2018电磁场电磁波实验指导书

2018电磁场电磁波实验指导书
2018电磁场电磁波实验指导书

实验一电磁感应定律的验证

一、实验目的

1、通过电磁感应装置的设计,了解麦克斯韦电磁感应定律的内容

2、了解半波天线感应器的原理及设计方法

3、天线长短与电磁波波长的接收匹配关系

二、预习要求

1、麦克斯韦电磁理论的内容

2、什么是电偶极子?

3、了解线天线基本结构及其特性

三、实验仪器

HD-CB-IV电磁场电磁波数字智能实训平台:1套

电磁波传输电缆:1套

平板极化天线:1副

半波振子天线:1副

感应灯泡:1个

四、实验原理

麦克斯韦电磁理论经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。下面我们通过制作

感应天线体,来验证电磁场的存在。

如图示:电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。

半波天线又称半波振子,是对称天线的一种最简单的模式。对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。这种天线是最通用的天线型式之一,又称为偶极子天线。而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。

半波振子因其一臂长度为λ /4 ,全长为半波长而得名。其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L= λ /4 )的远区场强有以下关系式:

│ E │ =[60 Im cos( π cos θ /2)]/R 。sin θ=[60 Im/R 。] │ f( θ ) │ 式中,f( θ ) 为方向函数。对称振子归一化方向函数为│ F( θ ) │ = │ f( θ ) │ / fmax=|cos( π cos θ /2)/sin θ | 其中fmax 是f( θ ) 的最大值。由上式可画出半波振子的方向图如下:

半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。在 E 面的方向图为8 字形,最大辐射方向为θ = π /2 ,且只要一臂长度不超过0.625 λ,辐射的最大值始终在θ = π /2 方向上;若继续增大L ,辐射的最大方向将偏离θ = π /2 方向。

五、实验步骤

(一)测量电磁波发射频率

1、用N型电缆直接将“输出口1”连接至“功率频率检测口”。

2、在液晶界面上同时显示出发射功率及频率。

3、已知电磁波发射源的频率F,求得波长:λ=F V光,比如,电磁波发射源频率为900MHz,则:

λ= F V光=3*108/900*106=0.33m.

半波天线长L=0.165 m

则两端子分别均为0.165/2=8.25cm

4,电磁波波长也可由液晶界面波长计算公式直接计算得出。

(二)制作半波振子天线

1、剪下一段铜丝,按计算得到尺寸剪下2段铜丝。

2、将铜丝末端漆刮掉,保持良好导电。

3、将天线安装到转盘上,这时就完成了半波天线的制作。

4、其他天线方法同上。

(三)验证麦克斯韦电磁理论,电磁场的存在

1、按下发射开关,将“输出口2”与极化天线通过SMA电缆相连,电磁波经传输电缆,经天线发射后在空中传输

2、灯泡被点亮,验证了电磁场的存在。

六、注意事项

1、漆包线铜丝需将末端的漆刮掉,保持导电性良好。

2、铜丝避免弯折。

七、报告要求

1、按照标准实验报告的格式和内容完成实验报告;

2、完成数据运算及整理;

3、更换天线种类进行制作;

实验二电场中位移电流的测试及计算

一、实验目的

1、认识时变电磁场,理解电磁感应的原理和作

2、理解电磁波辐射原理

3、了解位移电流的概念

二、预习要求

1、什么是法拉第电磁感应定律?

2、半波振子天线的原理。

三、实验仪器

HD-CB-IV电磁场电磁波数字智能实训平台:1套

检波器:1只

微安表头:1只

电磁波传输电缆:1套

平板极化天线:1副

半波振子天线:1副

四、实验原理

随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。电场和磁场构成了统一的电磁场的两个不可分割的部分。能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。如果将另一副天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。接收天线和白炽灯构成一个完整的电磁感应装置。当越靠近发射天线,灯泡被点的越亮。越远离天线,灯泡越暗。

五、实验步骤

(一)装置白炽灯泡

1、用SMA电缆连接“输出口2”和极化天线(可先选择A端口垂直极化),

将电磁波信号输送到极化天线上发射出去。

2、按下机器供电开关,机器工作正常,按下功率“发射开关”,绿色发射指示灯亮,说明发射正常。

3、半波天线的长度计算方法(也可由液晶界面直接显示):已知电磁波发射源的频率F,求得波长:λ= F V光,比如,电磁波发射源频率为900MHz,则:

λ=F V光=3*108/900*106=0.33m.

半波天线长L=0.165m

则两端子分别均为0.165/2=8.25cm

下面开始制作天线。注意:(天线端口与支撑金属片固定端的铜丝上的绝缘漆要刮)

4、用金属丝(铜丝)制作典型的半波天线,安装于感应灯板两端,竖直固定到测试支架上,将滑块移动置极化天线端(最左端)归零,此时液晶显示读数0.00。调节测试支架滑块到离发射天线40cm左右,按下功率信号发生器上发射按钮,白炽灯被点亮。

5、开始移动测试支架滑块(向靠近极化天线方向移动),直到小灯刚刚发光时,直接在显示器上读取滑块与发射天线的距离并记录。

6、改变天线振子的长度,重复上面过程,记录数据,总结得出天线长度与灯泡亮暗的关系。

7、设计制作其它天线形式制作感应器,重复上面过程,记录数据。

(二)装置检波二极管

1、将感应板换成检波装置,(灯泡变成了检波二极管)。置于旋转支架上。

2、用金属丝(铜丝)制作典型的半波天线,安装于检波板两端,竖直固定到测试支架上,将滑块移动置极化天线端(最左端)归零,此时液晶显示读数0.00。调节测试支架滑块到离发射天线40cm左右,通过SMA连接线将检波电流送至“检波电流输入”端口,同时将主机后开关切换至“电流输入”。按下功率信号发生器上发射按钮,指针开始偏转。记录数值。

3、慢慢向极化天线方向移动,记录下距离数值及电流大小,记录数值。

五、注意事项

1、按下机器供电开关,机器工作正常,按下功率发射按钮,发射指示灯亮,说明发射正常。

2、滑动感应器及反射板应缓慢,切忌过快影响实验效果和读数。

3、测试感应器时,不能将感应灯靠近发射天线的距离太近,否则会烧毁感应灯。(置于15cm 以外,或视感应灯亮度而定)

4、尽量减少按下发射按钮的时间,以免影响其它小组的测试准确性。

5、测试时尽量避免人员走动,以免人体反射影响测试结果。

六、报告要求

1、按照标准实验报告的格式和内容完成实验报告;

2、完成数据运算及整理;

3、对实验中的现象分析讨论。

实验三电磁波的偏振及极化测试

一、实验目的

1、电磁波的偏振现象的产生

2、完全偏振波与合成偏振波的定义

3、研究线性极化波的产生及其特点;

4、研究制作的电磁波感应器的极化特性,进行极化特性实验,与理论结果进行对比、讨论;

5、通过实验加深对电磁波极化特性的理解和认识。

二、预习要求

1、什么是电磁波的偏振?它具有什么特点?

