方差分析两两比较

方差分析两两比较
方差分析两两比较

方差分析中均值比较的方法

最近看文献时,多数实验结果用到方差分析,但选的方法不同,主要有LSD,SNK-q,TukeyHSD法等,从百度广库里找了一篇文章,大概介绍这几种方法,具

体公式不列了,软件都可以计算。这几种方法主要用于方差分析后,对均数间进行两两比较。

均数间的两两比较根据研究设计的不同分为两种类型:一种常见于探索性研究,在研究设计阶段并不明确哪些组别之间的对比是更为关注的,也不明确哪些组别问的关系已有定论、无需再探究,经方差分析结果提示“ 概括而言各组均数不相同”后,对每一对样本均数都进行比较,从中寻找有统计学意义的差异:另一种是在设计阶段根据研究目的或专业知识所决定的某些均数问的比较.常见于证实性研究中多个处理组与对照组、施加处理后的不同时间点与处理前比较。最初的设计方案不同.对应选择的检验方法也不同.下面分述两种不同设计均数两两比较的方法选择。

1.事先计划好的某对或某几对均数间的比较:适用于证实性研究。在设计时就设定了要比较的组别,其他组别间不必作比较。常用的方法有: Dunnett-t 检验、LSD-t 检验(Fisher ’s least significant difference t test) 。这两种方法不管方差分析的结果如何——即便对于 P稍大于检验水平α进行所关心组别间的比较。

1.1 LSD-t检验即最小显著法,是Fisher于1935年提出的,多用于检验

某一对或某几对在专业上有特殊探索价值的均数间的两两比较,并且在多组均数的方差分析没有推翻无效假设H0时也可以应用。该方法实质上就是 t检验,检验水准无需作任何修正,只是在标准误的计算上充分利用了样本信息,为所有的均数统一估计出一个更为稳健的标准误,因此它一般用于事先就已经明确所要实施对比的具体组别的多重比较。由于该方法本质思想与 t 检验相同,所以只适用于两个相互独立的样本均数的比较。LSD法单次比较的检验水准仍为α,因此可以认为该方法是最为灵敏的两两比较方法.另一方面,由于LSD法侧重于减少第Ⅱ类错误,势必导致此法在突出组间差异的同时,有增大I类错误的倾向。

1.2 Dunnett-t(新复极差法)检验,Duncan 1955年在Newman及Keuls的复极差法(muhiple range method)基础上提出,该方法与Tukey法相类似。适用于n-1个试验组与一个对照组均数差别的多重比较,多用于证实性研究。Dunnett-t统计量的计算公式与LSD-t检验完全相同。

实验组和对照组的样本均数和样本含量。需特别指出的是Dunnett—t检验有专门的界值表,不同于t检验的界值表。

一般认为,比较组数k≥3时,任何两个样本的平均数比较会牵连到其它平均数的对比关系,而使比较数再也不是两个相互独立的样本均数的比较.这是LSD-t无法克服的缺点。Dunnett—t针对这一问题提出.在同一显著水平上两个

均数的最小显著差数随着这二个平均数在多个平均数中所占的极差大小而不同,根据不同平均数间的对比关系来调整相应的显著差别(critical range)的大小。

2.多个均数的两两事后比较:适用于探索性研究,即各处理组两两问的对比关系都要回答,一般要将各组均数进行两两组合,分进行检验。常用的方法有:SNK-q(Student-Newman-Keuls q)法、Duncan法、Tukey法和Scheffe法。值得注意的是,这几种方法对数据有具体的要求和限制。而文献中我最常见的是Tukey法与SNK-q法,。

2.1 SNK-q检验

对于SNK-q检验,检验的统计量是q,所以又称为q检验。SNK-q检验的原理是根据所包含不同数目的平均数的极差调整各自的显著性水准,限制了实验的误差.保证在做所有比较时,不易犯第1类错误。

2.2 Tukey法

Tukey法(Tukey’S Honestly Significant DiferenceTukey’s HSD)的原理与SNK-q检验基本相同,但是,该方法要求各比较组样本含量相同,它将所有对比组中I类错误最大者控制在α之内。

研究显示:这种方法有较高的检验效能(与LSD法比较),具有很好的稳定性,适用于大多数场合下的两两比较,计算简便。但是,Tukey法是基于比较组全部参与比较这一假设下进行的,因此在只比较指定的某几组总体均数时并不适用,建议选择Dunnett法或者是Bonferroni方法,因为这两种方法会给出较高效能的检验结果。

2.3 Scheffe法

与一般的多重比较不同,Scheffe法的实质是对多组均数间的线性组合是否为0进行假设检验,多用于对比组样本含量不等的资料。在单因素的多重比较问题中,除了要逐对比较因素水平的平均效应之外,有时还有可能要比较因素水平平均效应的线性组合。例如将有基本相同的因素水平平均效应的几个组,构成一个综合组。因此可能检验这样的假设:

显然,前面讨论的参数的两两比较属于一类特殊的对比。Scheffe法可以同时检验所有可能的对比,即同时检验任何一组对比。Scheffe法的优点是可以检验任意的线性对比。在这方面,Tukey法不如Scheffe法。但是在单纯作逐对因素效应均值的比较时,Schefe法的效率不如Tukey法高。也就是说,Schefe法更易于将显著的差异判定为不显著(Tukey法认为)。在实际场合,当单纯作逐对均值

比较时,建议用Tukey法;而当要做多个一般的线性对比检验时。就要用Scheffe法。

Scheffe法检验实质上对F值进行了简单的校正,将比较的组数纳入考虑的范畴,该方法的检验统计量代表了最大可能的累积I类错误的概率。遗憾的是,由于控制I类错误时的“矫枉过正”.会最终导致较大的Ⅱ类错误的概率。

3.探索性研究和证实性研究均适用的检验方法:

