车载激光雷达测距测速原理

车载激光雷达测距测速原理
车载激光雷达测距测速原理

车载激光雷达测距测速原理

陈雷1,岳迎春2,郑义3,陈丽丽3

1黑龙江大学物理科学与技术学院,哈尔滨 (150080)

2湖南农业大学国家油料作物改良中心,长沙 (410128)

3黑龙江大学后勤服务集团,哈尔滨(150080)

E-mail:lei_chen86@https://www.360docs.net/doc/313592079.html,

摘要:本文在分析了激光雷达测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。

关键词:激光雷达,测距,测速

1.引言

“激光雷达”(Light Detection and Range,Lidar)是一种利用电磁波探测目标的位置的电子设备。其功能包含搜索和发现目标;测量其距离、速度、位置等运动参数;测量目标反射率,散射截面和形状等特征参数。激光雷达同传统的雷达一样,都由发射、接收和后置信号处理三部分和使此三部分协调工作的机构组成。但传统的雷达是以微波和毫米波段的电磁波作为载波的雷达。激光雷达以激光作为载波,激光是光波波段电磁辐射,波长比微波和毫米波短得多。具有以下优点[1]:

(1)全天候工作,不受白天和黑夜的光照条件的限制。

(2)激光束发散角小,能量集中,有更好的分辨率和灵敏度。

(3)可以获得幅度、频率和相位等信息,且多普勒频移大,可以探测从低速到高速的目标。

(4)抗干扰能力强,隐蔽性好;激光不受无线电波干扰,能穿透等离子鞘,低仰角工作时,对地面的多路径效应不敏感。

(5)激光雷达的波长短,可以在分子量级上对目标探测且探测系统的结构尺寸可做的很小。当然激光雷达也有如下缺点:

(1)激光受大气及气象影响大。

(2)激光束窄,难以搜索和捕获目标。

激光雷达以自己独特的优点,已经被广泛的应用于大气、海洋、陆地和其它目标的遥感探测中[14,15]。汽车激光雷达防撞系统就是基于激光雷达的优点,同时利用先进的数字技术克服其缺点而设计的。下面将简单介绍激光雷达测距、测速的原理,并在此基础上研究讨论汽车激光防撞雷达测距、测速的方法。

2. 目标距离的测量原理

汽车激光雷达防撞系统中发射机发射的是一串重复周期一定的激光窄脉冲,是典型的非相干测距雷达,对它的要求是测距精度高,测距精度与测程的远近无关;系统体积小、重量轻,测量迅速,可以数字显示;操作简单,培训容易,有通讯接口,可以连成测量网络,或与其他设备连机进行数字信息处理和传输。

2.1测距原理

激光雷达工作时,发射机向空间发射一串重复周期一定的高频窄脉冲。如果在电磁波传播的

途径上有目标存在,那么激光雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间,它将滞后于发射脉冲一个时间,如图1所示。

图1激光雷达测距原理

Fig.1 Laser range

我们知道电磁波的能量是以光速传播的,设目标的距离为R ,则传播的距离等于光速乘上时间间隔,即

r ct R =2 (2-1) 或 2/r ct R = (2-2) 式中,R 为目标到激光雷达的单程距离,单位为m; t:为电磁波往返于目标与雷达之间的时间间隔,单位为s; c 为在空气中传播的速度,约为:s m c /100.38

×=。

由于电磁波传播的速度很快,激光雷达技术常用的时间单位为s μ,回波脉冲滞后于发射脉冲为一个微秒时,所对应的目标距离R 为2/r ct R =m 150=。能测量目标距离是激光雷达的一个突出优点,测量的精度和分辨率与发射信号带宽(或处理后的脉冲宽度)有关。脉冲越窄,性能越好。 2.2测距方法的选择

从以上分析可知目标距离的测量就是要精确的测定目标回波相对于发射信号脉冲的迟延时间r t ,根据式(2-2)计算出目标与雷达间的距离。根据获得r t 的方法不同,可分为模拟测距和数字测距。由于近几年来数字器件及技术有了飞跃发展,比起模拟式测距来讲,数字式测距具有下述优点:跟踪精度高,且精度与跟踪距离无关;响应速度快,适合于跟踪快速目标;工作可靠和系统便于集成化;输出数据为二进制码,可以方便地和数据处理系统接口。因此数字式测距被广泛应用于现代雷达中。数字式测距只要记录回波脉冲到达时的计数脉冲的数目n ,根据计数脉冲的重复周期T ,就可以计算出回波脉冲相对于发射脉冲的延迟时间 nT t r = (2-3) T 为已知值,测量t 实际上变成测量回波脉冲到达时的计数脉冲的数目n 。为了减少误差,通常计数脉冲产生器和雷达定时器触发脉冲在时间上是同步的。目标距离R 与计数脉冲数h 之间的关系为:

f cn R f c

R f t n r 22==

= (2-4)

式中,f 为计数脉冲重复频率。

数字式测距中,对目标距离R 的测定转化成测量脉冲数n,从而把时间r t 这个连续量变成了离散的脉冲数。当目标回波峰值出现在第n 个与n+1个计数脉冲之间时,就会产生相应的误差。从提高测量精度,减少误差的观点来看,计数脉冲频率f 越高越好,这时对器件速度的要求提高,计数器的级数应相应增加。由于近年来数字器件及技术的飞跃发展,有条件采用高速数字器件来达到上述要求。