2、了解各种常用天线的极化特性;

3、天线特性与发射( 接收) 电磁波极化特性之间的有什么关系?

三、实验仪器

HD-CB-IV电磁场电磁波数字智能实训平台:1套

水平极化天线:1副

垂直极化天线:1副

电磁波传输电缆:1根

微安表:1只

灯泡:1只

四、实验原理

首先我们说的偏振应该称为完全偏振波,即波中只有一个方向的振动(线偏,电磁波里叫线极化),也有两个方向合成的(圆偏振,椭圆偏振)。自然光里的电磁波可以理解为是在各个方向上线偏振光的均匀叠加。如果这种变化具有确定的规律,就称电磁波为极化电磁波(简称极化波)。如果极化电磁波的电场强度始终在垂直于传播方向的(横)平面内取向,其电场矢量的端点沿一闭合轨迹移动,则这一极化电磁波称为平面极化波。电场的矢端轨迹称为极化曲线,并按极化曲线的形状对极化波命名。

天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。

电磁波的极化是电磁理论中的一个重要概念,它表征在空间给定点上电场强度矢量的取向随时间变化的特性,并用电场强度矢量 E 的端点在空间描绘出的轨迹来表示。由其轨迹方式可得电磁波的极化方式有三种:线极化、圆极化、椭圆极化。极化波都可看成由两个同频率的直线极化波在空间合成, 如图所示,两线极化波沿正Z 方向传播,一个的极化取向在X 方向,另一个的极化取向在Y 方向。若X 在水平方向,Y 在垂直方向,这两个波就分别为水平极化波和垂直极化波。

若:水平极化波E x=E xm sin(wt-kz) 垂直极化波E y=E ym sin(wt-kz+ δ )

其中E xm、E ym 分别是水平极化波和垂直极化波的振幅,δ是E y超前E x 的相角(水平极化波取为参考相面)。

取Z=0 的平面分析,有

E x=E xm sin(wt)

E y=E ym sin(wt+ δ )

综合得aEx2-bExEy+cEy2=1

式中 a 、b 、c 为水平极化波和垂直极化波的振幅E xm、E ym和相角δ有关的常数。

此式是个一般化椭圆方程,它表明由E x、E y合成的电场矢量终端画出的轨迹是一个椭圆。所以:

●当两个线极化波同相或反相时,其合成波是一个线极化波;

●当两个线极化波相位差为л /2 时,其合成波是一个椭圆极化波;

●当两个线极化波振幅相等,相位相差л /2 时,其合成波是一个圆极化波。

实验一所设计的半波振子接收(发射)的波为线极化波,而最常用的接收(发射)圆极化波或椭圆极化波的天线即为螺旋天线。实际上一般螺旋天线在轴线方向不一定产生圆极化波,而是椭圆极化波。当单位长度的螺圈数N 很大时,发射(接收)的波可看作是圆极化波。

极化波的一个需要重视的地方是极化的旋转方向问题。一般规定:面对电波传播的方向(无论是发射或接收),电场沿顺时针方向旋转的波称为右旋圆极化波。右旋螺旋天线只能发射或接收右旋圆极化波,左旋螺旋天线只能发射或逆时针方向旋转的波称为左旋圆极化波接收左旋圆极化波。判断方法:沿着天线辐射方向,当天线的绕向符合右手螺旋定则时,为右旋圆极化,反之为左旋圆极化。

五、实验步骤

实验装置如下图所示:

1、将一副发射极化天线架设在发射支架上,

连接好发射电缆,开启实验平台开关,将“输出

口2”连接到极化天线上。按下发射开关,绿色

指示灯亮,代表正常工作。

2、将制作的线极化的电磁波感应器安装在

测试支架上,分别设置成垂直、水平、斜45 度

三种位置,按下发射按钮,并移动感应器滑块,

观察灯泡达到同等亮度时与发射天线的距离,并记录数据。

3、更换不同的发射天线类型,重复以上步骤,记录测试数据。

4、分析实验数据,判断各发射天线发出的电磁波的极化形式。

5、也可接检波装置,观测不同极化时的检波电流大小。(有兴趣的同学,可用这种方式记录数据,从而画出半波天线的方向图)。

六、注意事项

1、按下机器供电开关,机器工作正常,按下功率发射按钮,发射指示灯亮,

且液晶界面显示发射状态,说明发射正常。

2、滑动感应器及反射板应缓慢,切忌过快影响实验效果和读数。

3、测试感应器时,不能将感应灯靠近发射天线的距离太近,否则会烧毁感应灯。(置于15cm以外,或视感应灯亮度而定)

4、实验前,按规定执行清零操作,方便读数记录。

5、避免与相邻小组同时按下发射按钮,尽量减少按下发射按钮的时间,以

免相互影响测试准确性。

6、测试时尽量避免人员走动,以免人体反射影响测试结果。

七、报告要求

1、按照标准实验报告的格式和内容完成实验报告;

2、完成数据运算及整理,依据实验数据,分析电磁波的极化形式;

3、讨论电磁波不同极化收发的规律;

实验四天线方向图的测试(功率测试法)

一、实验目的

1、了解八木天线的基本原理

2、了解天线方向图的基本原理。

3、用功率测量法测试天线方向图以了解天线的辐射特性。

二、预习内容

1、熟悉天线的理论知识

2、熟悉功率计的测试方法

三、实验仪器

HD-CB-IV电磁场电磁波数字智能实训平台2套

八木天线:2副

电磁波传输电缆:2根

四、实验原理

八木天线的概念:由一个有源半波振子,一个或若干个无源反射器和一个或若干个无源引向器组成的线形端射天线。八木天线有很好的方向性,较偶极天线有高的增益。用它来测向、远距离通信效果特别好。

