飞秒激光技术带来内存读取革命

飞秒激光技术带来内存读取革命
飞秒激光技术带来内存读取革命

飞秒激光技术带来内存读取革命

2012-08-16 09:15:33 文章来源:互联网

衡量企业级内存的重要性主要体现在高效率、高稳定性和较小的占用空间上。而内存计算目前已实现的应用就是对传统数据处理方式的加速。相对于磁盘来说,内存的读写速度要快很多倍。即便如此,现在内存的价格也在日渐便宜,而容量却要不断增加,以应对计算机的快速发展。

正因为如此,在服务器和企业级应用领域,集成度、稳定性以及纠错能力更高的内存产品一直是模组厂商的主要利润来源之一。但是内存计算简单停留在现有的技术层面是无法满足日益增长的要求的。于是更多的新兴技术被发现并利用起来。

图1 电子自旋

来自法国的研究人员,对于内存读写计算早已有了不少的研究。他们发现了一种“飞秒”激光的技术,可以使读/写过程加快10万倍。

这个技术的核心实现点是自旋电子学。说到自旋电子学,可能有很多网友会比较陌生。其实自旋电子学也叫做磁电子学。它利用电子的自旋和磁矩,使固体器件中除电荷输运外,还加入电子的自旋和磁矩。

虽然这是一门新兴的学科和技术,但是利用自旋电子学的原理,可以实现像是磁性随机内存、自旋场发射晶体管等,因此也是很多研究人员所感兴趣的原因。

图2 自旋电子学

新的技术有时必然会存在一些不能解决的问题,像是自旋电子学就存在一个很明显的问题,被用于检测数据位的磁传感器速度很慢。但是这个技术可以利用激光加速硬盘光碟的存储I/O的方法,通过该激光产生超快激光脉冲来改变电子自旋,加快读/写过程。

法国研究人员的这个加快内存读写的技术虽然在业界引起了不小的反响,并因此获得了诺贝尔物理学奖,但是有人却认为这是个纸上谈兵、无法应用于生活的“鸡肋”。

因为目前这项研究一直是在零下233度的实验环境下进行的。而室温才是生产可行处理器或内存设备的重要要求,室温的环境下,研究人员无法产生同等的效果。即便如此,不得不承认的是,虽然环境的问题暂时没有办法解决,但是至少研究人员已经知道如何增加通道中电子的自旋寿命。相信随着更深入的研究,这个技术能真正的应用于产品中。

利用半导体带来闪存读写的新革命

对于这个研究发现,IBM的研究人员认为,他们的技术突破为创造晶体管和非易失性存储打开了大门,这将大大降低现在NAND闪存技术的功率。并且他们也根据这个技术方向,自己得出了新的研究结果。

经过IBM研究院和瑞士苏黎世联邦理工学院的固态物理实验室共同研究发现,他们可以通过改变电子在其空间中的相对轴向(向上或向下),用它代表数据位。利用超短激光脉冲监测一小块地方内成千上万电子同时产生的自旋,将电子自旋周期延长30倍至1.1纳秒。

图3 脉冲改变自选周期

虽然之前的研究表明自旋方向的这些旋转是完全不相关的,但是通过IBM的研究人员发现,可以通过技术手段让这种旋转实现同步,从而让电子保持自旋的同时又全部沿同一个方向旋转。采用的技术则是常用的半导体材料。

图4 20纳米NAND闪存

通过对半导体材料尺寸的控制,解决NAND闪存产品所使用的电路宽度已经小于20纳米的极限说法。延长电子在沟道内自旋周期的方法,从而带来闪存读写的真正革命。

6年内淘汰机械硬盘

除了以上提到的技术,IBM还发明了有希望在6年内淘汰机械硬盘的新技术赛道存储技术。

IBM对外宣称,传统硬盘易发热,有噪音,怕震动,这些缺点使其不符合新时期存储的要求,IBM将争取在10年内把自己发明的传统硬盘淘汰。固态硬盘虽有取代硬盘的趋势,但由于成本太过昂贵,最终占领市场的可能性不大。相比之下,更为低廉且能耗较低的Racetrack更有可能取代硬盘。

图5 单个Racetrack

Racetrack存储是IBM实验室研究的一项新型存储技术,该技术结合了硬盘和闪存的特点,不仅存储容量大而且存储的速度也非常快。与此同时,存储的成本也比闪存中固态硬盘要低,功耗也有较大的改观。