3目标相对速度的测量原理

随着雷达技术的发展,雷达的任务不仅是测量目标的距离、方位和仰角而且还包括测量目标的速度,以及从目标回波中获取更多有关目标的信息。汽车激光雷达防撞系统要探测的目标是地面上运动着的车辆及物体,不但需要测量出目标的距离,而且需测量出目标与自车的相对速度(即径向相对速度),从而探测出目标的实际速度。径向相对速度可以用距离的变化率和多普勒频移两种方法来求得,但用距离的变化率来求得的相对速度精度不高,实时测速准确性差,故本文采用了利用多普勒频移测速的方法。下面将详细地介绍多普勒频移测速的基本原理及提取方法。

3.1相对速度测量原理

多普勒频移是指当目标与雷达之间存在相对速度时,接收到的回波信号的载频相对于发射信号的载波产生一个频移,这个频移在物理学上称为多普勒频移,它的数值为

λr

d v f 2= (2-6)

式中,d f 为多普勒频移,单位为Hz; r v :为雷达与目标之间的径向相对速度,单位为m/s ;λ为载波波长,单位为m 。下面将以激光雷达发射连续波的情况为例来详细的研究多普勒频移的推导过程。

为方便计算,设目标为理想“点”目标,即目标尺寸远小于激光雷达分辨率。当激光雷达发射连续波时,发射信号可表示为

)cos()(0φω+=A t s (2-7) 式中,0ω为发射角频率;φ位初相;A 为振幅。接收机接收到由目标反射的回波信号)(t s r 为

])(cos[)()(00φω+?=?=t t kA t t ks t s r r

(2-8) 式中,c

R t r 2=,为回波滞后于发射信号的时间,其中R 为目标和雷达之间的距离;c 为电磁波传播速度,在空气中传播时它等于光速;k 为回波的衰减系数。 如果目标固定不动,则距离R 为常数。回波与发射信号之间有固定相位差

R c R f t r 222200λ

ππω== (2-9) 它是电磁波往返于雷达与目标之间所产生的相位滞后。

当目标与雷达之间有相对运动时,则距离R 随时间变化。设目标以匀速相对于雷达运动,则在时间t 时刻,目标与激光雷达之间的距离R(t)为

t v R t R r ?=0)(

(2-10)

式中,R 。为t=0时的距离;r v 为目标相对于雷达的径向运动速度。

式(2-8)说明,在t 时刻接收到的波形)(t s r 上的某点,是在r t t ?时刻发射由于通常雷达和目标的相对速度r v :远小于电磁波速度c ,故时延r t 可近似写为

)(2)(20c v R c

c t R t r r ?== (2-11) 回波信号比起发射信号来,高频相位差△φ为 )(4)(22)(20000

0c v R c v R c T c v R c t r r r r ??=???=??=?=?λππωωφ (2-12)

是时间t 的函数,在径向速度r v 为常数时,产生频率差为

dt

d f d φπ21= (2-13) 这就是多普勒频率,它正比于相对运动速度而反比于工作波长兄。当目标飞向雷达站时,多普勒频率为正值,接收信号频率高于发射信号频率,而当目标背离雷达站飞行时,多普勒频率为负值,接收信号频率低于发射信号频率。

当目标向着激光雷达运动时0>r v ,回波载频提高也就是自车与前车或障碍物间的距离在减小;反之0

多普勒频率可以直观的解释为:振荡源发射的电磁波以恒速c 传播,如接收者相对于振荡源是不动的,则它在单位时间内接收到的振荡数目与振荡源发出的相同,即二者频率相等。如果振荡源与接收者之间有相对接近的运动时,则接收者在单位时间内收到的振荡数目要比它不动时多一些,也就是接收频率增高;当二者做背向运动时,则接收者在单位时间内收到的振荡数目要比它不动时少一些,也就是接收频率降低。

3.2相对速度的测量方法

已经知道,回波信号的多普勒频移d f 正比于径向速度,而反比于雷达工作波长λ。

r r d v c f v f 220=

(2-14) 或 c v f f r d 20= (2-15) 多普勒频率的相对值正比于目标速度与光速之比,九的正负值取决于目标运动的方向。

在多数情况下,多普勒频率处于音频范围内。例如当雷达工作频率0f =10 GHz ,目标径向相对运动速度r v =200 km/h 时目标回波信号频率kHz GHz f r 210±=,两者相差的百分比是很小的。因此要从接收信号中提取多普勒频率需要采用差拍的方法,即设法取出0f 和r f 的差值d f 。

对于连续波多卜勒激光雷达,为取出收发信号频率的差频,需要采用混频的方法。通过在接收机中引入发射信号作为基准电压,在相位检波器的输出端得到收发频率的差频电压,即多普勒频率电压。连续波多普勒激光雷达基本工作原理框图如图2所示。

图2连续波多普勒激光雷达基本工作原理框图

Fig.2 Block diagram of basic principle of CW Lidar

发射机产生频率为0f 的等幅连续波高频振荡,其中绝大部分能量从发射天线幅射到空间,很少部分能量藕合到接收机输入端作为基准电压。混合的发射信号和接收信号经过放大后,在混频器输出端取出其差拍电压,隔除其中直流分量,得到多普勒频率信号送到终端指示器。图3中表示出了图2中各主要点的频谱。

图3:图2中各主要点的频谱图

Fig.3 Frequency spectrum of main points of figure 2

对于固定目标信号,由于它和基准信号的相位差r t 0ωφ=保持常数,故混合相加的合成电压幅度亦不改变。当回波信号振幅r U 远小于基准信号振幅0U 时,从矢量图可求得其合成电压为