方向图是表征表示场强对方位角变化的极性图形,在本实验中,接收端用功率计来测量接收天线的辐射特性。

连接示意图:

五、实验步骤

首先将八木天线分别固定到支架上,平放至标尺上,距离保持在1米以上。(一)发射端

1、将八木天线固定在发射支架上。

2、将“输出口1”连接至发射的八木天线。

3、电磁波经定向八木天线向空间发射。

(二)接收端

1、接收端天线连接至“频率功率检测”,测量接收功率。

2、调节发射与接收天线距离,使其满足远场条件。

3、将两根天线正对保持0度。

4、记录下天线的接收功率值。

5、转动接收天线,变换接收天线角度,记录下天线接收功率值。

6、旋转360度后,记录下转动角度值及相应角度下接收天线功率值。

7、填写下表。

8、打点法在下图中标出每个点的位置:

注:1、功率最大圈0dBm,-3 dBm,-6 dBm,-9 dBm,依次递减。

2、连接每个点,画出天线的主瓣及旁瓣。

六、注意事项

1、设置好方向后,无需按发射开关(此时选择小功率发射)。

2、发射时避免人员走动,减少实验误差。

3、天线之间距离保持在1米以上。

选作一

电磁波的迈克尔逊干涉

一、实验目的

1 、学习了解电磁场电磁波的空间传播特性;

2 、通过对电磁场电磁波波长、波幅、波节、驻波的测量进一步认识和了解电磁场电磁波

3、利用相干波原理测量波长

二、预习要求

1 、什么是迈克尔逊干涉原理?它在实验中有哪些应用?

2 、驻波的产生原理及其特性;

三、实验仪器

HD-CB-IV电磁场电磁波数字智能实训平台:1套

极化天线:1副

金属反射板:1块

有机玻璃板(选配)1块

电磁波传输电缆:1根

半波振子天线:1副

微安表头:1只

灯泡:1只

四、实验原理

变化的电场和磁场在空间的传播称为电磁波,几列电磁波同时在同一介质中传播时,几列波可以保持各自的特点( 波长、波幅、频率、传播方向等) 同时通过介质,在几列波相遇或叠加的区域内,任一点的振动为各个波单独在该点产生的振动的合成。而当两个频率相同、偏振相同、相位差恒定的波源所发出的波的叠加时在空间总会有一些点振动始终加强,而另一些点振动始终减弱或完全抵消,因而形成干涉现象。

干涉是电磁波的一个重要特性,利用干涉原理可对电磁波传播特性进行很好的探索。而驻波是干涉的特例。在同一媒质中两列振幅相同的相干波,在同一直线上反向传播时就叠加形成驻波。由发射天线发射出的电磁波,在空间传播过程中可以近似看成均匀平面波。此平面波垂直入射到金属板,被金属板反射回来,到达电磁波感应器;直射波也可直接到达电磁波感应器。这两列波将形成驻波,两列电磁波的波程差满足一定关系时,在感应器位置可以产生波腹或波节。

设到达电磁感应器的两列平面波的振幅相同, 只是因波程不同而有一定的相位差, 电场可表示为:Ex=E m cos(wt-kz) Ey=E m

cos(wt-kz+ δ )

其中δ = β Z 是因波程差而造成的相位差, 则当相位差δ = βZ1=2n π

(n=0,1,2……) 时,合成波的振幅最大,Z1的位置为合成波的波腹;相位差δ = βZ2=2n π + π (n=0,1,2……) 时,合成波的振幅最小,Z2的位置为合成波的波节。实际上到达电磁感应器的两列波的振幅不可能完全相同,故合成波波腹振幅值不是二倍单列波的振幅值,合成波的波节值也不是恰好为零。

根据以上分析, 若固定感应器,只移动金属板,即只改变第二列波的波程,让驻波得以形成,当合成波振幅最大( 波腹) 时:Z1=2n π / β =n λ

当合成波振幅最小( 波节) 时:Z2=(2n π + π )/ β =(n+1/2) λ

此时合成波振幅最大到合成波振幅最小( 波腹到波节) 的最短波程差为λ /2 ,若此时可动金属板移动的距离为△L, 则2△L= λ /2即λ =4△L 可见, 测得了可动金属板移动的距离△L, 代入式中便确定电波波长。

了解下面两个概念:

波节:驻波在空间内特定量振幅为最小值处的点。

波幅:驻波在空间内特定量振幅为最大值处的点。

下面通过实验现象来分析驻波的产生,及电磁波波长的测试方法。

五、实验步骤

实验装置如图所示:

1、用SMA连接电缆连接“输出口2”和极化

天线口,将电磁波信号输送到极化天线上。将感

应天线滑至极化天线最左端,实施清零操作(液晶

显示界面显示0.00)。

2、将设计制作的电磁波感应器半波天线——感应天线安装在可旋转支架上,先将其垂直放置,再将支臂滑块缓慢移到距离发射天线25-30 cm 刻度处;

3、按下发射旋钮,此时已有电磁波发射出来,灯泡被点亮(亮暗程度不一样);

4、移动反射板,看半波天线上灯是否有明暗变化,如果没有或亮暗不明显,将感应天线往极化天线方向移动少许距离,如果还没明暗变化,再检查天线及其他方面;

5、如系统正常工作,注意:将反射板移动至感应器一端,实施清零操作,此时液晶显示界面显示0.00.继而从远而近移动可动反射板,使灯泡明暗变化以灯泡明暗度判断波节 ( 波腹 ) 的出现。再由近而远移动反射板,并读取最初灯泡最亮时反射板位置的坐标 X1及灯泡最暗时反射板位置的坐标 X2;继续测第二次灯泡最亮时反射板位置的坐标 X1及灯泡最暗时反射板位置的坐标 X2;由最亮到最暗,最暗到最亮,如此反复,记下测得的最亮次数 i ,将测量数记入下表:

例如:按下发射开关,移动反射板,记录下白炽灯最亮时的刻度值:X1,继续向前移动白炽灯,记录下白炽灯最暗时的刻度:X2,则2(X1-X2)=1/2λ,计算出电磁波波长λ=4(X1-X2),

同时可计算出电磁波F=V光/4(X1-X2).

