 10 mmol)和乙醇(10 mL),机械搅拌(中速搅拌)。将苯乙酮(g, 10 mmol)溶解于1 mL乙醇,在冰浴条件下缓慢加入至前悬浮溶液中(控制冰浴温度低于10 ℃)。滴加完毕后,移除冰浴,室温搅拌。 2. 室温反应小时后,采用薄层色谱板(TLC)监测反应体系中原料的反应程度(展开剂为V石油醚/V乙酸乙酯= 8/1)。当原料消失后,将大部分乙醇蒸干,然后 加入乙酸乙酯(20 mL)和10% HCl 水溶液(15 mL)萃取。有机相用10 mL 饱和氯化钠溶液洗涤,萃取后有机相中加入g无水硫酸钠干燥。

3. 过滤,浓缩,剩余物湿法上样过柱(20 g硅胶/1 g粗产品)。经硅胶柱层析(洗脱剂:V石油醚/V乙酸乙酯= 4/1)分离纯化。 4. 采用手性HPLC分析消旋化合物:分离条件-Chiracel OJ手性柱; 流动相正己烷/2-异丙醇= 95/5); 温度; 流速(mL/min); λ =254 nm。 思考题: 1. 请介绍其它制备外消旋1-苯乙醇的方法。 2. 苯乙酮和消旋体1-苯乙醇在TLC 板上的Rf值,本实验条件下消旋体1-苯乙醇在HPLC的保留时间? 3. 如果采用氘代硼氢化钠,还原产物应该是? 4. 推断1-苯乙醇的大概核磁共振氢谱谱图。 篇二:苯乙醇项目可行性研究报告 苯乙醇项目可行性研究报告 核心提示:苯乙醇项目投资环境分析,苯乙醇项目背景和发展概况,苯乙

药物合成反应复习

第一章 卤化反应 一、烯丙型、苄基型化合物自由基卤化反应 卤化试剂:NBS 、卤素 溶剂:CCl4、氯仿、苯、石油醚或反应底物自身 二、芳香环上的亲电卤化反应 (一)卤素单质为卤化剂的亲电取代反应 (二)氢卤酸及其盐为卤化剂的卤化反应 (三)胺氮卤化剂为卤化剂的卤代反应(N-氯代丁二酰亚胺NCS ,N-溴代丁二酰亚胺NBS ,N-溴代乙酰胺NBA ,N-氯代乙酰胺NCA ) (四)次卤酸及其衍生物的卤化剂的卤化反应 三、芳香烃卤甲基化反应(Blanc 反应 ) 卤甲基化试剂:甲醛-卤化氢、多聚甲醛-卤化氢、卤甲醚等。 质子酸:硫酸、磷酸、乙酸和Lewis acid 等均可催化反应。 四、不饱和烃与卤素的亲电加成反应 机理: 1桥金属离子历程 2碳正离子历程 OEt O NBS O Br Br CH 3Br hv / Br 2160 ~ 180o C Br Br 85%+Cl 23Cl +HCl MeO CONMe 2MeO CONMe 2Cl TBHP / HCl +MeO CONMe 2 50%35 : 65S H 3C S H 3C X X = Cl 94% Br 83%NXS / solvent 4H 3 CO H 3CO H 3CO Cl Cl t-BuOCl / (C 2H 5)3N-3HF 0o C / CH 2Cl 265%4% ++HCHO +HCl ZnCl 2 Cl

五.不饱和烃与卤化氢、氢卤酸的亲电加成 六、羰基化合物α-位卤化反应 卤化剂:X2、N-卤代酰胺、 次卤酸酯、硫酰卤 溶剂:CCl4, CHCl3, Et2O, AcOH 七、羟基的置换卤化反应 卤化剂:卤化氢、氢卤酸、卤化磷、含硫卤化物 (基本规律:1苄醇=烯丙醇>叔醇>仲醇>伯醇2HI>HBr>HCL>HF) 二章 硝化反应 直接硝化(电子云密度高的芳烃) HO Br HO 2+2Me H H Et Me H H Et Me H H Et Cl Cl Cl OAc Me H H Et AcO Cl + 52% 13% 33%LiCl 69% 8% 21%LiCl CH 3CH=CH 2CH 3CHBrCH 3CH 3CH 2CH 2Br 无过氧化物过氧化物Markovnikov 加成反Markovnikov 加成 O MeOOC HO Br 2O MeOOC HO Br ROH +HX RX +H 2O

消旋体1-苯乙醇的合成

硼氢化钠还原苯乙酮合成外消旋体1-苯乙醇 背景知识:背景知识:薄层色谱,柱色谱,外消旋体,手性HPLC的使用 准备实验:用丙酮洗涤搅拌头和50 mL烧瓶 一.实验目的 1.掌握硼氢化钠还原苯乙酮合成外消旋体1-苯乙醇的反应原理和实验方法; 2.掌握采用TLC(薄层色谱)监测反应过程的方法; 3.进一步掌握柱色谱分离提纯方法; 4.学会采用手性HPLC分析外消旋化合物。 二.反应原理 三.仪器与试剂 玻璃仪器:烧瓶,量筒,锥形瓶,分液漏斗,层析柱,层析缸 药品和试剂:苯乙酮,硼氢化钠,柱色谱硅胶(200-300目),乙醇 四.实验步骤 1. 在50 mL烧瓶中加入硼氢化钠(0.38 g, 10 mmol)和乙醇(10 mL),机械搅拌(中速搅拌)。将苯乙酮(1.2 g, 10 mmol)溶解于1 mL乙醇,在冰浴条件下缓慢加入至前悬浮溶液中(控制冰浴温度低于10 ℃)。滴加完毕后,移除冰浴,室温搅拌。