0cos U U U r +=∑φ (2-16)

包络检波器输出正比于合成信号振幅。对于固定目标,合成矢量不随时间变化,检波器输出经隔直流后无输出。而运动目标回波与基准电压的相位差随时间按多普勒频率变化。即回波信号矢量围绕基准信号矢量端点以等角速度

d ω,这时合成矢量的振幅为: 00)cos(U t U U d r +?=∑

φω (2-17)

经混频器取出二电压的差拍,通过隔直流电容器得到输出的多普勒频率信号为:

)cos(0φω?t U d r

(2-18)

在检波器中,还可能产生多种和差组合频率,可用低通滤波器取出所需的多普勒频率d f 送到终端指示器,即可测得目标的径向速度值。

4. 结语

在分析了激光测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法。并对提高各种方法测量精度提出基本思路,为车载激光雷达系统测距测速提供了基本方法。

参考文献

[1] 蔡喜平等.PSD 光学敏感器系统测量目标位置和距离[J]. 红外与毫米波学报,J. Infrared Millim. Wave,1997,06 V ol. 16, No.3:211-212.

[2] 钟勇,姚剑峰.现代汽车的四种测距方法[J].汽车工业研究,Auto Industry Research,2001,02:38-39.

[3] 张召亮,张帆,马智远,张承学.激光测距在汽车智能防撞系统中的应用[J].中国水运,China Water Transport ,2007,07:53-54.

[4] 吕立波.激光测距技术在汽车防碰撞领域中的应用[J].警察技术,Police Technology,2005 ,02:13-15.

The Principle of Lidar on Auto

Chen Lei 1, Yue Yingchun 2, Zheng Yi 3, Chen Lili 3

1 Department of Physics Hei Lng Jiang University, HaErBin, PRC (150080)

2 Department of Agriculture Hu Nan Agriculture University, ChangSha, PRC (410128)

3The Logistics Company of Hei Lng Jiang University, HaErBin, PRC (150080)

Abstract

This paper provides the principle of lidar to measure the distance and velocity. deduced the method to use continuous laser pulse to measure give the basic principle diagram of the auto carry lidar. provide a basic method to measure the distance and velocity for the auto carry lidar .

Keywords: Lidar, Distance measure, Velocity measure

作者简介:陈雷,男,1983年生,硕士研究生,主要研究方向是激光及其应用。

雷达测速与测距

雷达测速与测距标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分辨力取决于信号带宽。对于给定的雷达系统,可达到的 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大,在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,B=?f=1/τ,此处,τ为发射脉冲宽度。因此,对于简单的脉冲雷达系统,将有 δr=c 2τ() 在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率分脉冲功率和平均功率。雷达在发射脉冲信号期间内所输出的功率称脉冲功率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值,用Pav表示。它们的关系为 P tτ=P av T r()脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨力,因而能较好地解决作用距离与分辨能力之间的矛盾。 在脉冲压缩系统中,发射波形往往在相位上或频域上进行调制,接收时将回波信号加以压缩,使其等效带宽B满足B=?f?1/τ。令τ0=1/B,则 δr=c 2τ0() ()式中,τ0表示经脉冲压缩后的有效脉宽。因此脉冲压缩雷达可用宽度τ的发射脉冲来获得相当于发射有效宽度为τ0的简单脉冲系统的距离分辨力。发射脉冲宽度τ跟系统有效(经压缩的)脉冲宽度τ0的比值便成为脉冲压缩比,即 D=τ τ0 ()则

激光雷达测距原理与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12)

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实用.本文对激光雷达的测距原理、发射器和接收器特性、束宽、大气传输以及目标截面、外差效率进行分析, 提出基于伪随机序列的激光测距技术 ,可将激光

连续波雷达测速测距原理.doc

连续波雷达测速测距原理 一.设计要求 1、当测速精度达到s,根据芯片指标和设计要求请设计三角调频 波的调制周期和信号采样率; 2、若调频信号带宽为50MHz,载频 24GHz,三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35(m/s),请用 matlab 对算法进行仿真。 二.实验原理和内容 1.多普勒测速原理 x a (t) x(n) FFT P(k ) 峰值f d A/D 谱分析搜索 图频域测速原理 f d max max | f m f d | f s / 2N v r max f d max / 2 f s / 4N/ 4T 依据芯片参数,发射频率为24GHz,由上式可以得出,当测速精度达到 s 时,三角调频波的调制周期可以计算得,T= 信号的采样率,根据发射频率及采样定理可设fs=96GHz。2.连续波雷达测距基本原理 设天线发射的连续波信号为:①x T f0 (t ) cos(2 f0 t0 ) ] 则接收的信号为:② x R f0 (t ) cos[2 f 0 (t t r ) 0 若目标距离与时间关系为:③R ( t ) R 0 v r t

则延迟时间应满足以下关系 :④ t 2 v t) r ( R c r v r 将④代入②中得到 x R f 0 (t ) cos{ 2 f 0 [ t 2 (R 0 v r t )]0 } c v r cos[2 ( f 0 f d 0 )t 2 f 0 2R 0 ] c f d 0 2 v r f 其中 c 根据上图可以得到,当得到 t ,便可以实现测距,要想得到 t ,就必须测得 fd 。 已知三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35( m/s),则可以通过 :③ R ( t ) R 0 v r t ④ t 2 v t ) r ( R c 0 r v r 分别计算出向三个目标发出去信号,由目标反射回来的信号相对 发射信号的延迟时间。