注意:多记录几组数据,求平均之值后再计算波长。

6、也可换上检波装置,这时可观测指针是左右来回摆动,这时记录下指针最大时的距离值,指针最小时的距离值。实验步骤与上面相同,多记录几组数据求得平均值,从而计算波长大小。

7,将金属反射板换成玻璃板,观测实验现象。

六、注意事项

1、按下机器供电开关,机器工作正常,按下发射开关,绿色发射指示灯亮,说明发射正常。

2、滑动感应器及反射板应缓慢,切忌过快影响实验效果和读数。

3、测试感应器时,不能将感应灯靠近发射天线的距离太小,否则会烧毁感应灯。(置于15cm 以外,或视感应灯泡亮度而定)

4、实验前,按规定执行清零操作,方便记录数值。

5、尽量减少按下发射按钮的时间,以免影响其它小组的测试准确性。

6、测试时尽量避免人员走动,以免人体反射影响测试结果。

七、报告要求

1、按照标准实验报告的格式和内容完成实验报告;

2、完成数据运算及整理,计算出电磁波波长;

3、对实验中的现象分析讨论,并对实验误差产生的原因进行分析。

选作二

电磁波的频率功率测试

一、实验目的

1、了解电磁波的频率分类

2、电磁波频率功率的测试方法

3、功率频率的单位转换

二、预习要求

1、电磁波功率的单位及转换关系

2、电磁波的频率单位及转换关系

3、了解电磁波的概念

三、实验仪器

HD-CB-IV电磁场电磁波数字智能实训平台

四、实验原理

电磁波是物体所固有的发射和反射在空间传播交变的电磁场的物理量。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、X-射线和伽马射线等。

电磁波是电磁场的一种运动形态。变化的电场会产生磁场(电流会产生磁场),变化的磁场则会产生电场。而变化的电磁场在空间的传播形成了电磁波。

1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。 1887年德国物理学家赫兹实验证实了电磁波的存在。1898年,马可尼又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。

电磁波频率的分类:

1 甚低频(VLF) 3~30 KHz 甚长波 100~10km

2 低频(LF) 30~300 KHz 长波 10~1km

3 中频(MF) 300~3000KHz 中波 1000~100m

4 高频(HF) 3~30 MHz 短波 100~10m

5 甚高频(VHF) 30~300 MHz 米波 10~1m

6 特高频(UHF) 300~3000 MHz 分米波微波 100~10cm

7 超高频(SHF) 3~30 GHz 厘米波 10~1cm

8 极高频(EHF) 30~300 GHz 毫米波 10~1mm

9 至高频 300~3000吉赫(GHz)丝米波 1~0.1mm

频率单位的转换关系:

1GHz=103MHz=106KHz=109Hz

功率比对表

五、实验步骤

1、将“输出口1”通过N型电缆连接至“功率频率检测”。

2、直读出功率值dbm,试转换成mw值是多少。

3、直读出频率,计算出电磁波的波长。

六、报告要求

1、按照标准实验报告的格式和内容完成实验报告;

2、完成数据运算及整理;

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

《电磁场实验指导书》word版

电磁场实验指导书 北京信息科技大学

目录 实验一球形载流线圈的场分布与自感 (1) 实验二磁悬浮 (7) 实验三静电除尘 (10)

前 言 结合电磁场课程教学的电磁场实验课是完善教学效果,增进学生对电磁场现象和过程的感性认识,拓展有关电磁场工程应用知识面的重要环节。随着教学改革不断深化的进程, 电磁场教学实验在承接大学物理电磁学实验基础上的改进与提高势在必行。根据高等学校电磁场课程教学的基本要求,以电磁场系列实验课开设的需求为依据,我电磁场课程组设计、编写了电磁场实验教学的新内容,并在浙江大学求是公司的共同规划下,由该公司制作完成了第一阶段的三个实验的基本装置和设备,以应当前我国电磁场实验教学的实际需要。 实验一:球形载流线圈的场分布与自感 一、实验目的 1. 研究球形载流线圈(磁通球)的典型磁场分布及其自感参数; 2. 掌握工程上测量磁场的两种基本方法──感应电势法和霍耳效应法; 3. 在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测 量方法等知识点的理解,熟悉霍耳效应高斯计的应用。 二、实验原理 (1)球形载流线圈(磁通球)的磁场分析 如图11所示,当在z 向具有均匀的匝数密度分布的球形线圈中通以正弦电流i 时,可等效看作为流经球表面层的面电流密度K 的分布。显然,其等效原则在于载流安匝不变,即如设沿球表面的线匝密度分布为W ′,则在与元长度d z 对应的球面弧元d R 上,应有 图1-1球形载流线圈(磁通球) i 图1-2 呈轴对称性的计算场域

()d d N W R θi=z i 2R ??' ??? 因在球面上,θcos R z =,所以 ()d d cos sin d z R R θθθ== 代入上式,可知对应于球面上线匝密度分布W ′,应有 2sin d sin d 2N R R N W R R θθθθ?'== 即沿球表面,该载流线圈的线匝密度分布W ′正比于θsin ,呈正弦分布。因此,本实验模拟的在球表面上等效的面电流密度K 的分布为 sin N i 2R K e φθ=?? 由上式可见,面电流密度K 周向分布,且其值正比于θsin 。 因为,在由球面上面电流密度K 所界定的球内外轴对称场域中,没有自由电流的分布, 所 以, 可采用标量磁位m 为待求场量,列出待求的边值问题如下: 上式中泛定方程为拉普拉斯方程,定解条件由球表面处的辅助边界条件、标量磁位的参考点,以及离该磁通球无限远处磁场衰减为零的物理条件所组成。 通过求解球坐标系下这一边值问题,可得标量磁位 m1和m2 的解答,然后,最终得磁通球内外磁场强度为 (1-1) 和 ()()32m22cos sin 6r Ni R - r>R R r θ?θθ??=?=+ ??? H e e (1-2)()()()()()()2m12m2t1t212n n1n20102m102m2,0,0sin 200r r r r r r r R r r R N H H H H K i r R R B B H H r R θθ?θ?θθμμ??=→∞→∞???=???????-=-===?????=→==???=??=-?=?? H 泛定方程: BC:()()1m1cos sin 3r Ni - - r