作为新型的存储技术,Racetrack采用了新的存储数据方式。我们知道,在计算机中,数据都是以0和1的形式存储的。在传统硬盘中,代表这些的0和1的是原子磁矩方向。在Racetrack存储技术中,代表这些0和1的是一系列的Magnetic Domain-Wall(磁畴壁)的电子自旋方向,磁畴壁是一群自旋方向相同的电子的集合。如下图所示,图中共有4个磁畴壁,其中上面的两个和下面左边一个的电子自旋方向相同,而最后一个磁畴壁的电子自旋方向则相反。

图6 Magnetic Domain-Wall(磁畴壁)

磁畴壁是分布在磁纳米线上的,这种此纳米线的只有人的头发的千分之一的粗细。通过电流控制磁畴壁在纳米线上的移动来实现数据的读取,这就像是赛车在赛道上行驶一样,Racetrack技术名称的由来这是这个原因。在每一条赛道上都有一个读磁头和写磁头。通过电流控制所需的磁畴壁移动到这些读写磁头的位置,实现数据处理。

这种让数据移动到所需的位置的方式,不仅改变了传统的让计算机寻找数据的存储模式,更重要的是使得Racetrack 存储没有运动部件,避免了器件的损坏。

IBM认为Racetrack赛道存储在容量上较机械硬盘有百倍提升,而且速率较大提升,而相比SSD来说,Racetrack赛道存储在成本、功耗以及使用寿命上有着优势。>>

内存核心连接实现高速读取数据

随着芯片制程工艺从65nm,45nm再到22nm,电路的密集度越来越高,势必会达到一个技术上的瓶颈,因此如今各芯片制造商都在探索3D芯片的可能性,像是HMC内存芯片存取数据就能达128Gbps,是目前DDR3内存的10倍以上。

图7 3D芯片

HMC的基本理念是将芯片层层叠起,和传统上将一个系统中的半导体联系在一起的做法相比,新方法将用到更多且速度更快的数据通路。支持者认为,将芯片堆叠起来的做法除了节省空间,还能达到类似于立体电路块的效果。

图8 Hybrid Memory Cube(HMC)

HMC是通过一个TSV(through-silicon-via硅通道)连接层将内存核心连接在一起,达到高速读取数据的效果。

图9 Hybrid Memory Cube

在与IBM的合作中,美光公司将在HMC内存芯片的设计上做些调整,移除通常连接内存芯片和其它芯片的电路,取而代之的是一块特殊的IBM芯片。并且IBM芯片将位于底层,其上方可能堆叠四或八块美光的内存芯片。

写入循环寿命达1000多万次

除了上面这些新技术外,之前在我们的报道中有提到过IBM攻克了相变存储技术。IBM的多位PCM试验芯片,采用90nmCMOS工艺制造,不但读写速度高于普通NAND闪存,写入循环寿命也高达惊人的1000多万次。相比之下,目前最先进的25nmMLCNAND闪存只能坚持大约3000次就会挂掉。

另外,IBM这种多位PCM芯片的写入延迟最差也有10毫秒左右,比当前最先进的闪存快100倍。

不过IBM并未透露他们在一个单元内封装了多少个比特位,而且要看到这种新技术的量产,至少还得等四五年。 在去年的时候就有专家提出“相变存储器是未来发展方向,将逐步取代闪存、磁盘等。

图10 PCM样品

其实相变存储器(PCM)是新一代非易失性存储器技术。像大多数新科技一样,PCM为应用这项技术的人们带来很多好处。PCM是一种利用材料中的可逆相态变化来存储信息的非易失性存储器。

图11 PCM原理

我们都知道内存是关系到计算机运行性能高低的关键部件之一,无疑是非常重要的。为了加快系统的速度,提高系统的整体性能,我们看到,计算机中配置的内存数量越来越大,而内存的种类也越来越多。对于现今的大多数计算机系统,内存的存取时间都是一个主要的制约系统性能提高的因素。所以解决内存计算的瓶颈,致力于内存技术的研究都是我们关注的课题。

激光显示技术的发展现状

目录 摘要 (2) 1引言 (3) 2激光显示技术 (3) 2.1激光显示技术原理 (3) 2.2激光显示技术特征 (4) 2.3激光显示技术类型 (4) 3激光显示技术发展历史 (5) 3.1国内激光显示技术发展历史 (5) 3.2国外激光显示技术发展历史 (5) 4激光显示技术发展现状 (6) 4.1国内激光显示技术发展现状 (6) 4.2国际激光显示技术发展现状 (9) 5总结 (10) 6致谢 (10) 7参考文献 (11)