车载激光雷达测距测速原理

车载激光雷达测距测速原理 陈雷1,岳迎春2,郑义3,陈丽丽3 1黑龙江大学物理科学与技术学院,哈尔滨 (150080) 2湖南农业大学国家油料作物改良中心,长沙 (410128) 3黑龙江大学后勤服务集团,哈尔滨(150080) E-mail:lei_chen86@https://www.360docs.net/doc/313592079.html, 摘要:本文在分析了激光雷达测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。 关键词:激光雷达,测距,测速 1.引言 “激光雷达”(Light Detection and Range,Lidar)是一种利用电磁波探测目标的位置的电子设备。其功能包含搜索和发现目标;测量其距离、速度、位置等运动参数;测量目标反射率,散射截面和形状等特征参数。激光雷达同传统的雷达一样,都由发射、接收和后置信号处理三部分和使此三部分协调工作的机构组成。但传统的雷达是以微波和毫米波段的电磁波作为载波的雷达。激光雷达以激光作为载波,激光是光波波段电磁辐射,波长比微波和毫米波短得多。具有以下优点[1]: (1)全天候工作,不受白天和黑夜的光照条件的限制。 (2)激光束发散角小,能量集中,有更好的分辨率和灵敏度。 (3)可以获得幅度、频率和相位等信息,且多普勒频移大,可以探测从低速到高速的目标。 (4)抗干扰能力强,隐蔽性好;激光不受无线电波干扰,能穿透等离子鞘,低仰角工作时,对地面的多路径效应不敏感。 (5)激光雷达的波长短,可以在分子量级上对目标探测且探测系统的结构尺寸可做的很小。当然激光雷达也有如下缺点: (1)激光受大气及气象影响大。 (2)激光束窄,难以搜索和捕获目标。 激光雷达以自己独特的优点,已经被广泛的应用于大气、海洋、陆地和其它目标的遥感探测中[14,15]。汽车激光雷达防撞系统就是基于激光雷达的优点,同时利用先进的数字技术克服其缺点而设计的。下面将简单介绍激光雷达测距、测速的原理,并在此基础上研究讨论汽车激光防撞雷达测距、测速的方法。 2. 目标距离的测量原理 汽车激光雷达防撞系统中发射机发射的是一串重复周期一定的激光窄脉冲,是典型的非相干测距雷达,对它的要求是测距精度高,测距精度与测程的远近无关;系统体积小、重量轻,测量迅速,可以数字显示;操作简单,培训容易,有通讯接口,可以连成测量网络,或与其他设备连机进行数字信息处理和传输。 2.1测距原理 激光雷达工作时,发射机向空间发射一串重复周期一定的高频窄脉冲。如果在电磁波传播的

超声波测距电路图

超声波测距电路图 超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振 来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。 < 三、超声波测距系统的电路设计 图2 超声波测距电路原理图

车载激光雷达标定的方法与制作流程

一种车载激光雷达标定的方法,属于汽车自动驾驶领域。汽车自动驾驶技术中涉及的多传感器之间的融合技术不足。一种车载激光雷达标定的方法,设置一块标定板,配合安装在车辆上的激光雷达提取标定板的四个角点的步骤;测量四个角点在车体坐标系的物理坐标,结合由激光雷达提取的四个角点计算得到旋转平移矩阵的步骤;对两个激光雷达数据之间的进行坐标转换,拼接多台激光雷达,对激光雷达的标定的步骤。本技术具有精确将自动驾驶车辆之间的多传感器融合的优点。 权利要求书 1.一种车载激光雷达标定的方法,其特征是:所述方法包括: 在自动驾驶车辆前设置一块标定板,配合安装在车辆上的激光雷达提取标定板的四个角点的步骤; 测量四个角点在车体坐标系的物理坐标,结合由激光雷达提取的四个角点计算得到旋转平移矩阵的步骤; 对两个激光雷达数据之间的进行坐标转换,拼接多台激光雷达,实现对激光雷达的标定的步骤。 2.根据权利要求1所述一种车载激光雷达标定的方法,其特征在于:所述的提取标定板的四个角点是指提取激光雷达数据中标定板的四个角点,具体包括以下步骤:

步骤一一、获取点云数据: 将标定板设置于激光雷达前方6~10m的距离处,标定板的板面垂直于地面,用于承接激光雷达的发射信号;所述的标定板为一块2米×2米的正方形木板; 之后,在6~10m的距离之间选取4个距离值分别测量角点数据,得到4组角点数据;所述的角点数据是指在车体坐标系下的XYZ三维数据; 步骤一二、切割标定板所在的点云区域: 首先,将激光雷达向前的方向定义为X轴,将获取的点云数据记录的每个点的三维坐标表示为p(x, y, z); 然后,通过下式计算每个点偏离X轴的角度α和距离激光雷达的距离d; 最后,设定距离X轴的最大角度和最小角度,以及距离激光雷达前方的最大距离和最小距离,在此范围内计算包含标定板在内的点,并对该区域进行筛选,将筛选出的符合条件的点存入新的指针中; 步骤一三、提取标定板: 在切割后的区域内,利用PCL中的RANSAC算法,使用平面参数模型并设置迭代阀值提取标定板的平面; 之后,在提取标定板后,使用参数化方程将标定板投影到其所在平面上;参数化方程为:AX+BY+CZ+D=0,式中,A、B、C表示系数,D为常数,来自RANSAC提取平面后的参