2. 室温反应0.5小时后,采用薄层色谱板(TLC)监测反应体系中原料的反应程 度(展开剂为V 石油醚/V 乙酸乙酯 = 8/1)。当原料消失后,将大部分乙醇蒸干,然后 加入乙酸乙酯(20 mL)和10% HCl水溶液(15 mL)萃取。有机相用10 mL 饱和氯化钠溶液洗涤,萃取后有机相中加入4.0 g无水硫酸钠干燥。 3. 过滤,浓缩,剩余物湿法上样过柱(20 g硅胶/1 g粗产品)。经硅胶柱层析(洗 脱剂:V 石油醚/V 乙酸乙酯 = 4/1)分离纯化。 4.采用手性HPLC分析消旋化合物:分离条件-Chiracel OJ手性柱; 流动相正己烷/2-异丙醇= 95/5); 温度(室温); 流速(0.5 mL/min); λ =254 nm。 思考题: 1.请介绍其它制备外消旋1-苯乙醇的方法。 2.苯乙酮和消旋体1-苯乙醇在TLC板上的Rf值(展开剂为V 石油醚/V 乙酸乙酯 = 8:1 和4:1),本实验条件下消旋体1-苯乙醇在HPLC的保留时间? 3.如果采用氘代硼氢化钠,还原产物应该是? 4.推断1-苯乙醇的大概核磁共振氢谱谱图。

香兰素的合成工艺设计

有机合成课程设计 题目香兰素的合成工艺 系(院)化学与化工系 专业应用化学 班级11应化本2 学生姓名王春莲 学号1114100327 指导教师张圣燕 职称讲师 2013年 12月 20日

香兰素的合成工艺设计 1 产品简介 1.1 中英文名称,化学式,结构式 中文名称:香兰素 别名:香荚兰醛;香荚兰素;香兰醛 化学名称:3-甲氧基-4-羟基苯甲醛 英文名称:Vanillin 分子式:C8H8O3 结构式: CHO OH OCH3 1.2 物化性质 白色至微黄色鳞片状结晶或结晶性粉末,存在有不同熔点的四种结晶变型。呈甜克力香气及强烈的香兰素所独有的芳香气,香气比香兰素强3-4 倍。沸点285 ℃,点76.5 ℃。微溶于水,溶于乙醇、乙醚、甘油、丙二醇、氯仿和碱溶液。基本上无毒害,但其蒸气对皮肤及粘膜有局部刺激作用 1.3 用途 香兰素是重要的食用香料之一,是食用调香剂,具有香荚兰豆香气及浓郁的奶香,是食品添加剂行业中不可缺少的重要原料,广泛运用在各种需要增加奶香气息的调香食品中,如蛋糕、冷饮、巧克力、糖果、饼干、方便面、面包以及烟草、调香酒类、牙膏、肥皂、香水、化妆品、冰淇淋、饮料以及日用化妆品中起增香和定香作用。 香兰素在国外的应用领域很广,大量用于生产医药中间体,也用于植物生长促进剂、杀菌剂、润滑油消泡剂、电镀光亮剂、印制线路板生产导电剂等。国内香兰素主要用于食品添加剂,近几年在医药领域的应用不断拓宽,已成为香兰素应用最

有潜力的领域。 香兰素在国外的应用领域很广,大量用于生产医药中间体,也用于植物生长促进剂、杀菌剂、润滑油消泡剂、电镀光亮剂、印制线路板生产导电剂等。国内香兰素主要用于食品添加剂,近几年在医药领域的应用不断拓宽,已成为香兰素应用最有潜力的领域。目前国内香兰素消费:食品工业占55%,医药中间体占30%,饲料调味剂占10%,化妆品等占5%。 1.4 前景分析 国内外行业现状中国是世界香兰素出口大国,2002年国内需求量2350吨,占产量的30%,其余70%用于出口。而1988年仅出口273吨,1993年为1700吨,2002年为4653吨。1993~2002年,中国香兰素出口量年均增长率为12%。中国香兰素在北美、欧洲、东南亚等地市场享有良好信誉。 2 合成方法 2.1 第一种合成方法——愈创木酚法 (1)合成基本原理 愈创木酚在碱性条件下和乙醛缩合成3-甲氧基-4-羟基苯乙醇酸,3-甲氧基-4-羟基苯乙醇酸在碱性条件下被氧化成3-甲氧基-4-羟基苯乙酮酸(香草扁桃酸),然后在碱性条件下脱羧生成香兰素。其反应方程式如下: OCH 3 OH CHOCOOH CHOHCOOH OH OCH3 O2 OH OCH 3 CCOOH O CHO OH OCH3

酒精生产工艺

重庆能源职业学院 专业实习报告 论文(设计)题目:酒精的生产流程设计 班级:2011级2511班 姓名:刘兴李德静 廖军梁炯 学号:20112511006 20112511032 20112511018 20112511034 指导教师:邓启辉 时间:2013 年7 月5 日

计划表: 内容组员学号备注前言、绪论全部6、18、32、34 汇编 生物发酵法刘兴、李德静6、32 汇编 化学合成法廖军、梁炯18、34 汇编酒精的用途及总结展望全部6、18、32、34 汇编CAD 李德静、廖军32、18 I