摘要 激光显示作为新一代显示技术,继承了数字显示技术所有优点,能够最完美的再现自然色彩。本文简要介绍了激光显示技术的原理、特征、类型,并对国内外激光显示技术的发展历史和现状作了介绍。 关键词:激光显示技术、三基色激光、激光三维显示、数字显示技术 Abstract As a new generation of display technology, laser display inherited all the advantages of digital display, and can perfectly reproduce the natural colors. In this thesis, the principle, characteristic and type of laser display technology are introduced briefly. In addition, the developmental history and present status of which laser display is in domestic and overseas area are introduced too. Key words :Laser display technology;Tricolor laser;Three dimension display of laser ;Digital display technology

中国激光技术发展回顾与展望教学教材

中国激光技术发展回 顾与展望

中国激光技术发展回顾与展望 名称研制成功时间研制人 He-Ne激光器 1963年7月邓锡铭等 掺钕玻璃激光器 1963年6月干福熹等 GaAs同质结半导体激光器 1963年12月王守武等 脉冲Ar+激光器 1964年10月万重怡等 CO2分子激光器 1965年9月王润文等 CH3I化学激光器 1966年3月邓锡铭等 YAG激光器 1966年7月屈乾华等 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所——中国科学院上海光学精密机械研究所(简称“上海光机所”)成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的“6403”高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了“文革”十年浩劫,但借助于重点项目的支撑,仍艰难地生存了下来并取得可贵的进展。 1、“6403”高能钕玻璃激光系统 1964年启动,最后从技术上判定热效应是根本性技术障碍,于1976年下马。这一项目对发展高能激光技术有历史贡献是不可忽视的,它使我国激光技术的水平上了一个台阶。其成果主要表现在:(1)建成了具有工程规模的大口径(120毫米)振荡—放大型激光系统,最大输出能量达32万焦耳;改善光束质量后达3万焦耳。(2)实现了系统技术集成,成功地进行了打靶实验,室内10米处击穿80毫米铝靶,室外2公里距离击穿0.2毫米铝耙,并系统地研究了强激光辐射的生物效应和材料破坏机理。(3)第一次揭示了强光对激光系统本身的光损伤现象和机制。(4 )第一次深入和理解激光光束质量的重要性和物理内涵,采用了一系列提高光束质量的创新性技术,如万焦耳级非稳腔激光器、片状激光器、振荡—扫瞄放大式激光系统、尖劈法光束质量诊断等。(5)激光元器件和支撑技术有了突破性提高,如低吸收高均匀性钕玻璃熔炼工艺、高能脉冲氙气、高强度介质膜、大口径(1.2米)光学精密加工等。(6)培养和造就了一批技术骨干队伍。 2、高功率激光系统和核聚变研究 1964年王淦昌独立提出激光聚变倡议,1965年立项开始研究。经几年努力,建成了输出功率10(上标10)瓦的纳秒级激光装置,并于1973年5月首次在低温固氘靶、常温氘化锂靶和氘化聚乙烯上打出中子。1974年研制成功我国第一台多程片状放大器,把激光输出功率提高了10倍,中子产额增加了一个量级。在国际上向心压缩原理解密后,积极跟踪并于1976年研制成六束激光系统,对充气玻壳靶照射,获得了近百倍的体压缩。这一系列的重大突破,使我国的激光聚变研究进入世界先进行列,也为以后长期的持续发展奠定了基础