测试技术实验指导书及实验报告2006级用汇总

矿压测试技术实验指导书 学号: 班级: 姓名: 安徽理工大学 能源与安全学院采矿工程实验室

实验一常用矿山压力仪器原理及使用方法 第一部分观测岩层移动的部分仪器 ☆深基点钻孔多点位移计 一、结构简介 深基点钻孔多点位移计是监测巷道在掘进和受采动影响的整个服务期间,围岩内部变形随时间变化情况的一种仪器。 深基点钻孔多点位移包括孔内固定装置、孔中连接钢丝绳、孔口测读装置组成。每套位移计内有5~6个测点。其结构及其安装如图1所示。 二、安装方法 1.在巷道两帮及顶板各钻出φ32的钻孔。 2.将带有连接钢丝绳的孔内固定装置,由远及近分别用安装圆管将其推至所要求的深度。(每个钻孔布置5~6个测点,分别为;6m、5m、4m、3m、2m、lm或12m、10m、8m、6m、4m、2m)。 3.将孔口测读装置,用水泥药圈或木条固定在孔口。 4。拉紧每个测点的钢丝绳,将孔口测读装置上的测尺推至l00mm左右的位置后,由螺丝将钢丝绳与测尺固定在一起。 三、测试方法 安装后先读出每个测点的初读数,以后每次读得的数值与初读数之差,即为测点的位移值。当读数将到零刻度时,松开螺丝,使测尺再回到l00mm左右的位置,重新读出初读数。 ☆顶板离层指示仪 一、结构简介: 顶板离层指示仪是监测顶板锚杆范围内及锚固范围外离层值大小的一种监测仪器,在顶板钻孔中布置两个测点,一个在围岩深部稳定处,一个在锚杆端部围岩中。离层值就是围岩中两测点之间以及锚杆端部围岩与巷道顶板表面间的相对位移值。顶板离层指示仪由孔内固定装置、测量钢丝绳及孔口显示装置组成如图1所示。

二、安装方法: 1.在巷道顶板钻出φ32的钻孔,孔深由要求而定。 2.将带有长钢丝绳的孔内固定装置用安装杆推到所要求的位置;抽出安装杆后再将带有短钢丝绳的孔内固定装置推到所要求的位置。 3.将孔口显示装置用木条固定在孔口(在显示装置与钻孔间要留有钢丝绳运动的间隙)。 4.将钢丝绳拉紧后,用螺丝将其分别与孔口显示装置中的圆管相连接,且使其显示读数超过零刻度线。 三、测读方法: 孔口测读装置上所显示的颜色,反映出顶板离层的范围及所处状态,显示数值表示顶板的离层量。☆DY—82型顶板动态仪 一、用途 DY-82型顶板动态仪是一种机械式高灵敏位移计。用于监测顶底板移近量、移近速度,进行采场“初次来压”和“周期来压”的预报,探测超前支撑压力高 峰位置,监测顶板活动及其它相对位移的测量。 二、技术特征 (1)灵敏度(mm) 0.01 (2)精度(%) 粗读±1,微读±2.5 (3)量程(mm) 0~200 (4)使用高度(mm) 1000~3000 三、原理、结构 其结构和安装见图。仪器的核心部件是齿条6、指针8 以及与指针相连的齿轮、微读数刻线盘9、齿条下端带有读 数横刻线的游标和粗读数刻度管11。 当动态仪安装在顶底板之间时,依靠压力弹簧7产生的 弹力而站立。安好后记下读数(初读数)并由手表读出时间。 粗读数由游标10的横刻线在刻度管11上的位置读出,每小 格2毫米,每大格(标有“1”、“22'’等)为10毫米,微读数 由指针8在刻线盘9的位置读出,每小格为0.01毫米(共200 小格,对应2毫米)。粗读数加微读数即为此时刻的读数。当 顶底板移近时,通过压杆3压缩压力弹簧7,推动齿条6下 移,带动齿轮,齿轮带动指针8顺时针方向旋转,顶底板每 移近0.01毫米,指针转过1小格;同时齿条下端游标随齿条 下移,读数增大。后次读数减去前次读数,即为这段时间内的顶底板移近量。除以经过的时间,即得

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场实验指导书解读

电磁场与电磁波实验指导书 山东建筑大学信息与电气工程学院

前言 一、实验目的 《电磁场与电磁波》是一门理论性较强、概念抽象的重要的专业基础课程,也是一些交叉学科的生长点和新兴边缘学科发展的基础,通过本实验课程使学生们加深对“电磁场与电磁波”课程中基本理论和基本方法的理解,提高实验技能和基本操作技能。培养学生严谨的科学作风和科学方法、增强学生的创造能力。 二、实验前预习 每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。 三、实验注意事项 1.实验开始前,应先检查本组的仪器设备是否齐全完备,了解设备使用方法及仪器的连接要求。 2.实验时每组同学应分工协作,轮流记录、操作等,使每个同学受到全面训练。 3.操作前应将仪器设备合理布置,然后按要求连接。 4.完成实验系统连接后,必须进行复查,逐项检查各设备、器件的位置、角度等是否正确。确定无误后,方可通电进行实验。 5.实验中严格遵循操作规程,绝对不允许带电操作。如发现异常声、味或其它事故情况,应立即切断电源,报告指导教师检查处理。 6.测量数据或观察现象要认真细致,实事求是。使用仪器仪表要符合操作规程,注意仪表的正确读数。 7.未经许可,不得动用其它组的仪器设备或工具等物。 8.实验结束后,实验记录交指导教师查看并认为无误后,方可拆除实验系统。最后,应清理实验桌面,清点仪器设备。

9.爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。 10.自觉遵守学校和实验室管理的其它有关规定。 四、实验总结 每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括: 1.实验目的; 2.实验仪器设备(名称、型号); 3.实验原理; 4.实验主要步骤及相应的连接图; 5.实验记录(测试数据、波形、现象); 6.实验数据整理(按每项实验的"实验报告要求"进行计算、分析等); 7.回答每项实验的有关问答题。

混凝土结构实验指导书及实验报告(学生用)