3.1 Bonferroni t检验

基本思想是:如果三个样本均数经ANOVA检验差异有统计学意义(α=0.05),需对每两个均数进行比较,共需比较的次数为3次,由于每进行一次比较犯I类错误的概率是α=0.05,那么比较3次至少有一次犯I类错误的概率就是:α’=1-0.953≈0.1426>0.05。因此,要使多次比较犯I类错误的概率不大于原检验水准α,现有的检验水准应该进行调整,用α’=α/m作为检验水准的调整值,两两比较得出的P值与其进行比较。该方法的思想适用于所有的两两比较,并且该方法的适用范围很广,不仅仅限于方差分析,例如相关系数的检验和卡方检验也适用。Bonferroni t检验的方法和思想容易理解,操作简便,但是严格地控制了I类错误的同时增大了Ⅱ类错误的发生概率,在结论的给出方面是一种比较保守的方法。

3.2 Sidak检验

该方法通过Sidak校正降低每次两两比较的I类错误概率,以达到最终整个比较的I类错误发生率不超过α的目的。

Bonferroni t检验与Sidak检验相似,Bon.ferroni t检验是检验的近似计算,但是由于Bonferroni t检验在计算上容易实现,所以应用较广。相比较而言,Bonferroni t检验在给出推断结论时更为审慎。不容易得到拒绝零假设的结果。两种检验在对比组数增加、比较组不独立时,推断结论更趋保守。

以上方法都必须在满足方差齐性的前提条件时才可以应用,另外还有一些方法是在不满足方差齐性时多重比较的方法:Tamhane’s T2,Dunnetts’s T3, Games-Howell, Games-Howell。

Tamhane’s T2是一种基于t检验原理的两两比较方法。该方法比较保守。

Dunnetts’s T3则是以最大的t值(studentized maximum modulus)为基础的。

Games-Howell检验方法是比较宽大的一种两两比较方法。Games-Howell 方法将方差不齐的组数作为一个影响因素纳入考虑范畴。严重的方差不齐和样本含量过小都会使I类错误的概率增加。Games-Howell检验基于Welch’s对t检验的自由度进行校正,并使用了学生化极差作为统计量。该检验适用于样本含量小且方差不齐(轻度方差不齐例外)时的情况。该方法是方差不齐时的一种较好的方法。

Dunnett’s是一种基于学生化极差的适用于方差不齐情况时两两比较的方法。

方差分析和回归分析的区别与联系

一、方差分析和回归分析的区别与联系?(以双变量为例) 联系: 1、概念上的相似性 回归分析是为了分析变量间的因果关系,研究自变量X取不同值时,因变量平均值丫的变化。运用回归分析方法,可以从变量的总偏差平方和中分解出已被自变量解释掉的误差(解释掉误差)和未被解释掉的误差(剩余误差); 方差分析是为了分析或检验总体间的均值是否有所不同。通过对样本中自变量X取不同值时 所对应的因变量丫均值的比较,推论到总体变量间是否存在关系。运用方差分析,也可以从变量的总离差平方和中分解出已被自变量解释掉的误差和未被自变量解释掉的误差。因此两种分析在概念上所具有的相似性是显而易见的。 2、统计分析步骤的相似性 回归分析在确定自变量X是否为因变量丫的影响因素时,从分析步骤上先对X和丫进行相关分析,然后建立变量间的回归模型。最后再进行参数的统计显着性检验或对回归模型的统计显着性进行检验。 方差分析在确定X是否是丫的影响因素时,是先从样本所的数据的分析入手,然后考察数据模型,最后对样本均值是否相等进行显着性检验。二者在分析步骤上也具有相似性。 3、假设条件具有一定的相似性 回归分析有五个基本假定,分别是:自变量可以是随机变量也可以是非随机变量;X与丫之 间存在的非确定性的相关关系,要求丫的所有子总体,其方差都相等;子总体均值在一条直线上;随机变量丫是统计独立的,即丫1的数值不影响丫2的数值,各丫值之间都没有关系;丫值的每一个子总体都满足正态分布。 方差分析的基本假定有:等方差性(总体中自变量的每一取值所对应因变量丫的分布都具有 相同方差);丫的分布为正态分布。 二者在假设条件上存在着相同。 4、在总离差平方和中的分解形式和逻辑上的相似性 回归分析中,TSS=RSS+RS,S而在方差分析中,TSS=RSS+BS二者均是以已解释掉的误差与未被解释掉的误差之和为总离差平方和。 5、确定影响因素上的相似性 为简化分析起见,我们假设只有一个自变量X影响因变量丫。在回归分析中,要确定X是否是丫的影响因素,就要看当X已知时,对丫的总偏差有无影响。如果X不是影响丫的因素,等同于只 知变数丫的数据列一样,此时用丫去估计每个丫的值,所犯的错误(即偏差)为最小。如果因素X 是影响丫的因素,那么当已知X值后 6、在统计显着性检验上具有相似性 回归分析的总显着性检验,是一种用R2测量回归的全部解释功效的检验。检验RSSR*(N-2) /RS,S 方差分析的显着性检验是一种根据样本数据提取信息所进行的显着性检验。它也是通过F 检 验进行的。 区别: 1、研究变量的分析点不同 回归分析法既研究变量丫又研究变量X并在此基础上集中研究变量丫与X的函数关系,得到的是在不独立的情况下自变量与因变量之间的更加精确的回归函数式,也即判断相关关系的类 型,因此需建立模型并估计参数。方差分析法集中研究变量丫的值及其变差而变量X值仅用 来把丫值划分为子群或组,得到的是自变量(因素)对总量Y是否具有显着影响的整体判断,因

用SPSS进行单因素方差分析报告和多重比较

SPSS——单因素方差分析 单因素方差分析 单因素方差分析也称作一维方差分析。它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。One-Way ANOVA过程要求因变量属于正态分布总体。如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。 [例子] 调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。 表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数

3 40 35 35 38 34 数据保存在“data1.sav”文件中,变量格式如图1-1。 图1-1 分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。 。 2)启动分析过程 点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统 打开单因素方差分析设置窗口如图1-2。 图1-2 单因素方差分析窗口

3)设置分析变量 因变量:选择一个或多个因子变量进入“Dependent List”框中。本例选择“幼虫”。 因素变量:选择一个因素变量进入“Factor”框中。本例选择“品种”。 4)设置多项式比较 单击“Contrasts”按钮,将打开如图1-3所示的对话框。该对话框用于设置均值的多项式比较。 图1-3 “Contrasts”对话框 定义多项式的步骤为: 均值的多项式比较是包括两个或更多个均值的比较。例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.