前言 一、设计要求: 1、根据设计题目,进行生产实际调研或查阅有关资料,选定合理的流程方案和设备类型,并进行简要论述。 2、设计说明书内容:封面、目录、设计题目、概述与设计方案简介、工艺方案的选择与论证、工艺流程说明、专题论述等。 二、设计目的: 1、把课本的知识运用到社会实践当中去,才是我们学习专业理论知识的最终目的 2、通过本次专业实习设计可以看出现有的生产工艺存在哪些不足,学会自主查找资料进行更加科学有效的改进。 三、设计意义: 酒精工业是在酿酒业的基础上发展起来的,有很悠久的历史。近年来,我国酒精生产技术和生产水平又有了新的提高,新工艺新设备新菌种不断涌现,酒精产量有了较大增长,质量稳定提高;在节约代用,降低消耗,降低成本,提高劳动生产率,提高淀粉出酒率及开展综合利用与消除环境污染等各个方面,都取得了很大成绩。目前,我国大多数酒精采用生物发酵和化学合成法工艺流程,逐步实现了淀粉质原料和化学原料的连续化和自动化。 四、设计原理: 生物发酵主要是利用谷物类、薯类植物中的淀粉,其余的部分仍可综合利用,生产出专用饲料和农业复合肥等产品。在综合利用方面以二氧化碳的回收利用最为普遍,有的厂利用二氧化碳制造干冰、纯碱和小苏打。在自动控制仪表方面也有进展,有的厂已采用电脑实现了主要工序集中控制,目前,我国一些酒精厂正在朝着生产过程全面实行自动化方向发展。 化学合成法主要是利用石油工业,石油化学工业、天然气开发和加工工业产生的乙烯气为原料,使得乙烯水合法的原料得到充分保证。 II

α-苯乙醇合成苯乙酮

α-苯乙醇合成苯乙酮 氧化醇类化合物为相应的羰基化合物, 在有机化学研究及工业应用中占有非常重要的地位.近年来关于醇的氧化反应研究, 尤其是在催化剂方面, 得到了很快的发展. 一钼钨催化体系 钼钨催化剂在醇的氧化反应中有很广泛的应用, 2009 年Hida 等[44]用Na2WO4-H2O2 催化氧化体系, 以N,N-二甲基乙酰胺为溶剂, 用Na2HPO4?12H2O 调节溶液pH 值, 中性条件下, 催化过氧化氢氧化仲醇、伯醇为羰基化合物(Eq. 10). 中性的反应特点使此方法可应用于对酸敏感的醇的氧化. 虽然此方法具有催化剂和氧化剂均便宜、易得的优点, 但对于伯醇的氧化效果比较差. 例如2-乙基-1-己醇的氧化产物的产率仅为50%. 二钴催化体系 Iwahama 等[54]以无机钴盐Co(OAc)和配合物Co(acac)3为催化剂, N-羟基邻苯二甲酰亚胺(近几年来被认为是在温和条件下氧化各种有机物质的有价值的催化剂)存在下, 分子氧为氧源, 可以在室温下氧化各种醇(Eq. 17). 但不足之处是, 在有些反应中, 需要加入苯甲酸及其衍生物如MCBA, PMBA 作为共氧化剂. 产物中不可避免地会有酸或过酸的存在, 这给产物的分离带来麻烦.

钴的席夫碱配合物已被证实可以有效地催化分子氧进行氧化反应, 而且席夫碱双氧-钴配合物作为催化剂、醛作为牺牲试剂已经引导了几种重要方法的发展, 如烯烃环氧化、硫醚氧化为亚砜等[55]. Sharma 等[56]合成了四种席夫碱钴配合物8~11 (Scheme 7), 并有效地催化分子氧氧化仲醇. 羟基的α位有羰基的底物更容易发生反应, 而且所需的时间短一些. 其中配合物8 的催化活性最好. 金属酞菁稳定、易得, 是一类可供选择的仿生氧化催化剂, 已经用来氧化很多有机物. 金属酞菁在普通有机溶剂中不溶, 容易从反应体系中分离出来循

实验八相转移催化法制备dl-扁桃酸

实验八相转移催化法制备dl-扁桃酸 实验八相转移催化法制备dl扁桃酸dl扁桃酸Mandelic acid 又名苦杏仁酸、苯乙醇酸、α羟基苯乙酸等。它是重要的化工原料在医药工业中主要用于合成血管扩张药环扁桃酸酯、滴眼药羟苄唑等。以往多由苯甲醛与氰化钠加成得腈醇扁桃腈再水解制得。该法路线长操作不便劳动保护要求高。采用相转移二氯卡宾法一步反应即可制得既避免了使用剧毒的腈化物又简化了操作收率亦较高。一、目的与要求 1、了解相转移催化反应的原理以及在药物合成中的应用。 2、掌握相转移催化剂的制备及后处理技术。 3、熟悉相转移二氯卡宾法制备扁桃酸的实验操作技术。二、实验原理在药物合成中常遇到水相和有机相参与的非均相反应这些反应速度慢、收率低、条件苛刻、有些甚至不发生反应、回收和后处理麻烦而且不能适合所有的反应。1965年MaKasza 首先发现鎓类化合物具有使水相中的反应物转入有机相中的性质从而加快了反应速率提高了收率简化了操作并使一些难以进行的反应顺利完成从而开辟了相转移催化这一新的合成方法。近20年来相转移催化技术在药物合成中的应用日趋广泛。常用的相转移催化剂主要有两类即季铵盐类和冠醚类。本实验采用季铵盐TEBA为相转移催化剂。其原理是在50的水溶液中加入少量的相转移催化剂和氯仿季铵盐在碱液中形成季铵碱而转入氯仿层继而季铵碱夺去氯仿中的一个质子而形成离子对R4N·CCl3然后发生α消除和