激光雷达测距测速原理说课讲解

激光雷达测距测速原 理

精品文档 收集于网络,如有侵权请联系管理员删除 激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发射系统到目标和目标到接收系统的大气透过率,t r ηη分别是发射系统和接收系统的透过率,t θ为发射激光的发散角,12R R 分别是发射系统到目标和目标到接收系统的距离,Γ为目标的雷达截面,r D 为接收孔径。 方程作用:激光雷达方程可以在研发激光雷达初期确定激光雷达的性能。其次,激光雷达方程提供了回波信号与被探测物的光学性质之间的函数关系,因此可以通过激光雷达探测的回波信号,通过求解激光雷达方程获得有关大气性质的信息。 2. 激光雷达测距基本原理 2.1 脉冲法 脉冲激光雷达测距的基本原理是,在测距点向被测目标发射一束短而强的激光脉冲,激光脉冲到达目标后会反射回一部分被光功能接收器接收。假设目标距离为L ,激光脉冲往返的时间间隔是t ,光速为c ,那么测距公式为L=tc/2。 时间间隔t 的确定是测距的关键,实际的脉冲激光雷达利用时钟晶体振荡器和脉冲计数器来确定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

超声波测距电路图

超声波测距电路图超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 2、压电式超声波发生器原理

压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。< 三、超声波测距系统的电路设计 图2 超声波测距电路原理图 本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,单片机选用8751,经济易用,且片内有4K的ROM,便于编程。电路原理图如图2所示。其中只画出前方测距电路的接线图,左侧和右侧测距电路与前方测距电路相同,故省略之。

激光测速与雷达测速的原理比较

激光测速与雷达测速的原理与比较 多谱勒效应和雷达测速 你一定有这样的经验,当你站在马路旁边,即使没有去注视路面上车辆的行驶的情况,单凭耳朵的听觉判断,你能感到一辆汽车正在驶过来,或者离你而去. 这里面当然依靠汽车行驶的声音是渐强还是渐弱,但细细想想,主要还是根据汽车行驶的车轮声或喇叭声调的变化. 原来,车辆驶近时,声音要变尖,也就是说,音调要高些;开过以后,远离的时候,声音会越来越低. 为什么会这样呢?原来,声音的形成,首先是由于发声体的振动,然后在它周围的空气中形成了一会疏一会密的声波,传到耳朵里,使耳膜随着它同样地振动起来,人们就听到了声音. 耳膜每秒钟振动的次数多,人就感到音调高;反之,耳膜每秒钟振动的次数少,人就感到音调低. 照这样说,声源发出什么声,我们听到的就是什么调. 问题的关键在于汽车在怎样的运动. 汽车匀速驶来,轮胎与地面摩擦产生的声波传来时“疏”、“密”、“疏”、“密”是按一定规律,一定距离排列的,可当汽车向你开来时,它把空气中声波的“疏”和“密”压得更紧了,“疏”、“密”的距离更近了,人们听到的音调也就高了. 反之,当汽车离你远去时,它把空气中的疏密拉开了,听到的声音频率就小了,音调也就低了. 汽车的速度越大,音调的变化也越大. 在科学上,我们把这种听到音调与发声体音调不同的现象,称为“多谱勒效应”. 有趣的是,雷达测速计也正是根据多谱勒效应的原理研制出来的. 我们知道,小汽车可以开得很快,可是为了保证安全,在某些路段上,交通警察要对车速进行限制. 那么,在汽车快速行进时,交通警察是怎样知道它们行驶的速度呢?最常用的测速仪器叫雷达测速计,它的外形很像一支大型信号枪,它也有枪筒,手柄、板机等部件,在枪的后面有一排数码管. 把枪口对准行驶的车辆,一扣板机,一束微波就射向行驶中的车辆. 微波是波长很短的无线电波,微波的方向性很好,速度等于光速. 微波遇到车辆立即被反射回来,再被雷达测速计接收. 这样一来一回,不过几十万分之一秒的时间,数码管上就会显示出所测车辆的车速. 它所依据的原理依然是“多谱勒效应”. 雷达测速计发出一个频率为1000 MHz的脉冲微波,如果微波射在静止不动的车辆上,被反射回来,它的反射波频率不会改变,仍然是1000 MHz. 反之,如果车辆在行驶,而且速度大,那么,根据多谱勒效应,反射波频率与发射波的频率就不相同. 通过对这种微波频率微细变化的精确测定,求出频率的差异,通过电脑就可以换算出汽车的速度了. 当然,这一切都是自动进行的. 雷达测速计的测速范围大约在每小时24 km到199 km之间,测速范围比较大,精确度也相当高,车速在每小时100 km/h,误差不会超过1 km/h. 测速雷达朝向公路,可以测量车速,如果指向天空,就可以测云层的高度,测云层的速度. 当然,要测几十千米外,甚至上百千米外的飞机,也是这个原理,只不过要向它扫描的空间连续发射微波束,这些微波束遇到飞机再反射回来,已经极其微弱了,要想把它接收到,分辨清并计算出来,就很困难了,这就需要一个庞大的灵敏的雷达. 雷达测速与激光测速的比较