方差分析及回归分析

第九章 回归分析 教学要求 1.一元线性回归及线性相关显著性的检验法,利用线性回归方程进行预测。 2.可线性化的非线性回归问题及简单的多元线性回归。 ? 本章重点:理解线性模型,回归模型的概念,掌握线性模型中参数估计的最小二乘法估计法。 ? 教学手段:讲练结合 ? 课时分配:6课时 §9.1 一元线性回归 回归分析是研究变量之间相关关系的一种统计推断法。 例如,人的血压y 与年龄x 有关,这里x 是一个普通变量,y 是随机变量。Y 与x 之间的相依关系f(x)受随机误差ε的干扰使之不能完全确定,故可设有: ε+=)(x f y (9.1) 式中f(x)称作回归函数,ε为随机误差或随机干扰,它是一个分布与x 无关的随机变量,我们常假定它是均值为0的正态变量。为估计未知的回归函数f(x),我们通过n 次独立观测,得x 与y 的n 对实测数据(x i ,y i )i=1,……,n ,对f(x)作估计。 实际中常遇到的是多个自变量的情形。 例如 在考察某化学反应时,发现反应速度y 与催化剂用量x 1,反应温度x 2,所加压力x 3等等多种因素有关。这里x 1,x 2,……都是可控制的普通变量,y 是随机变量,y 与诸x i 间的依存关系受随机干扰和随机误差的影响,使之不能完全确定,故可假设有: ε+=),,,(21k x x x f y Λ (9.2) 这里ε是不可观察的随机误差,它是分布与x 1,……,x k 无关的随机变量,一般设其均值为0,这里的多元函数f(x 1,……,x k )称为回归函数,为了估计未知的回归函数,同样可作n 次独立观察,基于观测值去估计f(x 1,……,x k )。 以下的讨论中我们总称自变量x 1,x 2,……,x k 为控制变量,y 为响应变量,不难想象,如对回归函数f(x 1,……,x k )的形式不作任何假设,问题过于一般,将难以处理,所以本章将主要讨论y 和控制变量x 1,x 2,……,x k 呈现线性相关关系的情形,即假定 f(x 1,……,x k )=b 0+b 1x 1+……+b k x k 。 并称由它确定的模型 (9.1) (k=1)及(9.2)为线性回归模型,对于线性回归模型,估计回归函数f(x 1,……,x k )就转化为估计系数b 0、b i (i=1,……,k) 。 当线性回归模型只有一个控制变量时,称为一元线性回归模型,有多个控制变量时称为多元线性回归模型,本着由浅入深的原则,我们重点讨论一元的,在此基础上简单介绍多元的。 §9.1.1 一元线性回归 一、一元线性回归的数学模型

用SPSS进行单因素方差分析和多重比较

方差分析 方差分析可以用来检验来多个均值之间差异的显著性,可以看成是两样本t检验的扩展。统计学原理中涉及的方差分析主要包括单因素方差分析、两因素无交互作用的方差分析和两因素有交互作用的方差分析三种情况。虽然Excel可以进行这三种类型的方差分析,但对数据有一些限制条件,例如不能有缺失值,在两因素方差分析中各个处理要有相等的重复次数等;功能上也有一些不足,例如不能进行多重比较。而在方差分析方面SPSS的功能特别强大,很多输出结果已经超出了统计学原理的范围。 用SPSS检验数据分布的正态性 方差分析需要以下三个假设条件:(1)、在各个总体中因变量都服从正态分布;(2)、在各个总体中因变量的方差都相等;(3)、各个观测值之间是相互独立的。 在SPSS中我们很方便地对前两个条件进行假设检验。同方差性检验一般与方差分析一起进行,这一小节我们只讨论正态性的检验问题。 [例7.4] 检验生兴趣对考试成绩的影响的例子中各组数据的正态性。 在SPSS中输入数据(或打开数据文件),选择Analyze→Descriptive Statistics→Explore,在Explore对话框中将统计成绩作为因变量,兴趣作为分类变量(Fator),单击Plots按钮,选中“Histogram”复选框和“Normality plots with Test”,单击“Continue”按钮,在单击主对话框中的“OK”,可以得到分类别的描述统计信息。从数据的茎叶图、直方图和箱线图都可以对数据分布的正态性做出判断,由于这些内容前面已经做过讲解,这里就不再进一步说明了。 图7-2 用Expore过程进行正态性检验 top↑