成二氯卡宾CCl2二氯卡宾是非常活泼的中间体能与多种官能团发生反应生成各类化合物其中与苯甲醛加成生成环氧 中间体再经重排、水解得到dl扁桃酸。反应式如下R4NCl NaOH?6?4 R4NOH NaCl 水相水相油相水相R4NOH CHCl3 ?6?4 R4NCCl3 ?6?4 CCl2 R4NCl 油相油相油相油相水相本品为白色斜方片状结晶熔点为119℃相对密度 1.30易溶于水、乙醇、乙醚、异丙醇等长期露光则分解变色。 三、实验主要药品类别名称规格用量相转移催化剂的制备三乙胺化学纯41g0.4mol 氯化苄化学纯51g0.4mol 丙酮化学纯40mL dl扁桃酸的制备氯仿化学纯32mL 苯甲醛新蒸21.2mL 乙醚化学纯80mL 氢氧化钠50自配50mL 硫酸50自配少量四、实验步骤及方法1、相转移催化剂——三乙基苄基铵盐TEBA的制备①在带有搅拌器、温度计、球形回流冷凝器、250mL三颈瓶中依次加入40mL 的丙酮溶剂、41g0.4mol的三乙胺、51g0.4mol的氯苄加热至回流反应1.5h反应液逐渐由无色透明变为浅黄色黏稠液停 止反应。以上产物液自然冷却至室温有部分针状晶体析出同时黏度增加。将其倒入干净的250mL的烧瓶中放入冰箱保持10℃以下②过夜抽滤。滤饼用甲苯洗涤两次抽干干燥得白色粉末。称重测熔点合格产品熔点180191℃。2、dl扁桃酸的制备在装带有搅拌器、温度计、球形回流冷凝器、滴液漏斗的250mL三颈瓶中如图2所示加入21.2g苯甲醛③2.4g

二苯基羟基乙酸的合成

二苯基羟基乙酸的合成 摘要用二苯乙二酮作为反应物,以氢氧化钾和乙醇为催化剂,制备二苯基羟基乙酸。产物为白色细晶 体,净重1.56g,产率56.9%;通过氢氧化钠溶液滴定测定产物纯度是100.05%。 关键词二苯基羟基乙酸,多步骤有机反应,混合溶剂重结晶技术,滴定方法 1引言 本实验即应用上回实验的产物二苯乙二酮制备二苯基羟基乙酸。本实验的目的是通过此实验掌握混合溶剂重结晶技术,并了解多步骤有机反应。 2合成原理 二苯乙二酮为α-二酮,与氢氧化钾溶液回流,重排成α-羟基酸盐即二苯乙醇酸钾盐,称为二苯乙醇酸重排。由于反应中形成稳定的羧酸盐,使此重排成为一个不可逆的过程。 二苯乙醇酸也可直接由安息香与碱性溴酸钠溶液一步反应来制备,得到高纯度的产物。 图表 1 制备过程反应式 图表 2 二苯乙醇酸重排机理 3滴定原理 3.1氢氧化钠标准溶液标定原理 本实验产物二苯基羟基乙酸的滴定以氢氧化钠溶液作为标准溶液,而氢氧化钠标准溶液的标定通过邻苯二甲酸氢钾进行。 邻苯二甲酸氢钾()可由邻苯二甲酸酐与氢氧化钾作用而得,分子量为204.22g/mol。常用做滴定分析中的基准物质,用作制备标准碱溶液的基准试剂和测定pH值的缓冲剂,可与氢氧化钠反应生成邻苯二甲酸钾钠。通过邻苯二甲酸氢钾标定的氢氧化钠标准溶液的浓度计算式为: C NaOH(aq)=m邻邻邻邻邻邻邻 204.22×1 V NaOH(aq) 3.2氢氧化钠标准溶液滴定原理 图表 4 酸碱滴定反应式 图表 3 邻苯二甲酸氢钾结构式

产物二苯基羟基乙酸作为酸与氢氧化钠反应式量比为1:1。事先在二苯基羟基乙酸中滴加两至三滴酚酞试剂作为指示剂,当用氢氧化钠标准溶液滴定至恰好显浅粉色且半分钟只内不退色时即为滴定终点。通过氢氧化钠标准溶液滴定二苯基羟基乙酸的质量计算式为: m邻邻邻邻邻邻邻=C邻邻邻邻邻邻邻邻×V邻邻邻邻邻邻邻邻×228.2注意事项:由于从二苯乙醇酸钾盐制备二苯基羟基乙酸的过程用到了盐酸,遗留在二苯基羟基乙酸中的盐酸很可能会导致氢氧化钠溶液滴定得到的结果偏大,纯度甚至超过百分之百;为了得到更为准确的实验结果,洗涤产物时应尽量将产物多清洗几次,测定pH值至洗涤废液pH值接近7为止。 4实验部分 4.1实验条件 实验试剂:二苯乙二酮,乙醇,氢氧化钾,蒸馏水,浓盐酸,刚果红试纸,活性炭,氢氧化钠溶液,邻苯二酸氢钾,酚酞溶液。 实验仪器:圆底烧瓶,茄形瓶,烧杯,磁力搅拌器,油浴装置,球形冷凝管,减压抽气装置,漏斗,花式滤纸,玻璃棒,烘箱,锥形瓶,加料漏斗,布氏漏斗,酸式滴定管。 4.2二苯乙醇酸钾盐的合成 在50 mL 圆底烧瓶中加入二苯乙二酮2.52 g与15 mL 95%乙醇,加热溶解,滴加氢氧化钾2.7 g 溶于5 mL水的溶液,磁力搅拌反应并回流30 min。然后将反应混合物转移到小烧杯中,在冰水浴中放置析出二苯乙醇酸钾盐的晶体。抽滤,并用少量冷乙醇洗涤晶体。 4.3二苯基羟基乙酸的合成 将过滤出的钾盐溶于70 mL水中,滴加2 滴浓盐酸,少量未反应的二苯乙二酮成胶体悬浮物,加入活性炭脱色约两平勺,趁热过滤。滤液冷却至室温,用5%的盐酸酸化至刚果红试纸变蓝,保持搅拌保证产物松散,在冰水浴中冷却使结晶完全。抽滤,用冷水洗涤几次以除去晶体中的无机盐和盐酸。产物在85℃烘箱中干燥至恒重。 4.4滴定过程 4.4.10.1 mo l·L -1NaOH标准溶液的配制与标定 准确称取4.0 g 氢氧化钠溶于1 L蒸馏水中,配制0.1 mo l·L -1的标准溶液。 准确称取0.4 g至0.6 g 邻苯二甲酸氢钾基准物质两份分别于两个250 mL 锥形瓶中,加入40至50 mL水使之溶解,加入3 滴酚酞指示剂,用0.1mo l·L -1氢氧化钠标准溶液滴定至呈微红色,保持半分钟内不退色,即为终点。 4.4.2产品纯度的测定