雷达测速试验报告

雷达测距实验报告 1. 实验目的和任务 1.1 实验目的 本次实验目的是掌握雷达带宽同目标距离分辨率的关系,通过演示实验了解雷达测距基本原理,通过实际操作掌握相关仪器仪表使用方法,了解雷达系统信号测量目标距离的软硬件条件及具体实现方法。 1.2 实验任务 本次实验任务如下: (1)搭建实验环境; (2)获得发射信号作为匹配滤波的参考信号; (3)获得多个地面角反射器的回波数据,测量其各自位置,评估正确性; (4)获得无地面角发射器的回波数据,与(3)形成对比,并进行分析。 2. 实验场地和设备 2.1 实验场地和环境条件 本次实验计划在雁栖湖西校区操场进行,环境温度25℃,湿度40%。 实验场地如上图所示,除角反射器以外,地面上还有足球门、石块以及操场上运动的人等比较明显的目标。

2.2 实验设备 实验所需的主要仪器设备如下: (1) 矢量信号源SMBV100A ; (2) 信号分析仪FSV4; (3) S 波段标准喇叭天线; (4) 角反射器 (5) 笔记本电脑 2.3 设备安装与连接 设备连接关系图如下: 雷达波形文件雷达回波数据 时钟同步 计算机终端 SMBV100A 矢量信号源 FSV4信号分析仪 角反射器 交换机 图1 实验设备连接示意图 其中:蓝色连接线表示射频电缆,灰色连接线表示网线。 3. 实验步骤 3.1 实验条件验证 检查仪器工作是否正常,实验环境是否合适。 3.2 获取参考信号 1. 调节信号源参数,生成线性调频信号,作为匹配滤波的参考信号,然后通过射频电缆将信号源与频谱仪相连,利用频谱仪的A/D 对线性调频信号采样,并通过网线将数据传输给计算机,并保存为“b1.dat ”。参考信号的主要参数如下所示:

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

雷达测距、测角、测速基本原理

雷达测距、测角、测速基本原理 目标在空间的位置可以用多种坐标系表示。最常见的是直角坐标系,空间任一点目标P 的位段可用x,y,z三个坐标值来确定。在雷达应用中,测定目标坐标常采用极(球)坐标系统. 目标的斜距R为雷达到目标的直线距离OP;方位角a为目标的斜距R在水平面上的投影OB与某一起始方向(一般是正北方向)在水平面上的夹角;仰角B为斜距R与它在水平面上的投影OB在沿垂直面上的夹角,有时也称为倾角或者高低角。 如果需要知道目标的高度和水平距离,那么利用圆柱坐标系就比较方便。在这种坐标系中.目标的位由三个坐标来确定:水平距离D;方位角。;高度H, 球坐标系与圆柱坐标系之间的关系如下: D=RcosB H=RsinB a=a 上述这些关系仅在目标的距离不太远时是正确的;当距离较远时,由于地面的弯曲,必须作适当的修正。 现以典型的脉冲雷达为例来说明雷达测量的基本工作原理。它由发射机、发射天线、接收机和接收天线组成。发射电磁波中一部分能量照射到雷达目标上,在各个方向上产生二次散射。雷达接收天线收集散射回来的能量,并送至接收机对回波信号进行处理,从而发现目标,提取目标位置、速度等信息。实际脉冲雷达的发射和接收通常共用一个天线,以简化结构.减小体积和重量。 脉冲雷达采用的发射波形通常是高频脉冲串.它是由窄脉冲调制正弦载波产生的,调制脉冲的形状一般为矩形,也可采用其他形状。目标与雷达的斜距由电磁波往返于目标与雷达之间的时间来确定;目标的角位置由二次散射波前的方向来确定;当目标与雷达有相对运动时,雷达所接收到的二次散射波的载波频率会发生偏移,测量载频偏移就可以求出目标的相对速度,并且可以从固定目标中区别出运动目标来。

(完整版)关于车载激光雷达的知识清单

关于车载激光雷达的知识清单 ?2017年6月28日 ? ?国际电子商情 本篇知识清单分享给你,助你快速了解车载激光雷达产业。 在无人驾驶架构中,传感层被比作为汽车的“眼睛”,包括车载摄像头等视觉系传感器和车载毫米波雷达、车载激光雷达和车载超声波雷达等雷达系传感器。其中激光雷达已经被大部分人认为是实现自动驾驶的必要基础,毕竟传统雷达无法识别物体细节,而摄像头在暗光或逆光条件下识别效率明显降低。 也正得益于无人驾驶汽车市场规模的爆发,预计2030年全球激光雷达市场可达到360亿美元的规模,将成为新的蓝海。本篇知识清单分享给你,助你快速了解车载激光雷达产业。 内容导读: 1.车载激光雷达的技术原理 2.激光雷达在自动驾驶应用中有何优缺点? 3.车载激光雷达有哪些应用? 4.如何降低自激光雷达的成本? 5.国内外最全激光雷达企业介绍 一、车载激光雷达的技术原理 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统,最初是军事用途。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 这里详细介绍一下车载激光雷达的工作原理及实现方式。第一种是较为传统的扫描式激光雷达,这种设备被架在汽车的车顶上,能够用多束激光脉冲绕轴旋转360°对周围环境进行距离检测,并结合软件绘制3D图,从而为自动驾驶汽车提供足够多的环境信息。 这种激光雷达最初是在11年前的Darpa无人车挑战赛上,由美国Velodyne公司开发并被参赛团队使用(当时采用的是64线的激光雷达方案)。由于那时的成本