方差分析与多重比较

75 第六章 方差分析 第五章所介绍的t 检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在生产和科学研究中经常会遇到比较多个处理优劣的问题,即需进行多个平均数间的差异显著性检验。这时,若仍采用t 检验法就不适宜了。这是因为: 1、检验过程烦琐 例如,一试验包含5个处理,采用t 检验法要进行2 5C =10次两两平均数的差异显著 性检验;若有k 个处理,则要作k (k-1)/2次类似的检验。 2、无统一的试验误差,误差估计的精确性和检验的灵敏性低 对同一试验的多个处理进行比较 时,应该有一个统一的试验误差的估计值。若用t 检验法作两两比较,由于每次比较需计算一个21x x S ,故使得各次比较误差的估计不统一,同时没有充分利用资料所提供的信息而使误差估计的精确性降低,从而降低检验的灵敏性。例如,试验有5个处理,每个处理重复6次,共有30个观测值。进行t 检验时,每次只能利用两个处理共12个观测值估计试验误差,误差自由度为2(6-1)=10;若利用整个试验的30个观测值估计试验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。可见,在用t 检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。 3、推断的可靠性低,检验的I 型错误率大 即使利用资料所提供的全部信息估计了试验误差,若用 t 检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I 型错误的概率,降低推断的可靠性。 由于上述原因,多个平均数的差异显著性检验不宜用t 检验,须采用方差分析法。 方差分析(analysis of variance)是由英国统计学家R.A.Fisher 于1923年提出的。这种方法是将k 个处理的观测值作为一个整体看待,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。方差分析实质上是关于观测值变异原因的数量分析,它在科学研究中应用十分广泛。 本章在讨论方差分析基本原理的基础上,重点介绍单因素试验资料及两因素试验资料的方差分析法。在此之前,先介绍几个常用术语。 1、试验指标(experimental index ) 为衡量试验结果的好坏或处理效应的高低,在试验中具体测定的 性状或观测的项目称为试验指标。由于试验目的不同,选择的试验指标也不相同。在畜禽、水产试验中常用的试验指标有:日增重、产仔数、产奶量、产蛋率、瘦肉率、某些生理生化和体型指标(如血糖含量、体高、体重)等。 2、试验因素(experimental factor ) 试验中所研究的影响试验指标的因素叫试验因素。如研究如何提高 猪的日增重时,饲料的配方、猪的品种、饲养方式、环境温湿度等都对日增重有影响,均可作为试验因素来考虑。当试验中考察的因素只有一个时,称为单因素试验;若同时研究两个或两个以上的因素对试验指标的影响时,则称为两因素或多因素试验。试验因素常用大写字母A 、B 、C 、…等表示。 3、因素水平(level of factor ) 试验因素所处的某种特定状态或数量等级称为因素水平,简称水平。如比 较3个品种奶牛产奶量的高低,这3个品种就是奶牛品种这个试验因素的3个水平;研究某种饲料中4种不同能量水平对肥育猪瘦肉率的影响,这4种特定的能量水平就是饲料能量这一试验因素的4个水平。因素水平用代表该因素的字母加添足标1,2,…,来表示。如A 1、A 2、…,B 1、B 2、…,等。 4、试验处理(treatment ) 事先设计好的实施在试验单位上的具体项目叫试验处理,简称处理。在单因素 试验中,实施在试验单位上的具体项目就是试验因素的某一水平。例如进行饲料的比较试验时,实施在试验单位(某种畜禽)上的具体项目就是喂饲某一种饲料。所以进行单因素试验时,试验因素的一个水平就是一个处理。在多因素试验中,实施在试验单位上的具体项目是各因素的某一水平组合。例如进行3种饲料和3个品种对猪日增

统计学例题-方差分析、相关分析、卡方检验和交互分析

第一章 方差分析 例1、1977年,美国的某项调查从三种受过不同教育类型的妇女中各分别抽取了50位全日制工作的妇女 样本,她们的年收入(单位:千美元)数据整理后归纳如下: 完成的学历年数 收入平均值X () 2 )(∑-X X 初中(8年)X1 高中(12年)X2 大学(16年)X3 7.8 9.7 14.0 1835 2442 4707 解:: = :三组收入均值有显著差异 F = ,即组间均方/组内均方 其中,组间自由度 =3-1=2,组内自由度 =(50-1)╳3=147 由于样本均值=(7.8+9.7+14.0)/3=10.5 所以组间偏差平方和=50=50*( + + )=1009 组内偏差平方和= =1835+2442+4707=8984 所以,F = ≈ 8.2548419 > (2,147)=3.07 拒绝原假设;认为不同学历的妇女收入存在差异。 例2、月收入数据: 男:2500,2550,2050,2300,1900 女:2200,2300,1900,2000,1800 如果用Y 表示收入,哑变量X 表示性别(X =1为女性),计算Y 对X 的回归方程,并在5%的水平下检验收入是否与性别无关(先求回归系数的置信区间)。 解:令Y=+X+ 根据最小二乘法,可知= (1) VAR()= (2) = (3) 计算如下: :收入与性别无关 收入与性别不完全无关

Y 2500255020502300190022002300190020001800 X 0 0 0 0 0 1 1 1 1 1 240 290 -210 40 -360 160 260 -140 -40 -240 =2150=0.5 根据公式1,得=-220;,即Y=-220X+ 根据公式2、3,得VAR()=≈156.3549577 n=10.,n-2=8;当df=8时,=2.306 的0.05置信区间求解方法如下: -2.036<=<=2.306,得140.57769. 由于原假设=0落入了这个置信区间,所以接受原假设,认为系数不显著,收入与性别无关。 第二章相关分析 例1、10对夫妇的一个随机样本给出了如下的结婚年龄数据 结婚时丈夫的年龄y 24 22 26 20 23 21 24 25 22 23 结婚时妻子的年龄x 24 18 25 22 20 23 19 24 23 22 2) 求总体相关系数 的95%置信区间; 3) 以5%的水平,检验“夫妻的结婚年龄之间没有什么线性联系”这一原假设。 解:(1) = 由于=22,=23;=≈0.3426 (2)由于se()=,n=10,df=8=2.306,所以: se()=0.332 -2.036<=<=2.306 得 1.062072

单因素方差分析与多重比较

单因素方差分析 单因素方差分析也称作一维方差分析。它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。One-Way ANOVA过程要求因变量属于正态分布总体。如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。如果几个因变量之间彼此不独立,应该用Repeated Measure过程。 [例子] 调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。 表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数 数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。 图5-1 分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。 1)准备分析数据

在数据编辑窗口中输入数据。建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。或者打开已存在的数据文件“DATA5-1.SAV”。 2)启动分析过程 点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击 “0ne-Way ANOVA”项,系统 打开单因素方差分析设置窗口如图5-2。 图5-2 单因素方差分析窗口 3)设置分析变量 因变量:选择一个或多个因子变量进入“Dependent List”框中。本例选择“幼虫”。 因素变量:选择一个因素变量进入“Factor”框中。本例选择“品种”。 4)设置多项式比较 单击“Contrasts”按钮,将打开如图5-3所示的对话框。该对话框用于设置均值的多项式比较。

4方差分析

方差分析是用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。 方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。 在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。通常是比较不同实验条件下样本均值间的差异。例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。 方差分析原理 方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个: (1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。 (2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。 总偏差平方和 SS t = SS b + SS w。 组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MS b>>MS w(远远大于)。 MS b/MS w比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。 方差分析的假设检验