土木工程学院 《混凝土结构设计基本原理》实验指导书 及实验报告 适用专业:土木工程周淼 编 班级::学 号: 理工大学 2018 年9 月

实验一钢筋混凝土梁受弯性能试验 一、实验目的 1.了解适筋梁的受力过程和破坏特征; 2.验证钢筋混凝土受弯构件正截面强度理论和计算公式; 3.掌握钢筋混凝土受弯构件的实验方法及荷载、应变、挠度、裂缝宽度等数据的测试技术 和有关仪器的使用方法; 4.培养学生对钢筋混凝土基本构件的初步实验分析能力。 二、基本原理当梁中纵向受力钢筋的配筋率适中时,梁正截面受弯破坏过程表现为典型的三个阶段:第一阶段——弹性阶段(I阶段):当荷载较小时,混凝土梁如同两种弹性材料组成的组合梁,梁截面的应力呈线性分布,卸载后几乎无残余变形。当梁受拉区混凝土的最大拉应力达到混凝土的抗拉强度,且最大的混凝土拉应变超过混凝土的极限受拉应变时,在纯弯段某一薄弱截面出现首条垂直裂缝。梁开裂标志着第一阶段的结束。此时,梁纯弯段截面承担的弯矩M cr称为开裂弯矩。第二阶段——带裂缝工作阶段(II阶段):梁开裂后,裂缝处混凝土退出工作,钢筋应力急增,且通过粘结力向未开裂的混凝土传递拉应力,使得梁中继续出现拉裂缝。压区混凝土中压应力也由线性分布转化为非线性分布。当受拉钢筋屈服时标志着第二阶段的结束。此时梁纯弯段截面承担的弯矩M y称为屈服弯矩。第三阶段——破坏阶段(III阶段):钢筋屈服后,在很小的荷载增量下,梁会产生很大的变形。裂缝的高度和宽度进一步发展,中和轴不断上移,压区混凝土应力分布曲线渐趋丰满。当受压区混凝土的最大压应变达到混凝土的极限压应变时,压区混凝土压碎,梁正截面受弯破坏。此时,梁承担的弯矩M u 称为极限弯矩。适筋梁的破坏始于纵筋屈服,终于混凝土压碎。整个过程要经历相当大的变形,破坏前有明显的预兆。这种破坏称为适筋破坏,属于延性破坏。 三、试验装置

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

工程电磁场实验报告

工程电磁场实验报告 姓名: 学号: 联系式: 指导老师:

实验一螺线管电磁阀静磁场分析 一、实验目的 以螺线管电磁阀静磁场分析为例,练习在 MAXWELL 2D 环境下建立磁场模型,并求解分析磁场分布以及磁场力等数据。 二、主要步骤 a) 建立项目:其中包括生成项目录,生成螺线管项目,打开新项目 与运行MAXWELL 2D。 b) 生成螺线管模型:使用MAXWELL 2D 求解电磁场问题首先应该选择求解 器类型,静磁场的求解选择Magnetostatic,然后在打开的新项目中定义画图平面,建立要求尺寸的螺线管几模型,螺线管的组成包括 Core 、Bonnet 、Coil 、Plugnut、Yoke。 c) 指定材料属性:访问材料管理器,指定各个螺线管元件的材料,其中部分 元件的材料需要自己生成,根据给定的BH 曲线进行定义。 图1 元件材料 图2 B-H曲线 d) 建立边界条件和激励源:给背景指定为气球边界条件,给线圈Coil 施加电 流源。 e) 设定求解参数:本实验中除了计算磁场,还需要确定作用在螺线管铁心上 的作用力,在求解参数中要注意进行设定。

f) 设定求解选项:建立几模型并设定其材料后,进一步设定求解项,在对话 框Setup Solution Options 进入求解选项设定对话框,进行设置。 三、实验要求 建立螺线管电磁阀模型后,对其静磁场进行求解分析,观察收敛情况,画各种收敛数据关系曲线,观察统计信息;分析 Core 受的磁场力,画磁通量等势线,分析P lugnut 的材料磁饱和度,画出其B H 曲线。通过工程实例的运行,掌握软件的基本使用法。 四、实验结果 1.螺线管模型 图3 2.自适应求解 图4 收敛数据

土工实验指导书及实验报告

土工实验指导书及实验报告编写毕守一 安徽水利水电职业技术学院 二OO九年五月

目录 实验一试样制备 实验二含水率试验 实验三密度试验 实验四液限和塑限试验 实验五颗粒分析试验 实验六固结试验 实验七直接剪切试验 实验八击实试验 土工试验复习题

实验一试样制备 一、概述 试样的制备是获得正确的试验成果的前提,为保证试验成果的可靠性以及试验数据的可比性,应具备一个统一的试样制备方法和程序。 试样的制备可分为原状土的试样制备和扰动土的试样制备。对于原状土的试样制备主要包括土样的开启、描述、切取等程序;而扰动土的制备程序则主要包括风干、碾散、过筛、分样和贮存等预备程序以及击实等制备程序,这些程序步骤的正确与否,都会直接影响到试验成果的可靠性,因此,试样的制备是土工试验工作的首要质量要素。 二、仪器设备 试样制备所需的主要仪器设备,包括: (1)孔径0.5mm、2mm和5mm的细筛; (2)孔径0.075mm的洗筛; (3)称量10kg、最小分度值5g的台秤; (4)称量5000g、最小分度值1g和称量200g、最小分度值0.01g的天平;

(5)不锈钢环刀(内径61.8mm、高20mm;内径79.8mm、高20mm或内径61.8mm、高40mm); (6)击样器:包括活塞、导筒和环刀; (7)其他:切土刀、钢丝锯、碎土工具、烘箱、保湿器、喷水设备、凡士林等。 三、试样制备 (一)原状土试样的制备步骤 1、将土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样筒取土样。 2、检查土样结构,若土样已扰动,则不应作为制备力学性质试验的试样。 3、根据试验要求确定环刀尺寸,并在环刀内壁涂一薄层凡士林,然后刃口向下放在土样上,将环刀垂直下压,同时用切土刀沿环刀外侧切削土样,边压边削直至土样高出环刀,制样时不得扰动土样。 4、采用钢丝锯或切土刀平整环刀两端土样,然后擦净环刀外壁,称环刀和土的总质量。 5、切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述。 6、从切削的余土中取代表性试样,供测定含水率以及颗粒分析、界限含水率等试验之用。