激光技术的发展与展望

激光技术的发展与展望 "激光"一词是"LASER"的意译。LASER原是Light amplification by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成"莱塞"、"光激射器"、"光受激辐射放大器"等。1964年,钱学森院士提议取名为"激光",既反映了"受激辐射"的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 从1961年中国第一台激光器宣布研制成功至今,在全国激光科研、教学、生产和使用单位共同努力下,我国形成了门类齐全、水平先进、应用广泛的激光科技领域,并在产业化上取得可喜进步,为我国科学技术、国民经济和国防建设作出了积极贡献,在国际上了也争得了一席之地。 一、我国早期激光技术的发展 1957年,王大珩等在长春建立了我国第一所光学专业研究所--中国科学院(长春)光学精密仪器机械研究所(简称"光机所")。在老一辈专家带领下,一批青年科技工作者迅速成长,邓锡铭是其中的突出代表。早在1958年美国物理学家肖洛、汤斯关于激光原理的著名论文发表不久,他便积极倡导开展这项新技术研究,在短时间内凝聚了富有创新精神的中青年研究队伍,提出了大量提高光源亮度、单位色性、相干性的设想和实验方案。1960年世界第一台激光器问世。1961年夏,在王之江主持下,我国第一台红宝石激光器研制成功。此后短短几年内,激光技术迅速发展,产生了一批先进成果。各种类型的固体、气体、半导体和化学激光器相继研制成功。在基础研究和关键技术方面、一系列新概念、新方法和新技术(如腔的Q突变及转镜调Q、行波放大、铼系离子的利用、自由电子振荡辐射等)纷纷提出并获得实施,其中不少具有独创性。 同时,作为具有高亮度、高方向性、高质量等优异特性的新光源,激光很快应用于各技术领域,显示出强大的生命力和竞争力。通信方面,1964年9月用激光演示传送电视图像,1964年11月实现3~30公里的通话。工业方面,1965年5月激光打孔机成功地用于拉丝模打孔生产,获得显著经济效益。医学方面,1965年6月激光视网膜焊接器进行了动物和临床实验。国防方面,1965年12月研制成功激光漫反射测距机(精度为10米/10公里),1966年4月研制出遥控脉冲激光多普勒测速仪。 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 二、重点项目带动激光技术的发展 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所--中国科学院上海光学精密机械研究所(简称"上海光机所")成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的"6403"高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了"文革"十年浩劫,但借助于重点项目的支撑,

激光技术论文:飞秒激光治疗近视技术的应用讲解

激光治疗近视的技术 课程:原子物理与量子力学 学院:国防科技学院 班级:辐射 1003 姓名:高阳 学号:20100578 激光治疗近视技术的应用 [摘要 ]准分子激光治疗近视眼手术经过近二十年的发展,使全球上千万近视眼患者顺利摘掉了眼镜。此项技术经历了 prk 、 ik 、 ek 、 tk 四个发展阶段,目前已经达到了相当高的水平。然而普通激光手术仍有一个关键环节未能得到完善的解决,就是角膜瓣制作环节,而这一环节又是直接关系到激光手术安全性、术后效果的关键环节。直至飞秒激光手术出现,这一激光手术历史遗留问题才得以彻底解决。近视手术史也进入了一个新的时代——全程无刀近视手术时代。本文通过对飞秒激光治疗近视技术的介绍及应用,为广大患者了解飞秒激光手术的特点和优势,提供新的认识。 [关键词 ]激光技术飞秒激光近视 我国目前总近视人口高达 4亿, 青少年近视人口超过 1.5亿,小学、初中、高中和大学生中近视比例分别超过 25%、 50%、 70%和 75%。当前,近视已成为一个公共健康问题。一、近视治疗的方法和现状 矫正近视方法通常有三种:(1镜片矫正:包括框架眼镜、角膜接触镜; (2眼内屈光手术:透明晶体摘除术、有

晶体眼的人工晶体植入术; (3角膜屈光性手术:放射状角膜切开术(rk 、准分子激光切削术(prk 、准分子激光原位角膜磨镶术 lasik(简称 ik 、准分子激光上皮下角膜磨镶术 lasek(简称 ek 、虹膜识别旋转定位 +波前像差引导的准分子激光近视手术 torsion lasik(简称 tk 等。 准分子激光治疗近视是眼科领域一项革命性成果,这项技术从 1986年开始,在理论和实践中不断地摸索前进。到目前为止,在全球范围内已发展到极高的水平,成为一项真正造福于广大近视患者的技术。我国每年有近 90万的近视患者通过准分子激光手术一劳永逸地摘掉了眼镜,治疗后达到了参军、就业、升学、考公务员对视力的要求。 二、近视激光手术治疗存在的问题 近视激光手术在临床应用过程中不断更新升级,从最初的 prk 发展到 lasik 手术,再改良出现 lasek ,其发展速度非常快。 在眼的屈光系统中, 角膜的屈光力占全部屈光力的 70%, 角膜屈光力的轻度改变,能明显影响近视的度数。 prk 及 lasik 两种手术正是通过切削中央角膜,使之变薄而降低其屈光力来达到矫正近视目的的。 prk 多应用于治疗中低度近视,但由于破坏了角膜的正常解剖结构,术后可出现角膜上皮下雾状浑浊、青光眼或高眼压、眩光和回退等并发症。 lasik 可以保持前部角膜组织的正常解剖结构,能够减轻术 后角膜组织愈合反应所引起的上皮下浑浊和屈光回退,预后性较好,术后恢复和稳定性也较好,适合于中高度近视和近视散光的治疗。但 lasik 也可能出现并发症,如感染、欠矫或过矫、角膜穿透、医源性角膜散光、继发性圆锥角膜、角膜瓣不规则、眩光,等等。这些并发症如果及时发现并处理得当,大部分不会留下后遗症,也不会影响疗效。但是有些并发症确实妨碍视力恢复,比如术前近视术后过矫成高度近视;或术前无散光,术后成为高度散光,等等。如果手术致存留的角膜太薄,则无法采用再次手术予以补救。又如,术中角膜穿透或术后继发严重的圆锥角膜,都可能令患者不得不接收角膜移植手术,给患者带来新的麻烦。