雷达测速测距原理简介

雷达测速测距原理简介 一、FMCW模式下测速测距 1、FMCW模式下传输波特征 调频连续波雷达系统通过天线向外发射一列线性调频连续波,并接收目标的反射信号。发射波的频率随时间按调制电压的规律变化。 2、FMCW模式下基本工作原理 一般调制信号为三角波信号,发射信号与接收信号的频率变化如图所示。 反射波与发射波的形状相同。只是在时间上有一个延迟,t与目标距离R的关系为: Δt=2R/c公式1 其中 Δt:发射波与反射波的时间延迟 R:目标距离 c:光速c=3×108m/s 发射信号与反射信号的频率差为混频输出中频信号频率f如图所示:

根据三角关系,得: ΔtT2= ΔfB公式2 其中: Δf:发射信号与反射信号的频率差为|f1-f0| T:调制信号周期——1.5ms B:调制带宽——700MHz 由以上公式1和公式2得出目标距离R为: R=cTΔf 4B公式3 3、FMCW模式下测距原理 由公式3可以得出,目标距离R与雷达前端输出的中频频率f成正比 4、FMCW模式下测速原理 当目标与雷达并不是相对静止时,也就是有相对运动时,反射信号中包含一个由目标的相对运动所引起的多普勒频移fd,如图所示: 此时发射信号与接收信号的频率差如图所示:

在三角波的上升沿和下降沿分别可得到一个差频,用公式表示为: f+= f-fd 公式4 f-= f+fd 公式5 其中 f为目标相对静止时的中频频率 f+代表前半周期正向调频的差频 f-代表后半周期负向调频所得的差频 fd为针对有相对运动的目标的多普勒频移 根据多普勒效应得: fd=2fc 公式6 其中: 为目标和雷达的径向速度 f0为发射波的中心频率 由公式4、5、6可得: f+f f=+2 公式7 c|f-f|v=2f02 公式8 速度v的符号与相对运动方向有关系,当目标物相对雷达靠近时v为正值。当目标相对雷达离开时v为负值。 由公式3和公式7进一步得出: cTf+fR=4B2 公式9

激光雷达测距测速原理

激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发 t θ为发r D 通过 定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发 的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

相位测距法也称光束调制遥测法,激光雷达相位法测距是利用发射的调制光和被目标反射的接受光之间光强的相位差包含的距离信息来实现被测距离的测量。回波的延迟产生了相位的延迟,测 出相位差就得到了目标距离。 假设发射处与目标的距离为D,激光速度为c,往返的间隔时间为t,则有: 图2相位法测距原理图 假设f为调制频率,N为光波往返过程的整数周期,??为总的相位差。则间隔时间t还可以 因为L 不能测得 优点:测量距离远,一般大于1000m。系统体积小,抗干扰能力强。 缺点:精度较低,一般大于1m。 激光雷达相位法测距: 优点:测量精度高。

缺点:测量距离较近,一般为一个刻度L内的距离。(300-1000m)。受激光调制相位测试精度和相位调制频率的限制,系统造价成本高。相位法测距存在矛盾:测量距离大会导致精度不高,要想提高精度测量距离又会受限(刻尺L较短)。 3.激光雷达测速基本原理 激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距 它的 f 式中, d v< 反之0 f 移 d

超声波测速

12 =12×s=0.4s= =9×s=0.3s=vt -t+t v==17.9m/s. 超声波测速 超声波测速 适合作流动物质中含有较多杂质的流体的流速测量,超声多普勒法只是其中一种,还有频差法和时差法等等。 时差法测量沿流体流动的正反两个不同方向发射的超声播到达接收端的时差。需要突出解决的难题是这种情况下,由于声速参加运算(作为分母,公式不好写,我积分不够没法贴图),而声速收温度的影响变化较大,所以不适合用在工业环境下等温度变化范围大的地方。 频差法是时差法的改进,可以把分母上的声速转换到分子上,然后在求差过程中约掉,这就可以避开声速随温度变化的影响,但测频由于存在正负1误差,对于精度高的地方,需要高速计数器。 还有就是回鸣法了,可以有效改进由于计数器正负1误差带来的测量误差。 以上这些东东都是关于流体的流速的超声测量方法。对于移动物体的速度测量多采用超声多谱勒法。 根据声学多普勒效应,当向移动物体发射频率为F的连续超声波时,被移动物体反射的超声波频率为f,f 与F服从多普勒关系。如果超声发射方向和移动物体的夹角已知,就可以通过多普勒关系的v,f,F,c表达式得出物体移动速度v。 设超声波速度为V两次发出超声波的时间间隔为T第一次用时为T1第二次为T2则车速为V1=V×(T2-T1)/T(以上数据均可测出) 超声波测速仪测量车速,图B中P1、P2是测速仪发出的超声波信号,n1,n2... 如图所示,图A是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差测出被测物体的速度。图B中P1、P2是测速仪发出的超声波信号,N1、N2分别是P1、P2由汽车反射回来的信号。设测速仪匀速扫描,