国中学生物理竞赛实验指导书思考题参考答案-电磁学

实验十一 学习使用数字万用表 【思考题参考答案】 1.调节电阻箱的电阻为500Ω和5Ω时,电阻的误差是多大? 答:以0.1级为例,以每个接点的接触电阻按0.002Ω为例。 对于500Ω电阻从0和9999Ω接线柱输出,误差为 Ω=?+?=?512.0002.06%1.0500R 对于5Ω电阻从0和9.9Ω接线柱输出,误差为 Ω=?+?=?009.0002.02%1.05R 2.电源电压为110V 。是否可以只用一个电阻箱控制,得到0.5A 的电流? 答:若只用一个电阻箱控制,所需电阻为Ω2205.0110==R 。这需要电阻箱的100?R 档,此档允许电流为0.05A ,实际电流大于额定电流,不能使用。 3.对于一块四位半的数字万用电表的直流电压200mV 量程,可能出现的最大数字是多少?最小分辨率是多少? 答:最大数字为199.99mV 。最小分辨率为0.01mV 。 4.使用数字万用电表的直流电压2V 量程测量直流电压,测量值为1.5V ,测量误差为多少?如果测量值为0.15V ,测量误差为多少?如果换用200mV 量程测量直流电压0.15V ,误差为多少? 答:我们以0.5级的三位半表为例,()一个字+±=?x U U %5.0。 2V 量程测量直流电压1.5V 时 ()mV mV V U 5.815.1%5.0±=+?±=? 2V 量程测量直流电压0.15V 时()mV mV V U 8.1115.0%5.0±≈+?±=? 200mV 量程测量直流电压0.15V 时()mV mV mV U 9.01.0150%5.0±≈+?±=? 可见,测量小电压尽量选用低量程档。 5.为什么不宜用数字万用电表的电阻档测量表头内阻? 答:数字万用电表电阻档内置9V 电池,而微安表头内阻在2000Ω左右。这样测通过表头的电流估计为mA A 5.40045.020009==,这个电流远大于微安表头的满量程电流。 6.为什么不能用数字万用电表的电阻档测量电源内阻? 答:电阻档的使用条件是被测电阻中无电流通过,或者被测电阻两端无电压。对电源内阻来说,一旦用电阻档测量,电源就为内阻提供了电流,这样容易烧毁电表。 实验十二 制流和分压电路 【思考题参考答案】

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与电磁波实验指导书

电磁场电磁波实验 实验一电磁感应定律的验证 一、实验目的 1、通过电磁感应装置的设计,了解麦克斯韦电磁感应定律的内容 2、了解半波天线感应器的原理及设计方法 ( 3、天线长短与电磁波波长的接收匹配关系 二、预习要求 1、麦克斯韦电磁理论的内容 2、什么是电偶极子 3、了解线天线基本结构及其特性 三、实验仪器 HD-CB-IV电磁场电磁波数字智能实训平台:1套 | 电磁波传输电缆:1套 平板极化天线:1副 半波振子天线:1副 感应灯泡:1个 四、实验原理 。 麦克斯韦电磁理论经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。下面我们通过制作感应天线体,来验证电磁场的存在。 如图示:电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。 半波天线又称半波振子,是对称天线的一种最简单的模式。对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。这种天线是最通用的天线型式之一,又称为偶极子天线。而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。 半波振子因其一臂长度为λ /4 ,全长为半波长而得名。其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L= λ /4 )的远区场强有以下关系式: — │ E │ =[60 Im cos( π cos θ /2)]/R 。sin θ=[60 Im/R 。] │ f( θ ) │ 式中,f( θ ) 为方向函数。对称振子归一化方向函数为│ F( θ ) │ = │ f( θ ) │ / fmax=|cos( π cos θ /2)/sin θ | 其中fmax 是f( θ ) 的最大值。由上式可画出半波振子的方向图如下: 半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。在 E 面的方向图为8 字形,最大辐射方向为θ = π /2 ,且只要一臂长度不超过λ,辐射的最大值始终在θ = π /2 方向上;若继续增大L ,辐射的最大方向将偏离θ = π /2 方向。 五、实验步骤 (一)测量电磁波发射频率 1、用N型电缆直接将“输出口1”连接至“功率频率检测口”。 ) 2、在液晶界面上同时显示出发射功率及频率。

CAD上机实验指导书及实验报告

北京邮电大学世纪学院 实验、实习、课程设计报告撰写格式与要求 (试行) 一、实验报告格式要求 1、有实验教学手册,按手册要求填写,若无则采用统一实验报告封面。 2、报告一律用钢笔书写或打印,打印要求用A4纸;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 3、统一采用国家标准所规定的单位与符号,要求文字书写工整,不得潦草;作图规范,不得随手勾画。 4、实验报告中的实验原始记录,须经实验指导教师签字或登记。 二、实习报告、课程设计报告格式要求 1、采用统一的封面。 2、根据教学大纲的要求手写或打印,手写一律用钢笔书写,统一采用国家标准所规定的单位与符号,要求文字书写工整,不得潦草;作图规范,不得随手勾画。打印要求用A4纸;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 三、报告内容要求 1、实验报告内容包括:实验目的、实验原理、实验仪器设备、实验操作过程、原始数据、实验结果分析、实验心得等方面内容。 2、实习报告内容包括:实习题目、实习任务与要求、实习具体实施情况(附上图表、原始数据等)、实习个人总结等内容。 3、课程设计报告或说明书内容包括:课程设计任务与要求、总体方案、方案设计与分析、所需仪器设备与元器件、设计实现与调试、收获体会、参考资料等方面内容。 北京邮电大学世纪学院 教务处 2009-8

实验报告 课程名称计算机绘图(CAD) 实验项目AutoCAD二维绘图实验 专业班级 姓名学号 指导教师实验成绩 2016年11月日

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验指导书袁守利编 汽车工程学院 2005年9月

前言 1.实验总体目标、任务与要求 1)学生在学习了《流体力学》基本理论的基础上,通过伯努利方程实验、动量方程实 验,实现对基本理论的验证。 2)通过实验,使学生对水柱(水银柱)、U型压差计、毕托管、孔板流量计、文丘里流量计等流体力学常用的测压、测流量装置的结构、原理和使用有基本认识。 2.适用专业 热能与动力工程 3.先修课程 《流体力学》相关章节。 4.实验项目与学时分配 5. 实验改革与特色 根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。