中国三大激光产业集群

透析中国三大激光产业集群 导读:目前我国激光产业主要应用于激光加工、医疗等行业,其中科研开发领域占12%,材料加工领域占32%,通讯领域占12%,信息领域占14%,医学领域占20%,测量与其他领域各占9%和1%。 OFweek激光网讯:激光加工(包括激光切割、焊接及表面处理等)是一种先进的生产技术。我国激光加工产业正大踏步地向前迈进,激光这个高科技名词已经由“阳春白雪”变为了真正的社会生产力,“发展高科技,实现产业化”已成为中国激光加工行业的现实。 激光作为新型光源,具有方向性好、亮度高、单色性好及高能量密度等特点。以激光器为基础的激光工业在全球发展发展迅猛,现在已广泛应用于工业生产、通讯、信息处理、医疗卫生、军事、文化教育以及科研等方面。据统计,从高端的光纤到常见的条形码扫描仪,每年和激光相关产品和服务的市场价值高达上万亿美元。 激光产业已形成完整、成熟的产业链分布,上游主要包括激光材料及配套元器件,中游主要为各种激光器及其配套设备,下游则以激光应用产品、消费产品、仪器设备为主。国内激光市场主要包括激光加工设备、光通信器件与设备、激光测量设备、激光器、激光医疗设备、激光元部件等,要应用则在于工业加工和光通信市场,两者占据了近7成的市场份额。 目前我国激光产业主要应用于激光加工、医疗等行业,其中科研开发领域占12%,材料加工领域占32%,通讯领域占12%,信息领域占14%,医学领域占20%,测量与其他领域各占9%和1%。 截至目前,全国共有5个国家级激光技术研究中心,10多个研究机构;有21个省、市生产和销售激光产品,常年有定型产品生产和销售、并形成一定规模的单位有200多家。国内激光行业已形成激光晶体、关键元器件、配套件、激光器、激光系统、应用开发、公共服务平台等环节构成的较完整的产业链。 我国激光加工产业可以分为四个产业带,珠江三角洲、长江三角洲、华中地区和环渤海地区。这四个产业带侧重点不同,珠三角以中小功率激光加工机为主,长三角以大功率激光切割焊接设备为主,环渤海以大功率激光熔覆和全固态激光为主,以武汉为首的华中地区则覆盖了大、中、小激光加工设备。 随着中国制造业转型升级,一些老工业基地及小企业基地,开始向高端制造领域转型。例如温州激光产业集群及鞍山大力发展激光产业等。 一、2020年武汉将成全球激光技术创新和产业发展集聚地