燃料乙醇的生产技术

燃料乙醇的生产技术 2008-09-27 09:01:01 作者:蒲公英来源:中国生物能源网浏览次数:197 网友评论 0 条 燃料乙醇的生产技术 生物燃料乙醇是通过发酵法生产的,即利用微生物的发酵作用将糖分或淀粉转化为乙醇和CO2,也可将纤维素类水解生成单糖后再发酵产生乙醇。用于发酵法制取燃料乙醇的原料,按成分分为三种 ... 生物燃料乙醇是通过发酵法生产的,即利用微生物的发酵作用将糖分或淀粉转化为乙醇和CO2,也可将纤维素类水解生成单糖后再发酵产生乙醇。用于发酵法制取燃料乙醇的原料,按成分分为三种:糖质、淀粉质和纤维素,后两种原料均需要先通过水解得到可发酵糖;按照发酵过程物料存在状态,可分为固体发酵法、半固体发酵法和液体发酵法;根据发酵醪注入发酵罐的方式不同,可分为间歇式、半连续式和连续式。 糖质原料制取乙醇技术是以甘蔗、甜高粱茎秆为原料,经过物理方法预处理后,采用发酵蒸馏的方法生产燃料乙醇;淀粉质原料制取乙醇技术是以玉米、木薯、甘薯等淀粉含量高的生物质为原料,经过粉碎、蒸煮和糖化后,形成可发酵性糖,再进行发酵处理,得到燃料乙醇的技术;纤维素原料制取乙醇技术是以秸秆为原料,经过物理或化学方法预处理,利用酸水解或酶水解的方法将秸秆中的纤维素和半纤维素降解为单糖,然后,再经过发酵和蒸馏生产的燃料乙醇的技术。 表 1 各类燃料乙醇生产工艺技术特性的对比

目前,我国淀粉类原料发酵法制取乙醇技术比较成熟,并已经进行了工业化生产,中粮集团正在广西北海建设年产20 万吨燃料乙醇项目。我国在甜高粱、木薯等能源作物开发和利用方面取得了一定成绩,自主开发的固体、液体发酵工艺和技术达到应用水平,并在黑龙江省建成年产5000 吨的甜高粱茎秆生产乙醇示范装置。但是,目前还存在着发酵菌种培育、关键工艺和配套设备优化、废渣废水回收利用等问题。据测算,我国农作物秸秆年产量约6 亿吨,其中有1.5亿~2 亿吨可能源化利用。纤维素原料来源比较丰富,有一定的发展前景。国际能源公司都在竞相改进将纤维素转化为乙醇的技术。但由于技术上的限制,目前世界上还没有一家纤维素乙醇制造厂的产量达到商业规模。我国也正在开展纤维素制取燃料乙醇的技术研究开发,中粮黑龙江肇东酒精有限公司、安徽丰原集团、山东龙力科技有

苯乙醇酸(扁桃酸)的合成

苯乙醇酸(扁桃酸)的合成 摘要: 本实验使用5.2g新鲜蒸馏的苯甲醛、8mL氯仿作为原料,使用1.3g氯化苄基三乙铵为相转移催化剂,在50%的NaOH溶液中,发生卡宾反应生成(±)苯乙醇酸,得到略带淡黄色的白色片状晶体,产物重1.30g,产率为17%。 关键词:(±)苯乙醇酸相转移催化剂卡宾反应 一、实验目的: 1. 了解并掌握二氯卡宾的生成 2. 训练相转移催化反应 3. 复习巩固控制反应温度、混合溶剂重结晶等基本操作 二、反应方程式: CHO CHCl3 TEBAC H OH 卡宾或称碳烯是一类具有6个价电子的两价碳活性中间体,通式:CR2,其中碳原子与两个原子或基团相连,另外还有一对没有参与成键的非键电子。最简单的卡宾是亚甲基:CH2,最常见的取代卡宾是二卤卡宾:CX2。由于碳周围只有六个电子,它是缺电子的,因此卡宾具有很强的亲电性,容易发生插入反应。 三、相转移催化反应原理: 相转移催化反应时20世纪70年代以来在有机合成中应用日趋广泛的一种新的合成方法。在有机合成中,均相反应通常容易进行,而水溶液的无机负离子和不溶于水的有机化合物之间的非均相反应,速率慢,产率低,甚至难以进行。但如果用水溶解无机盐,用极性小的有机溶剂溶解有机物,并加入少量的(通常是0.05mol以下)季铵盐或季磷盐,这反应很容易