实验一伯努利方程实验 1.观察流体流经实验管段时的能量转化关系,了解特定截面上的总水头、测压管水头、压强水头、速度水头和位置水头间的关系,从而加深对伯努利方程的理解和认识。 2.掌握各种水头的测试方法和压强的测试方法。 3.掌握流量、流速的测量方法,了解毕托管测速的原理。 二、实验条件 伯努利方程实验仪 三、实验原理 1.实验装置: 图一伯努利方程实验台 1.水箱及潜水泵 2.上水管 3.电源 4.溢流管 5.整流栅 6.溢流板 7.定压水箱 8.实验 细管9. 实验粗管10.测压管11.调节阀12.接水箱13.量杯14回水管15.实验桌 2.工作原理 定压水箱7靠溢流来维持其恒定的水位,在水箱下部装接水平放置的实验细管8,水经实验细管以恒定流流出,并通过调节阀11调节其出水流量。通过布置在实验管四个截面上的四组测压孔及测压管,可以测量到相应截面上的各种水头的大小,从而可以分析管路中恒定流动的各种能量形式、大小及相互转化关系。各个测量截面上的一组测压管都相当于一组毕托管,所以也可以用来测管中某点的流速。 电测流量装置由回水箱、计量水箱和电测流量装置(由浮子、光栅计量尺和光电子

国中学生物理竞赛实验指导书思考题参考答案电磁学

国中学生物理竞赛实验指导书思考题参考答案电磁学

实验十一 学习使用数字万用表 【思考题参考答案】 1.调节电阻箱的电阻为500和5时,电阻的误差是多大? 答:以0.1级为例,以每个接点的接触电阻按0.002为例。 对于500 电阻从0和9999接线柱输出,误差为 Ω=?+?=?512.0002.06%1.0500R 对于5电阻从0和9.9接线柱输出,误差为 Ω=?+?=?009.0002.02%1.05R 2.电源电压为110V 。是否能够只用一个电阻箱控制,得到0.5A 的电流? 答:若只用一个电阻箱控制,所需电阻为Ω2205.0110==R 。这需要电阻箱的100?R 档,此档允许电流为0.05A ,实际电流大于额定电流,不能使用。 3.对于一块四位半的数字万用电表的直流电压200mV 量程,可能出现的最大数字是多少?最小分辨率是多少? 答:最大数字为199.99mV 。最小分辨率为0.01mV 。 4.使用数字万用电表的直流电压2V 量程测量直流电压,测量值为 1.5V ,测量误差为多少?如果测量值为0.15V ,测量误差为多少?如果换用200mV 量程测量直流电压0.15V ,误差为多少? 答:我们以0.5级的三位半表为例,()一个字+±=?x U U %5.0。 2V 量程测量直流电压1.5V 时 ()mV mV V U 5.815.1%5.0±=+?±=? 2V 量程测量直流电压0.15V 时()mV mV V U 8.1115.0%5.0±≈+?±=? 200mV 量程测量直流电压0.15V 时

()mV mV mV U 9.01.0150%5.0±≈+?±=? 可见,测量小电压尽量选用低量程档。 5.为什么不宜用数字万用电表的电阻档测量表头内阻? 答:数字万用电表电阻档内置9V 电池,而微安表头内阻在 左右。这样测经过表头的电流估计为mA A 5.40045.020009==,这个电流远大于微安表头的满量程电流。 6.为什么不能用数字万用电表的电阻档测量电源内阻? 答:电阻档的使用条件是被测电阻中无电流经过,或者被测电阻两端无电压。对电源内阻来说,一旦用电阻档测量,电源就为内阻提供了电流,这样容易烧毁电表。 实验十二 制流和分压电路 【思考题参考答案】 1.在连接分压电路时,有人将电源的 正、负极经过开关分别连到变阻器的一个 固定端和滑动端。这种连接方法对么?会 有什么问题? 答:电路如图,这种连接方法不对。这种电路负载电阻被短路不会分压。 2.有一分压电路如图(实验的那个电路),负载电阻Ω=k R L 1.5,电压表内阻为Ω=k R V 10,变阻器电阻为0R 。 (1)若希望分压均匀,应选择哪种规格的变阻器? (a )A 1,5Ω;(b )A 5.0,100Ω(c )A 2.0,1000Ω E K A B C R

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

《工程电磁场》实验指导书

实验一 矢量分析 一、实验目的 1.掌握用matlab 进行矢量运算的方法。 二、基础知识 1. 掌握几个基本的矢量运算函数:点积dot(A,B)、叉积cross(A,B)、求模运算norm(A)。等 三、实验内容 通过调用函数,完成下面计算 内容1. 给定三个矢量A 、B 和C 如下: 23452x y z y z x z A e e e B e e C e e =+-=-+=- 求(1)A e ;(2)||A B -; (3)A B ?; (4)AB θ (5)A 在B 上的投影 (6)A C ?; (7)()A B C ??和()C A B ??; (8)()A B C ??和()A B C ?? A=[1,2,-3]; B=[0,-4,1]; C=[5,0,-2]; y1=A/norm(A) y2=norm(A-B) y3=dot(A,B) y4=acos(dot(A,B)/(norm(A)*norm(B))) y5=norm(A)*cos(y4) y6=cross(A,C) y71=dot(A,cross(B,C)) y72=dot(C,cross(A,B)) y81=cross(cross(A,B),C) y82=cross(A,cross(B,C)) 运行结果为: y1 =0.2673 0.5345 -0.8018 y2 = 7.2801 y3 =-11 y4 = 2.3646 y5 =-2.6679 y6 = -4 -13 -10 y71 =-42 y72 = -42 y81 = 2 -40 5 y82 = 55 -44 -11

参考答案:(1)[0.2673,0.5345,0.8018]A e =-; (2)||7.2801A B -=; (3)11A B ?=-; (4) 2.3646(135.4815)AB θ=;(5) 2.6679-;(6)[4,13,10]A C ?=---; (7)()()42A B C C A B ??=??=-;(8)()[2,40,5]A B C ??=-;()[55,44,11]A B C ??=-- 内容2. 三角形的三个顶点位于A(6,-1,2), B(-2,3,-4), C(-3, 1,5)点,求(1)该三角形的面积;(2)与该三角形所在平面垂直的单位矢量。 (答案S=42.0119, [0.2856,0.9283,0.238]n =±); A=[6 -1 2]; B=[-2 3 -4]; C=[-3 1 5]; Y1=norm(A-C); Y2=norm(B-C); Y3=dot(A-C,B-C); Y4=Y3/(Y1*Y2); Y5=sqrt(1-Y4*Y4); Y=0.5*Y5*Y1*Y2 n1=cross(A-C,B-C)/Y1*Y2*Y5 n=n1/norm(n1) 结果: Y =42.0119 n1 =21.4529 69.7219 17.8774 n =0.2856 0.9283 0.2380 三、实验报告 求解上面的的题目,把实验原理(数学计算过程)、仿真内容(程序与结果)写成实验报告。

相关文档
最新文档