中国激光技术发展回顾与展望

中国激光技术发展回顾与展望 名称研制成功时间研制人 He-Ne激光器1963年7月邓锡铭等 掺钕玻璃激光器1963年6月干福熹等 GaAs同质结半导体激光器1963年12月王守武等 脉冲Ar+激光器1964年10月万重怡等 CO2分子激光器1965年9月王润文等 CH3I化学激光器1966年3月邓锡铭等 YAG激光器1966年7月屈乾华等 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所——中国科学院上海光学精密机械研究所(简称“上海光机所”)成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的“6403”高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了“文革”十年浩劫,但借助于重点项目的支撑,仍艰难地生存了下来并取得可贵的进展。 1、“6403”高能钕玻璃激光系统 1964年启动,最后从技术上判定热效应是根本性技术障碍,于1976年下马。这一项目对发展高能激光技术有历史贡献是不可忽视的,它使我国激光技术的水平上了一个台阶。其成果主要表现在:(1)建成了具有工程规模的大口径(120毫米)振荡—放大型激光系统,最大输出能量达32万焦耳;改善光束质量后达3万焦耳。(2)实现了系统技术集成,成功地进行了打靶实验,室内10米处击穿80毫米铝靶,室外2公里距离击穿0.2毫米铝耙,并系统地研究了强激光辐射的生物效应和材料破坏机理。(3)第一次揭示了强光对激光系统本身的光损伤现象和机制。(4 )第一次深入和理解激光光束质量的重要性和物理内涵,采用了一系列提高光束质量的创新性技术,如万焦耳级非稳腔激光器、片状激光器、振荡—扫瞄放大式激光系统、尖劈法光束质量诊断等。(5)激光元器件和支撑技术有了突破性提高,如低吸收高均匀性钕玻璃熔炼工艺、高能脉冲氙气、高强度介质膜、大口径(1.2米)光学精密加工等。(6)培养和造就了一批技术骨干队伍。 2、高功率激光系统和核聚变研究 1964年王淦昌独立提出激光聚变倡议,1965年立项开始研究。经几年努力,建成了输出功率10(上标10)瓦的纳秒级激光装置,并于1973年5月首次在低温固氘靶、常温氘化锂靶和氘化聚乙烯上打出中子。1974年研制成功我国第一台多程片状放大器,把激光输出功率提高了10倍,中子产额增加了一个量级。在国际上向心压缩原理解密后,积极跟踪并于1976年研制成六束激光系统,对充气玻壳靶照射,获得了近百倍的体压缩。这一系列的重大突破,使我国的激光聚变研究进入世界先进行列,也为以后长期的持续发展奠定了基础 3、军用激光研究 1966年12月,国防科委主持召开了军用激光规划会,48个单位130余人参加,会议制定了包括含15种激光整机、9种支撑配套技术的发展规划。虽未正式批准生效,但仍起了有益的推动作用。此后的几年内,这一领域涌现了一批重要成果。例如:(1)靶场激光距技术初试成功:采用重复频率为20赫兹的YAG调Q激光器,测距精度优于2米,最远测量距离达660公里,加在经纬仪上,可实现对飞行目标的单站定轨。这一成果为以后完成洲际导弹再入段轨迹测量创造了必要条件。(2)红宝石激光人造卫星测

飞秒激光术后感言

不得不说24岁的我已经有了12年戴眼镜的历史,眼镜戴久了眼镜会变成鱼眼,眼睛无神,戴上眼镜会被人起外号“四眼妹”“二饼”,吃热饭时,戴着眼镜眼前确是白茫茫的一片,摘掉眼镜之后,远处的建筑物看不清,远处的路人性别也分不清,红绿灯也会晕染成一大片,近视眼除了给我生活上造成不便之外,也使我变的特别自卑,不自信,但是从来没有想过自己会和眼镜真正的说再见。 去年12月份报名参加了屈光手术爱心公益活动,就在1月16日大奖砸到了我的头上,来到医院做了系统的检查,非常幸运的是,我各方面都适合全飞秒激光手术,虽然是免费的,但是心里还是不自觉的对于这次手术的安全性做了一次估量,从里宣传资料和网上查询了解到全飞秒激光手术和其他近视眼手术相比更加精确,更加安全,更加舒适,因此我也更加信任这次手术。 手术当日从进手术室到手术结束,大概不到十分钟的时间,术中医生一直让我盯着前方的绿点看,做完右眼还鼓励我说做的非常完美,别紧张,放松,在那么轻松的环境下不知不觉的做完了手术,术后视力恢复的特别好,坚持滴眼药水,现在左右眼都达到了1.0以上。全飞秒激光手术搬开了我在生活中的“绊脚石”,现在夜间醒来不用戴眼镜就能看清周围的事物,早晨起来洗漱的时候不用趴到镜子上去看自己了,做饭时不用担心自己眼前白茫茫一片了,每当早晨第一缕阳光照到房间时我比以前更敏锐的感觉到阳光的灿烂,甩掉眼镜后的我变的更加有自信,偷偷的跑到镜子跟前会自恋一翻,自言自语的说鼻梁这次不会再委屈你了,甚至会到视力表之前牛哄哄的告诉家人我