进行。这些能促进反应并加快在两相之间转移负离子的化合物,称之为相转移催化剂。 常用的相转移催化剂有盐类、冠醚类和非环多醚类三种。 以季铵盐为代表的鎓盐如: C6H5CH2N(CH2CH3)3Cl (CH3CH2CH2CH2)4NBr [CH3(CH2)6CH2]3NH2CH3Cl 三乙基苄基氯化铵四丁基溴化铵三辛基甲基氯化铵(TEBA)(TBAB)(TOMA)这些化合物具有同时在水相和有机相溶解的能力。其中烃基是油溶性基团,碳原子数一般不少于13,以保证具有足够的有用性,带正电的氮是水溶性基团。 季铵盐中的正离子与水溶液中具有反应活性的无机负离子形成离子对,可以将负离子从水相转移到有机相中。而在有机相中,负离子无溶剂化作用。由于正离子体积大,正负离子之间的间距也大,彼此间的作用弱,负离子可以看成是裸露的。因此反应活性大大增加。 本实验中用TEBAC作为相转移催化剂,加快卡宾的生成和反应,机理如下: C6H5CH2N(C2H5)3Cl NaOH C 6 H5CH 2 H5)3 OH NaCl C6H5CH2N(C2H5)3Cl CHCl3 Cl2C C6H5CH22H5)3OH C6H5CH2N(C2H5)3(CCl3)H2O 有机相反应 水相反应 四、实验步骤及实验现象: 将250mL三口瓶安装在磁力搅拌器上,三口分别装置回流冷凝管、滴液漏斗和温度计。在瓶中一次加入5mL(5.4g,0.049mol)新鲜蒸馏的苯甲醛、8mL(23.98g,0.10mol)氯仿和0.65g氯化苄基三乙铵。启动搅拌,用水浴加热至55℃,移去热源,自滴液漏斗慢慢滴加25mL50%的NaOH溶液,反应放出大量热量,反应液变淡黄色浑浊液。在滴加碱液的过程中,通过控制滴加速度,维持反应温度在60 ~ 65℃,约20min滴完。滴加完后,继续在水浴中维持反应温度在65 ~ 70℃继续搅拌40min。 反应完后,溶液分层,上层为淡黄色乳白色溶液,下层为蛋黄油状物。加入100mL水将反应物稀释,上层变澄清透明,下层仍为蛋黄油状物,然后用乙醚萃取两次,每次30mL,除去未反应的氯仿等有机物,将乙醚萃取液倒入回收瓶。水层用50%H2SO4溶液酸化至pH=1~2,再用乙酸乙酯萃取两次,每次40mL。萃取后乙酸乙酯层溶液略带淡黄色。乙酸乙

生物发酵法制燃料乙醇生产中废气废液的处理方法及系统

生物发酵法制燃料乙醇生产中废气废液的处理方法及系统 燃料乙醇作为一种较为清洁的能源,生产成本较低,得到广泛应用,暂时解决了能源需 求的矛盾。为了推动可持续发展,实现绿色发展,在加强人们生态环保意识的同时,还要就 燃料乙醇的制造工艺、合理加工以及燃料乙醇产生的废气废液处理办法进行改进和创新,完 善燃料乙醇作为新型能源的功效,推动社会和经济发展。 二、生物发酵法制燃料乙醇 现阶段燃料乙醇制造的工艺已出现三代,第一代燃料乙醇分为糖基乙醇和淀粉基乙醇, 主要以玉米、甘蔗中所含的酵糖作为原料,进行生物发酵制乙醇,是目前最为常见的制燃料 乙醇方法。第二段燃料乙醇是纤维素乙醇,以木质纤维素类为主的生物物质,主要来源包括 农业废料、林业产物及废弃物、(藻类)和城市垃圾等,第三代燃料乙醇就是主要以藻类为 原料通过生物法生产的燃料乙醇。 生物法又称生物发酵法,是通过生物物质所含的物质,经过水解、发酵等一系列工序制 成燃料乙醇。生物发酵法是现阶段制燃料乙醇最主要,也是最普遍的一种方法。根据不同原 料所含的物质不同,生产工艺和工序都有相应的变化。粮食作物作为原料以碾磨、液化和糖 化工艺为必须内容,木质纤维的步骤则必备预处理和水解工序,本身高糖类物质则可以省去 部分步骤。值得注意的是,一些物质在操作过程或者运输时沾染了金属或有毒物质,还需要 进行先解读再提取,以防不良化学反应的产生。 燃料乙醇的一般生产工艺,如图1所示: 生物发酵法在粉碎原料之后需要进行蒸煮的工作,因为物质原料富含植物细胞,蒸煮后,会促进原料中的淀粉酶与淀粉发生化学反应,发生水解,进行发酵。 生物发酵法要确保酵母菌的酒精发酵环境,视情况而定,进行相应的高压、高温环境蒸 煮操作。 三、生物发酵法制燃料乙醇生产中废气废液的处理方法 生物发酵法制燃料乙醇生产中不可避免的会出现相应的废气废料,纤维素乙醇废液是一 种高温度、高悬浮物、粘度大、呈酸性的有机废水,其主要含有残余的糖、纤维素、木质素、各种无机盐及菌蛋白等物质。一般来源于制燃料乙醇各个工序中,要想妥善处理相关问题, 需要优化制造工艺,从源头解决;或是加强后续补救措施,解决废气废液的排放问题。 (一)源头处理方法 在生产过程中优化处理就是指在提高燃料制乙醇的液化效果,使得原料物质中所含有的 糖被全部利用。因为没有被完全利用的糖分会随着水解过程中产生的水排除,形成废液。并 且未被利用的糖也是一种资源浪费。通过对液化的温度、时间和工艺方法的优化,使得生物 发酵法进行连续发酵,提高燃料乙醇的制作效率。通过连续发酵法,把发酵罐之间的串联起来,使得总会有发酵反应进行。 优化蒸馏工序也是减少制燃料乙醇废气废液的办法之一,通过燃料乙醇直接加热气体的 方法,进行蒸馏后排出,这种方法既不环保,又造成资源浪费。需要优化蒸馏技术,通过差 压蒸馏,使得两边蒸馏塔中的压强有一定差异,使得负压塔能够排出二氧化碳等有害物质,