第八章 方差分析与相关分析

第八章方差分析与相关分析 一.方差分析1.基本概念 方差分析的概念:比较组间方差是否可以用组内方差来进行解释,从而判断若干组样本是否来自同一总体。 方差分析,又称为ANOVA(Analysis Of Variance)分析。 方差分析可以一次检验多组样本,避免了t检验一次只能比较两组的缺陷。方差分析只能反映出各组样本中存在着差异,但具体是哪一组样本存在差异,无法进行判定。 考察下列例子: 某厂使用四种不同颜色对产品进行包装,经过在五个城市的试销,获得销售数据如下(单 观察数据的列平均值,列平均值的差异反映出不同颜色包装的销售业绩差异。此时,需要判断这种差异与同一颜色包装在不同城市间的差异相比,是否显著。如果不显著,则这种 2.方差分析原理 计算观察值的组间方差和组内方差,并计算两者的比值,如果该比值比较小,说明组间方差与组内方差比较接近,组间方差可以用组内方差来解释,从而说明组间差异不存在。 ●●建立原假设“H0:各组平均数相等” ●●构造统计量“F=组间方差/组内方差”

●●在计算组间方差时,使用自由度为(r-1),计算组内方差时,使用自由度为 (n-r)。 ●●F满足第一自由度为(r-1),第二自由度为(n-r)的F分布。 ●●查表,若F值大于0.05临界值,则拒绝原假设,认为各组平均数存在差异。 根据方差计算的原理,生成方差分析表如下: 其中: 组间离差平方和 SSA (Sum of Squares for factor A) =39.084 误差项离差平方和 SSE (Sum of Squares for Error) =76.8455 总离差平方和 SST (Sum of Squares for Total)=115.9295 P-value值为0.000466,小于0.05,所以拒绝原假设。 。 3.双因素方差分析 观察下列销售数据,欲了解包装方式和销售地区是否对于销售业绩有影响,涉及到双因素的方差分析。 此时需分别计算SSA、SSB与SSE之间的比值是否超过临界值。 计算方差分析表如下:

第八章方差分析与回归分析

第八章 方差分析与回归分析 一、教材说明 本章内容包括:方差分析,多重比较,方差齐性检验,一元线性回归,一元非线性回归.主要讲述方差分析和一元线性回归两节内容. 1、教学目的与教学要求 (1)了解方差分析的统计模型,掌握平方和的分解,熟悉检验方法和参数估计,会解决简单的实际问题. (2)了解效应差的置信区间的求法,了解多重比较问题,掌握重复数相等与不相等场合的方法,会解决简单的实际问题. (3)熟练掌握Hartley 检验,Bartlett 检验以及修正的Bartlett 检验三种检验方法,会解决简单的实际问题. (4)理解变量间的两类关系,认识一元线性和非线性回归模型,熟悉回归系数的估计方法,熟练掌握回归方程的显著性检验.能用R 软件来进行回归分析,会解决简单的实际问题. 2、本章的重点与难点 本章的重点是平方和的分解,检验方法和参数估计、重复数相等与不相等场合的方法、检验方法的掌握,回归系数的估计方法,回归方程的显著性检验,难点是检验方法和参数估计,重复数相等与不相等场合的方法. 实际问题的检验,回归方程的显著性检验. 二、教学内容 本章共分方差分析,多重比较,方差齐性检验,一元线性回归,一元非线性回归等5节来讲述本章的基本内容. § 方差分析 教学目的:了解方差分析的统计模型,掌握平方和的分解,熟悉检验方法和参数估计,会 解决简单的实际问题. 教学重点:平方和的分解,检验方法和参数估计 教学难点:检验方法和参数估计 教学内容: 本节包括方差分析问题的提出,单因子方差分析的统计模型,平方和分解,检验方法,参数估计,重复数不等情形. 问题的提出 在实际工作中经常会遇到多个总体均值的比较问题,处理这类问题通常采用方差分析方法. 例 单因子方差分析的统计模型 在例中,我们只考察一个因子,称为单因子试验.记因子为A ,设其有r 个水平,记为 1r A , ,A ,在每一水平下考察的指标可看做一个总体,故有r 个总体,假定 (1)每一总体均为正态总体,记为2 i i N(,)μσ,i 1,2,,r =; (2)各总体方差相同,即22 2212r σσσσ== ==

方差分析和相关分析与回归分析

《统计学》实验五 一、实验名称:方差分析 二、实验日期: 2010年12月3日 三、实验地点:经济管理系实验室 四、实验目的和要求 目的:培养学生利用EXCEL进行数据处理的能力,熟练掌握利用EXCEL 进行方差分析,对方差分析结果进行分析 要求:就本专业相关问题收集一定数量的数据,用EXCEL进行方差分析 五、实验仪器、设备和材料:个人电脑(人/台),EXCEL 软件 六、实验过程 (一)问题与数据 消费者与产品生产者、销售者或服务的提供者之间经常发生纠纷。当分生纠纷后,消费者常常会向消费者协会投诉。为了对几个行业的服务质量进行评价,消费者协会在零售业、旅游业、航空公司、家电制造业分别抽取了不同的企业作为样本。其中零售业抽取7家、旅游业抽取6家、航空公司抽取5家、家电制造业抽取5家。具体数据如下: 取显著性水平α=0.05,检验行业不同是否会导致消费者投诉的显著性差异?(二)实验步骤 1、进行假设 2、将数据拷贝到EXCEL表格中 3、选择“工具——数据分析——单因素方差分析”,得到如下结果:

(三)实验结果分析:由以上结果可知:F>F crit=3.4066或P-value=0.0387657<0.05,拒绝原假设,表明行业对消费者投诉有着显著差异。 实验心得体会 在这学习之前我们只学习了简单的方差计算,现在运用计算机进行方差分析,可以做出更多的比较。通过使用计算机可以很快的计算出组间和组内的各种数值,便于我们进行比较分析。