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

昂贵的价格仍是车载激光雷达最大的发展障碍

昂贵的价格仍是车载激光雷达最大的发展障碍 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 但本文并不讲什么飞机导弹,本文主要介绍的是在汽车上的激光雷达,俗称车载激光雷达,而车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,是目前城市建模的最有效的工具之一。 什么是三维激光扫描仪?三维激光扫描仪是利用激光的传播速度快,直线型好的特点将激光发射出去,并接收返回的信息来描述被测量物理的表面形态的。由于被测物体的反射率不同接收到的返回信息也有强弱之分。所谓的三维既是利用扫描仪的水平转动来覆盖一整片区域。这个过程很类似民间的360度全景摄影。区别就是我们得到的底片不是图像而是成千上万个点组成的表面形态,在测量术语中叫做点云。请见右图的船体,看似是一副图片,其实是由无数个激光点组成的。不同的颜色就是激光返回不同的反射率的表现。 车载/船载激光雷达不论是车载还是船载甚至是机载的激光雷达,其原理都是将三维激光扫描仪加上POS系统装载车上。目的就是为了能在更长,更远的范围内建立DTM模型。GPS的的应用目的就是为了让车子知道自己在任何时刻的位置,以方便拟合。。 在任何移动测量的系统中,做为赋予点云和影像的地理坐标的来源导航系统,都是其关键的部件。导航系统一般都会使用GPS和惯导单元。但是,地面上复杂的状况,例如:树木。建筑物和立交桥等往往会阻断GPS信号。因此,一套先进的导航系统必须包括其他辅助的传感器和完善的数据处理方法,以使得在GPS丢失信号的同时其航线的精度也能够得到保障。 车载激光雷达的应用道路和高速公路方面的应用 1.公路测量,维护和勘察?

具有实时语音播报的超声波测距测速仪

具有实时语音播报的超声波测距测速仪(C题) 摘要:本文研究内容为实时语音播报的测距测速仪,利用超声波进行距离测量,测量精度在厘米级别,适用于近距离测距。本系统以STC12C5A60S为微处理芯片, 其产生40kHz频率,再利用超声波换能器TCT40-16T产生超声波信号并发射 出去,由TCT40-16R接收超声波信号,并利用超声波专用芯片CX20106A检 波、处理超声波信号,最后发送给微处理器。微处理器通过计算得到与障碍 物的距离,并通过所得距离计算出物体的移动速度。微处理器通过串口控制 JQ6500语音模块。当微处理器计算得到障碍物的距离和物体移动速度时,微 处理器发送指定的命令,驱动语音模块播放保存在FLASH中的语音,实现实 时语音播报。 关键词:STC12C5A60S2;JQ6500;超声波。

1 系统方案设计 设计任务 根据命题要求,设计并制作一台具有实时语音播报的超声波测距测速仪。 A. 具有超声波测距功能,测量距离~,测距精度±1cm; B. 自动语音实时播报测量距离数值;实时播报时间间隔t≤10s;实时语音播报清晰明亮、无明显失真,在1米距离处人耳能准确分辨。 C. 实时显示测量的距离和速度,并且显示内容要与语音播报内容同步。 总体设计方案 具有实时语音播报的超声波测距测速仪由6部分组成:超声波发射模块、超声波接收模块、51单片机最小系统、LCD1602显示模块、JQ6500语音播报模块、按键模块组成。 图1-1 超声波测距测速仪组成图 声波测速测距原理 声波测距原理 超声波发射器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到发射波就立即停止计时。假设超声波在空气中的传播速度为V,根据计时器记录的时间T,发射点距障碍物的距离S,如图1-2所示。

DSP多普勒雷达测速测距

DSP 实验课大作业设计 一 实验目的 在DSP 上实现线性调频信号的脉冲压缩、动目标显示(MTI )和动目标检测(MTD),并将结果与MATLAB 上的结果进行误差仿真。 二 实验内容 2.1 MATLAB 仿真 设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB 产生16个脉冲的LFM ,每个脉冲有4个目标(静止,低速,高速),依次做 2.1.1 脉压 2.1.2 相邻2脉冲做MTI ,产生15个脉冲 2.1.3 16个脉冲到齐后,做MTD ,输出16个多普勒通道 2.2 DSP 实现 将MATLAB 产生的信号,在visual dsp 中做脉压,MTI 、MTD ,并将结果与MATLAB 作比较。 三 实验原理 3.1 脉冲压缩原理及线性调频信号 雷达中的显著矛盾是:雷达作用距离和距离分辨率之间的矛盾以及距离分辨率和速度分辨率之间的矛盾。雷达的距离分辨率取决于信号带宽。在普通脉冲雷达中,雷达信号的时宽带宽积为一常量(约为1),因此不能兼顾距离分辨率和速度分辨力两项指标。脉冲压缩(PC )采用宽脉冲发射以提高发射的平均功率,保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨率,因而能较好地解决作用距离和分辨能力之间的矛盾。 一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱和相位谱)实现完全的匹配。 脉冲压缩按信号的调制规律(调频或调相)分类,可分为以下四种: (1)线性调频脉冲压缩 (2)非线性调频脉冲压缩 (3)相位编码脉冲压缩 (4)时间频率编码脉冲压缩 本实验采用的是线性调频脉冲压缩。 线性调频信号是指频率随时间的变化而线性改变的信号。线性调频可以同时保留连续信号和脉冲的特性,并且可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以将线性调频信号作为雷达系统中一种常用的脉冲压缩信号。 接收机输入端的回波信号是经过调制的宽脉冲,所以在接收机中应该设置一个与发射信号频率匹配的滤波器,使回波信号变成窄脉冲,同时实现了宽脉冲的能量和窄脉冲的分辨能力。解决了雷达发射能量及分辨率之间的矛盾。 匹配滤波器是指输出信噪比最大准则下的最佳线性滤波器。根据匹配理论, 匹配滤波器的传输特性: 0)()(*t j e KS H ωωω-=

相关文档
最新文档