丛枝菌根真菌诱导植物产生酚类物质的研究进展

微生物学通报 AUG 20, 2010, 37(8): 1216?1221 Microbiology China ? 2010 by Institute of Microbiology, CAS tongbao@https://www.360docs.net/doc/312715612.html, 基金项目:国家自然科学基金项目(No. 30870458) *通讯作者:Tel: 86-20-85286902; : yaoqscau@https://www.360docs.net/doc/312715612.html, 收稿日期:2009-12-14; 接受日期:2010-04-26 摘 要: 酚类物质是植物体内重要的次生代谢产物, 对病原微生物的侵袭有很好的防御作用。AM 真菌能够诱导植物的酚类物质合成, 而且这种诱导既是原位的、也是系统的, 相关研究已有大量报道。本文对AM 真菌原位和系统诱导酚类物质进行了论述, 并对系统诱导过程中可能的信号分子(SA 、H 2O 2)进行了评述, 最后提出了AM 真菌系统诱导酚类物质产生的可能作用机理, 进一步明确后续工作中的研究方向。 关键词: AM 真菌, 酚类物质, 诱导, 信号分子 Research Progress in the Biosynthesis of Phenols in Plants Induced by Arbuscular Mycorrhizal Fungi ZHANG Rui-Qin 1,2 ZHAO Hai-Quan 2 ZHU Hong-Hui 3 YAO Qing 1* (1. College of Horticulture , South China Agricultural University , Guangzhou , Guangdong 510642, China ) (2. College of Life Science , Anhui Agricultural University , Hefei , Anhui 210095, China ) (3. Guangdong Institute of Microbiology , Guangzhou , Guangdong 510070, China ) Abstract: Phenols are important secondary metabolites in plant tissues, and provide well protection against the attacks by pathogenic microbes. Arbuscular mycorrhizal (AM) fungi can induce the biosyn-thesis of phenols in plants both locally and systematically. Recently, research has been intensively re-ported on this aspect. In this paper, the localized and systematic induction of phenols by AM fungi is reviewed. The possible signaling molecules (SA, H 2O 2) in the induction process are put forward, and the putative action model involved in the biosynthesis of phenols induced by AM fungi is further pre-sented. Some research perspectives for the future are also pointed out. Keywords: AM fungi, Phenols, Induction, Signaling molecules 丛枝菌根真菌(Arbuscular mycorrhizal fungi, 简称AM 真菌)是一类重要的土壤真菌, 能够与80%以上的陆地植物和一些水生植物的根系形成互惠共生体, 即丛枝菌根(Arbuscular mycorrhiza, 简称 AM)[1]。近百年来的研究发现, AM 真菌在与植物建立共生关系之后, 明显地促进植物的生长发育。进一步的机理研究表明, AM 真菌能够在许多方面影响植物的生理过程: 促进植物根系对土壤中矿质元

实验八相转移催化法制备dl-扁桃酸

实验八相转移催化法制备dl-扁桃酸 dl-扁桃酸(Mandelic acid) 又名苦杏仁酸、苯乙醇酸、α-羟基苯乙酸等。它是重要的化工原料,在医药工业中主要用于合成血管扩张药环扁桃酸酯、滴眼药羟苄唑等。以往多由苯甲醛与氰化钠加成得腈醇(扁桃腈)再水解制得。该法路线长,操作不便,劳动保护要求高。采用相转移二氯卡宾法一步反应即可制得,既避免了使用剧毒的腈化物,又简化了操作,收率亦较高。 一、目的与要求 1、了解相转移催化反应的原理以及在药物合成中的应用。 2、掌握相转移催化剂的制备及后处理技术。 3、熟悉相转移二氯卡宾法制备扁桃酸的实验操作技术。 二、实验原理 在药物合成中常遇到水相和有机相参与的非均相反应,这些反应速度慢、收率低、条件苛刻、有些甚至不发生反应、回收和后处理麻烦,而且不能适合所有的反应。1965年,MaKasza 首先发现鎓类化合物具有使水相中的反应物转入有机相中的性质,从而加快了反应速率,提高了收率,简化了操作,并使一些难以进行的反应顺利完成,从而开辟了相转移催化这一新的合成方法。近20年来,相转移催化技术在药物合成中的应用日趋广泛。 常用的相转移催化剂主要有两类,即季铵盐类和冠醚类。 本实验采用季铵盐(TEBA)为相转移催化剂。其原理是,在50%的水溶液中加入少量的相转移催化剂和氯仿,季铵盐在碱液中形成季铵碱而转入氯仿层,继而季铵碱夺去氯仿中 的一个质子而形成离子对(R 4N+·CCl- 3 ),然后发生α-消除和成二氯卡宾:CCl 2 ,二氯 卡宾是非常活泼的中间体,能与多种官能团发生反应生成各类化合物,其中与苯甲醛加成生成环氧中间体,再经重排、水解得到dl-扁桃酸。 反应式如下 R 4N+Cl-+ NaOH?R 4 N+OH-+ NaCl 水相水相油相水相 R 4N+OH-+ CHCl 3 ?R 4 N+CCl- 3 ?:CCl 2 + R 4 N+Cl- 油相油相油相油相水相本品为白色斜方片状结晶,熔点为119℃,相对密度1.30,易溶于水、乙醇、乙醚、异丙醇等,长期露光则分解变色。 三、实验主要药品