《统计学》实验六 一、实验名称:相关分析与回归分析 二、实验日期: 2010年12月3日 三、实验地点:经济管理系实验室 四、实验目的和要求 目的:培养学生利用EXCEL进行数据处理的能力,熟练掌握EXCEL绘制散点图,计算相关系数,拟合线性回归方程,拟合简单的非线性回归方程,利用回归方程进行预测。 要求:就本专业相关问题收集一定数量的数据,用EXCEL进行相关回归分析(计算相关系数,一元线性回归分析,一元线性回归预测) 五、实验仪器、设备和材料:个人电脑(人/台),EXCEL 软件 六、实验过程 (一)问题与数据 10个学生每天用于学习英语的时间和期末考试的成绩的数据如下表所示。要求, (1)绘制学习英语的时间和期末考试的成绩的散点图,判断2者之间的关系 形态 (2)计算学习英语的时间和期末考试的成绩的线性相关系数 (3)用学习英语的时间作自变量,期末考试成绩作因变量,求出估计的回归方程。 (4)求每天学习英语的时间为150分钟时,销售额95%的置信区间和预测区间。 学生时间(分钟)成绩(分) A 120 85 B 60 65 C 100 76 D 70 71 E 80 74 F 60 65 G 30 54 H 40 60 I 50 62

方差分析和回归分析的区别与联系

方差分析和回归分析的区 别与联系 Prepared on 22 November 2020

一、方差分析和回归分析的区别与联系(以双变量为例) 联系: 1、概念上的相似性 回归分析是为了分析变量间的因果关系,研究自变量X取不同值时,因变量平均值Y的变化。运用回归分析方法,可以从变量的总偏差平方和中分解出已被自变量解释掉的误差(解释掉误差)和未被解释掉的误差(剩余误差); 方差分析是为了分析或检验总体间的均值是否有所不同。通过对样本中自变量X取不同值时所对应的因变量Y均值的比较,推论到总体变量间是否存在关系。运用方差分析,也可以从变量的总离差平方和中分解出已被自变量解释掉的误差和未被自变量解释掉的误差。因此两种分析在概念上所具有的相似性是显而易见的。 2、统计分析步骤的相似性 回归分析在确定自变量X是否为因变量Y的影响因素时,从分析步骤上先对X 和Y进行相关分析,然后建立变量间的回归模型。最后再进行参数的统计显着性检验或对回归模型的统计显着性进行检验。 方差分析在确定X是否是Y的影响因素时,是先从样本所的数据的分析入手,然后考察数据模型,最后对样本均值是否相等进行显着性检验。二者在分析步骤上也具有相似性。 3、假设条件具有一定的相似性 回归分析有五个基本假定,分别是:自变量可以是随机变量也可以是非随机变量;X与Y之间存在的非确定性的相关关系,要求Y的所有子总体,其方差都相等;子总体均值在一条直线上;随机变量Y i是统计独立的,即Y1的数值不

影响Y2的数值,各Y值之间都没有关系;Y值的每一个子总体都满足正态分布。 方差分析的基本假定有:等方差性(总体中自变量的每一取值所对应因变量Y i 的分布都具有相同方差);Y i的分布为正态分布。 二者在假设条件上存在着相同。 4、在总离差平方和中的分解形式和逻辑上的相似性 回归分析中,TSS=RSS+RSSR,而在方差分析中,TSS=RSS+BSS。二者均是以已解释掉的误差与未被解释掉的误差之和为总离差平方和。 5、确定影响因素上的相似性 为简化分析起见,我们假设只有一个自变量X影响因变量Y。在回归分析中,要确定X是否是Y的影响因素,就要看当X已知时,对Y的总偏差有无影响。如果X不是影响Y的因素,等同于只知变数Y的数据列一样,此时用Y去估计每个丫的值,所犯的错误(即偏差)为最小。如果因素X是影响Y的因素,那么当已知X 值后 6、在统计显着性检验上具有相似性 回归分析的总显着性检验,是一种用R2测量回归的全部解释功效的检验。检验RSSR*(N-2)/RSS, 方差分析的显着性检验是一种根据样本数据提取信息所进行的显着性检验。它也是通过F检验进行的。 区别: 1、研究变量的分析点不同

方差分析及回归分析

方差分析及回归分析 Revised as of 23 November 2020

第九章 回归分析 教学要求 1.一元线性回归及线性相关显着性的检验法,利用线性回归方程进行预测。 2.可线性化的非线性回归问题及简单的多元线性回归。 ?本章重点:理解线性模型,回归模型的概念,掌握线性模型中参数估计的最小二乘法估计法。 ?教学手段:讲练结合 ?课时分配:6课时 § 一元线性回归 回归分析是研究变量之间相关关系的一种统计推断法。 例如,人的血压y 与年龄x 有关,这里x 是一个普通变量,y 是随机变量。Y 与x 之间的相依关系f(x)受随机误差ε的干扰使之不能完全确定,故可设有: ε+=)(x f y () 式中f(x)称作回归函数,ε为随机误差或随机干扰,它是一个分布与x 无关的随机变量,我们常假定它是均值为0的正态变量。为估计未知的回归函数f(x),我们通过n 次独立观测,得x 与y 的n 对实测数据(x i ,y i )i=1,……,n ,对f(x)作估计。 实际中常遇到的是多个自变量的情形。 例如 在考察某化学反应时,发现反应速度y 与催化剂用量x 1,反应温度x 2,所加压力x 3等等多种因素有关。这里x 1,x 2,……都是可控制的普通变量,y 是随机变量,y 与诸x i 间的依存关系受随机干扰和随机误差的影响,使之不能完全确定,故可假设有: ε+=),,,(21k x x x f y 这里ε是不可观察的随机误差,它是分布与x 1,……,x k 无关的随机变量,一般设其均值为0,这里的多元函数f(x 1,……,x k )称为回归函数,为了估计未知的回归函数,同样可作n 次独立观察,基于观测值去估计f(x 1,……,x k )。 以下的讨论中我们总称自变量x 1,x 2,……,x k 为控制变量,y 为响应变量,不难想象,如对回归函数f(x 1,……,x k )的形式不作任何假设,问题过于一般,将难以处理,所以本章将主要讨论y 和控制变量x 1,x 2,……,x k 呈现线性相关关系的情形,即假定 f(x 1,……,x k )=b 0+b 1x 1+……+b k x k 。 并称由它确定的模型 (k=1)及为线性回归模型,对于线性回归模型,估计回归函数f(x 1,……,x k )就转化为估计系数b 0、b i (i=1,……,k) 。 当线性回归模型只有一个控制变量时,称为一元线性回归模型,有多个控制变量时称为多元线性回归模型,本着由浅入深的原则,我们重点讨论一元的,在此基础上简单介绍多元的。