燃料乙醇工厂设计

题目燃料乙醇 学生姓名张洋学号1002021219 专业10生物(2)班班级20071133 指导教师廖湘萍 完成日期2011年6月21日

目录 摘要......................................................... .. (1) 引言......................................................... (2) 乙醇生产的意义及发展史.....................................................3—4 乙醇性质及质量指标与乙醇生产和原辅料保藏...........4—7

燃料乙醇 10生物二班张洋 摘要 燃料乙醇被广泛应用于食品、化工医药、染料、国防等行业。乙醇不仅可作为一种燃料,更是一种战略物资,世界上2/3的乙醇被用作燃料。发展乙醇不仅可以促进农业的可持续发展,并且可以作为清洁能源代替汽油或汽油添加剂,减少工业大气污染,保护环境,同时也可缓解原油进口的压力。 关键词:乙醇发酵工艺 Title Thesis Foreign Abstract Abstract Alcohol is widely used in the food, chemical medicine, dyes, defense and other industries. Alcohol not only can be used as a fuel, but also a strategic commodities, the world's 2 / 3 of alcohol to be used as fuel. Alcohol can not only promote the development of agriculture in sustainable development, and could serve as a clean energy instead of petrol or gasoline additives to reduce industrial air pollution, the protection of the environment, but also to ease the pressure on crude oil imports.

扁桃酸及其类似物合成的相转移催化剂筛选

应用与开发 扁桃酸及其类似物合成的相转移 催化剂筛选 郑 清 (盐城工学院海洋系,江苏盐城224003) 摘要:以芳香醛和氯仿为原料,经相转移催化反应合成扁桃酸及其类似物。考察了在相同的反应温度,反应时间,催化剂用量,反应物配比,不同催化剂对反应收率的影响。发现四丁基氯(溴)化铵催化合成产率最高。关键词:有机合成;相转移催化剂;扁桃酸;类似物;筛选 中图分类号:TQ245.2+6 文献标识码:A 文章编号:1002-1116(2004)03-0043-02 扁桃酸又名苦杏仁酸,具有强抑菌作用,可作为治疗尿路感染的消炎药物和某些药物合成的中间体,扁桃酸传统的制备方法是通过羟基苯乙腈C 6H 5CH(OH)C N 和 , -二氯苯乙酮的水解来制备的,这2种方法合成路线较长,且前一种方法还需使用剧毒的氰化钠,生产上不够安全,而采用相转移催化法合成扁桃酸及其类似物,既可避免使用剧毒物质,又具有反应条件温和,产率较高等优点。德国的Merz 于1974年报道了芳香醛和氯仿为原料采用相转移催化反应合成扁桃酸及其两个类似物(对甲基扁桃酸和对甲氧基扁桃酸)[1,2] ,从而提供了合成扁桃酸及其类似物的方便路线。文献报道仅有以氯化苄基三乙铵(TEB A)作相转移催化剂制取扁桃酸[3,4] ,而未见用其它相转移催化剂的报道[5,6] 。本文主要研究不同的相转移催化剂对合成扁桃酸及其类似物的产率的影响。 合成扁桃酸及其类似物的反应式: ArC H O+CHCl 3 NaOH P T C H + ArC H COO H 反应历程为: CHCl 3 Na OH CCl 2 Ar C HO Ar CH Cl O Cl 重排 ArCHCOCl OH - H + ArCH OH COOH 1 实 验 1.1 试剂 苯甲醛(AR),对氯苯甲醛(AR),对甲基苯甲醛(AR),对甲氧苯甲醛(AR),氯仿(AR),氢氧化钠(AR),乙醚(AR),甲苯(AR),硫酸(AR),无水硫酸钠(AR),四丁基氯化铵(AR),四丁基溴化铵(AR),氯化苄基三乙铵(自制),辛基酚聚氧乙烯醚,聚乙二醇。 1.2 实验步骤 在装有搅拌器,温度计和回流冷凝管及滴液漏斗的250mL 三口烧瓶中,加入6.8mL(0.067mol)苯甲醛,适量(0.005mol)相转移催化剂,12mL(0.15mol)氯仿,在搅拌下慢慢加热反应液,当温度达到56!以后,慢慢有13g NaOH 溶于13mL 水的溶液(质量分数50%),滴加的过程需维持在56~65!之间,或稍高,但不得超过65!,滴加碱液的时间约1.5~2h,滴加完,在搅拌下继续反应约2h,停止反应后,静止冷却,加适量水,使瓶内白色沉淀恰好溶解;用乙醚萃取两次除去未反应物,残液用50%硫酸酸 第32卷第3期2004年6月 江苏化工 Ji angsu Che mical Industry Vol.32No.3 Jun.2004 收稿日期:2004-02-10 作者简介:郑清(1971-),女,江苏苏州人,讲师,在职硕士生,主要从事有机化学、生物化学等学科教学。电话:0515-*******,139********。

相关文档
最新文档