第8讲单因素方差分析与多重比较

方差分析 方差分析(analysis of variance ), 简称ANOV A,由英国统计学家R.A.Fisher首先提出,后人为纪念Fisher ,以F命名方差分析的统计量,故方差分析又称F检验。 样本均数的差异,可能有两种原因所致。首先可能由随机误差所致随机误差包括两种成分:个体间的变异和测量误差两部分;其次可能是由于各组所接受的处理不同,不同的处理引起不同的作用和效果,导致各处理组之间均数不同。一般来说,个体之间各不相同,是繁杂的生物界的特点;测量误差也是不可避免的,因此第一种原因肯定存在。而第二种原因是否存在,这正是假设检验要回答的问题。 方差分析的基本思想是将所有观察值之间的变异(称总变异)按设计和需要分解成几部分。如完全随机设计资料的方差分析,将总变异分解为处理间变异和组内变异两部分,后者常称为误差。将各部分变异除以误差部分,得到统计量F值,并根据F值确定P值作推断。 由于方差分析是根据实验设计将总变异分成若干部分,因此设计时考虑的因素越多,变异划分的越精细,各部分变异的涵义越清晰明确,结论的解释也越容易,同时由于变异划分的精细,误差部分减小,提高了检验的灵敏度和结论的准确性。 方差分析可用于: (1)两个或多个样本均数间的比较 (2)分析两个或多个因素的交互作用

(3)回归方程的假设检验 (4)方差齐性检验 多个样本均数间比较的方差分析应用条件为: (1)各样本必须是相互独立的随机样本(独立性) (2)各样本均来自正态总体(正态性) (3)相互比较的各样本的总体方差相等(方差齐性) 一、完全随机设计的方差分析 医学实验中,根据某一实验因素,用随机的方法,将受试对象分配到各组,各组分别接受不同的处理后,观察各种处理的效果,比较各组均数之间有无差别。临床研究中,还可能遇到:比较几种不同疗法治疗某种疾病后某指标的变化,以评价它们的疗效;或比较某种疾病不同类型之间某一指标有无差别等。这些都是一个因素不同水平(或状态)间几个样本均数的比较,可用单因素的方差分析(one-way ANOV A)来处理此类资料。

统计实验报告相关分析和单因素方差分析

入学等级期末成绩每周学习时间 1 96 45 1 88 38 1 75 34 1 86 38 1 88 43 1 80 41 1 96 50 2 87 42 2 80 35 2 90 40 2 72 30 2 77 38 2 68 32 2 9 3 39 2 85 39 2 85 45 3 70 35 3 67 28 3 70 30 3 65 20 3 61 30 3 80 40 研究期末成绩与每周学习时间和入学等级的相关程度?

相关分析 1,散点图 从散点图中可以看出期末成绩与每周的学习时间是有较大的线性关系的,说明成绩的多少与每周的学习时间是有较大关联的。 2,相关系数(定距数据)

从定距数据(期末成绩与每周学习时间)的相关系数看,从22个样本数据看相关系数很高大于0.8,呈高度相关,说明期末成绩与每周学习时间相关性较大,即每周学习时间对期末成绩的影响较大。 3,相关系数(定类数据) 从定类数据(入学等级)与期末成绩看期末成绩与入学等级的相关性较差小于0.3,说明入学等级与期末成绩的相关性不大,即入学等级对期末成绩的影响不是很大。

df 0 19 每周学习时间 Correlation .890 1.000 Significance .000 . (2-tailed) df 19 0 将入学等级作为偏相关系数看,将入学等级剔除后期末成绩与每周学习时间的相关性增强了,说明入学等级应作为偏相关系数将之剔除。 结论:根据相关性分析,期末成绩与每周学习时间的相关性较大,与入学等级的相关性不大,说明成绩的多少与学生学习的努力程度相关,而与入学等级(入学时的优良)关系不大。

三因素混合方差分析事后简单效应多重比较语法

概念笔记 Main effect 一个因素的独立效应,即其不同水平引起的方差变异。三因素的实验有三个主效应。把某一因素的一个水平同该因素的其他水平比较,不考虑其他因素。 Interaction 多个因素的联合效应,A因素的作用受到B因素的影响,即有交互——two-way interaction. 当一因素作用受到另外两个因素影响,即三因素交互three-way interaction. 重复测量一个因素的三因素混合设计3*2*2的混合设计 A3*B2*R2 【A, B为被试间因素】 需要分析的有—— A, B, R 各自主效应 二重交互作用,A*B, A*R, B*R 三重交互作用,A*B*C 结果发现, A, B为被试间因素,交互作用SIG 当二重交互作用SIG,需要进行simple effect检验。A因素水平在B因素某一水平上的变异。A在B1水平上的简单效应 A在B2水平上的简单效应 B在A1水平上的简单效应 B在A2水平上的简单效应 B在A3水平上的简单效应 如果三重交互作用SIG,需要进行三因素的简单简单效应分析simple simple effect. 某一因素的水平在另外两个因素的水平结合上的效应 在A1B1水平结合上,R1 与R2 差异 在A1B2水平结合上,R1 与R2 差异 在A2B1水平结合上,R1 与R2 差异 在A2B2水平结合上,R1 与R2 差异 在A3B1水平结合上,R1 与R2 差异 在A3B2水平结合上,R1 与R2 差异

重复测量方差分析之后,如果三重交互作用显著,需要编辑语法, 得出三个因素各自的简单效应 某一因素在其他两个因素的某一实验条件内的简单效应检验 三因素重复测量方差分析对应的会有3种简单效应检验结果 SPSS在输出简单效应检验结果的同时,也会报告多重比较结果,会有更直观的对比结果。 如果三重交互作用SIG,需要进行简单简单效应检验。 固定某两个因素水平组合,考察研究者最感兴趣的那个变量的效应。 MANOV A R1 R2 BY A(1,3) B(1,2) /WSFACTORS=R(2) /PRINT=CELLINFO(MEANS) /WSDESIGN /DESIGN /WSDESIGN=R /DESIGN=MWITHIN B(1) WITHIN A(1) MWITHIN B(2) WITHIN A(1) MWITHIN B(1) WITHIN A(2) MWITHIN B(2) WITHIN A(2) MWITHIN B(1) WITHIN A(3) MWITHIN B(2) WITHIN A(3) 上述语法内容是检验被试内变量R在被试间变量A, B 上的简单简单效应。 如果想检验某一被试间变量A在被试内变量R和另一个被试间变量B上的简单简单效应MANOV A R1 R2 BY A(1,3) B(1,2) /WSFACTORS=R(2) /PRINT=CELLINFO(MEANS) /WSDESIGN /DESIGN /WSDESIGN=MWITHIN C(1) MWITHIN C(2) /DESIGN=A WITHIN B(1) A WITHIN B(2)

方差分析中的两两比较

一、均数间的多重比较(Multipie Comparison)方法的选择: 1、如两个均数的比较是独立的,或者虽有多个样本的均数,但事先已计划好要做某几对均 数的比较,则不管方差分析的结果如何,均应进行比较,一般采用LSD法或Bonferroni 法; 2、如果事先未计划进行多重比较,在方差分析得到有统计意义的F检验值后,可以利用多 重比较进行探索性分析,此时比较方法的选择要根据研究目的和样本的性质。比如,需要进行多个实验组和一个对照组比较时,可采用Dunnett法;如需要进行任意两组之间的比较而各组样本的容量又相同时,可采用Tukey法;若各组样本的容量不相同时,可采用Scheffe法;若事先未计划进行多重比较,且方差分析结果未有显著差别,则不应进行多重比较; 3、有时候研究者事先有对特定几组均值比较的考虑,这时可以不用Post hoc进行几乎所 有均值组合的两两比较,而是通过Contrasts中相应的设置来实现; 4、最后需要注意的是,如果组数较少,如3组、4组,各种比较方法得到的结果差别不会 很大;如果比较的组数很多,则要慎重选择两两均值比较的方法。 5、LSD法:即最小显著差法;是最简单的比较方法之一,它其实只是t检验的一种简单变 形,未对检验水准做任何校正,只是在标准误计算上充分利用了样本信息。它一般用于计划好的多重比较; 6、Sidak法:它是在LSD法上加入了Sidak校正,通过校正降低每次两两比较的一类错误 率,达到整个比较最终甲类错误率为α的目的; 7、Bonferroni法:它是Bonferroni校正在LSD法上的应用。 8、Scheffe法:它实质上是对多组均数间的线性组合是否为0做假设检验(即所谓的 Contrasts),多用于各组样本容量不等时的比较; 9、Dunnett法:常用于多个实验组与一个对照组间的比较,因此使用此法时,应当指定对 照组; 10、S-N-K法:它是根据预先制定的准则将各组均数分为多个子集,然后利用 Studentized Range分布进行假设检验,并根据均数的个数调整总的犯一类错误的概率不超过α; 11、Tukey法:这种方法要求各组样本容量相同,它也是利用Studentized Range分布 进行各组均数间的比较,与S-N-K法不同,它是控制所有比较中最大的一类错误(即甲类错误)的概率不超过α; 12、Duncan法:思路与S-N-K法相似,只不过检验统计量服从的是Duncan′s Multiple Range分布; 13、还需注意的是,SPSS同时给出了方差不齐性时的4种检验方法,但从接受程度和 稳定性看,方差不齐性时尽量不做多重比较。 二、各组均数的精细比较(Contrast) 对于具有4组均值的比较,在Coefficient如果依次输入数字3,-1,-1,-1,则表示要检验原假设H o:μ1=(μ2+μ3+μ4)/3; 三、一元双因素方差分析 1、一元双因素方差分析包括两种数学模型:(1)独立模型;(2)交互模型;

统计学例题-方差分析、相关分析、卡方检验和交互分析

第一章方差分析 完成的学历年数 收入平均值 ~弭) 2?x —刃2 初中(8年)X1 7.8 1835 高中(12年)X2 9.7 2442 大学(16年)X3 14.0 4707 例1、1977年,美国的某项调查从三种受过不同教育类型的妇女中各分别抽取了 50位全日制工作的妇女 样本,她们的年收入(单位:千美元)数据整理后归纳如下: 解::顼=瓯x 爲 :三组收入均值有显著差异 SSb/dfb F = ,即组间均方/组内均方 S 片F / df 懈 其中,组间自由度 ^=3-1=2,组内自由度 .裁;百=(50-1) X 3=147 由于样本均值沪(7.8+9.7+14.0)/3=10.5 宙円『=50*(於也牒+ )=1009 组内偏差平方和 藝?=£》*為-昂尸=1835+2442+4707=8984 1009/2 所以,F = ^8.2548419 > (2,147)=3.07 B 964/147 0,n5 拒绝原假设;认为不同学历的妇女收入存在差异。 所以组间偏差平方和疑:=50 例2、月收入数据: 男:2500, 2550, 2050, 2300, 1900 女:2200, 2300, 1900, 2000, 1800 如果用Y 表示收入,哑变量X 表示性别(X=1为女性),计算Y 对X 的回归方程,并在5%的水平下 检验收入是否与性别无关(先求回归系数的置信区间) 。 根据最小二乘法,可知 h VAR(i^) VAR() = 1) 脸:收入与性别无关 (1) ⑵ ⑶ 收入与性别不完全无关

=2150 =0.5 根据公式1,得恰=-220 ;為才?徹,即Y=^^-220X+ll』j 根据公式2、3,得VAR(\|:)飞癒顾胡56.3549577 n=10., n-2=8 ;当df=8 时,i;叮旷2.306 的0.05置信区间求解方法如下: 亠 bg-B2 -2.036<= <=2.306,得既施用觀匡际忒140.57769. se(b2] 亠 由于原假设飓=0落入了这个置信区间,所以接受原假设,认为加系数不显著,收入与性别无关。 第二章相关分析 2)求总体相关系数T的95%置信区间; - - 13 由于弟=22,=23; = 祀.3426 1 V1440 ⑵由于se( ,)= ------ , n=10,df=8:j 靠足=2.306,所以詐匕亦弐卜 se( )=0.332 043426-p -2.036<= <=2.306 0332 得廉驾 —

相关文档
最新文档