现在都能看到倒数第三行了。 现在的我还会不由自主的扶一下眼镜框,反应过来之后心中会偷偷的窃喜,当我把全飞秒激光手术给我生活带来的改变分享到了QQ空间时,朋友同学们在为了我的改变高兴的同时都在问我恢复的效果,我也一一给他们推荐了全飞秒激光手术,我希望身边的每一位朋友同学都能像我一样能够通过全飞秒激光手术挣脱眼镜,让眼睛重获自由,最后感谢公益活动给我的这次机会,让我更加清晰的去看清我眼中的世界。

激光技术的现状及发展前景论文

激光切割技术的现状与发展 班级:13光信1 姓名:邱丽芬学号:1311122107 {摘要}:介绍了我国国内激光切割设备的现状和激光切割技术的发展前景,简要介绍激光切割原理,提出了该技术的发展目标及需要解决的问题。 {关键词}:激光切割设备国内市场激光切割机现状发展前景 引言 近年来,激光切割加工技术发展很快,国际上每年都以20%~30%的速度增长。我国1985 年以来,更以每年25 %以上的速度增长。由于我国激光工业基础较差,激光加工技术的应用尚不普遍,激光加工整体水平与先进国家相比仍有较大差距,相信随着激光加工技术的不断进步,这些障碍和不足会得到解决。激光切割技术必将成为21 世纪不可缺少的重要的钣金加工手段。激光切割加工广阔的应用市场,加上现代科学技术的迅猛发展,使得国内外科技工作者对激光切割加工技术进行不断探入的研究,推动着激光切割加工技术不断地向前发展。 一.我国激光切割设备与现状 全球激光制造技术发展飞速,我国与国际激光技术水平的差距有所增大,高端的激光加工成套装备几乎全部依赖进口,致使国外激光制造装备在我国市场的占有率高达70%。预计未来10年内,我国对这些高性能激光切割系统的市场需求量将达到100亿元。如此迫切和巨大的市场需求反应出激光加工的手段已经覆盖到国民经济各个重要领域,同时也影响着国防、航空航天等关键技术的突破,我们不仅仅是解决目前国内该产品的空白,同时也旨在解决激光加工领域多层面技术核心问题,如激光数控、激光机床新型结构、高质量激光加工的技术瓶颈等。 从中小功率激光切割设备取代传统加工工艺的优势来分析,与传统刀具机床设备相比,激光设备采用无接触的热加工方式,具有极高的能量聚集性、光斑细小、热扩散区少、个性化加工、加工品质高、无“刀具”磨损等优势,激光切口光滑无飞边,一些柔性材料自动收口,无变形,加工图形可通过计算机随意设计和输出,无需繁杂的刀模设计和制作。

激光技术的发展历史

73 2006 NO.9&10 记录媒体技术激 光的发明是20世纪中期一项划时代的成就,对人类社会文明产生了极其深远的影响。人们把 激光和原子能、半导体、计算机列在一起,称为20世纪的“新四大发明”。激光的出现不但引起了光学革命性的发展,冲击了整个物理学,并且对其它学科如化学、生物学和技术及应用学科如电机工程学、材料科学、医学等都产生了巨大的影响。像蒸汽机、发电机和电动机、晶体管、计算机这些创新一样,激光是一项通用技术,它提供了可以在大量实际领域应用的技术能力。对光盘存储而言,激光的发明是光盘存储技术必不可少的基础,它为光盘存储提供了一个有足够功率并且能够汇聚成很小光斑(微米级或亚微米级)的光源。可以说,没有激光的发明,就没有后来的光盘的发明。本文主要为光盘技术人员介绍激光技术的发展历史和趋势。 一、激光的发明和发展 所谓激光就是受激发射的光,是被其它辐射感应而激发的辐射。激光的英文名词为Laser ,是Light Amplification by Stimulated Emission of Radiation 的词首字母构成的新词,其原意是受激辐射光放大器。早期在我国曾被翻译成“莱塞”、“雷射”、“光激射器”、“光受激辐射放大器”等。直到1964年,由钱学森院士提议取名为“激光”,它既反映了“受激辐射”的科学内涵,又表明了它是一种很强烈的新光源。钱学森院士的提议得到国内学术界的一致认同,在中国大陆激光这个新名词就一直沿用至今。 现在我们知道,物质的发光过程有两种:一种称为自发辐射,另一种称为受激辐射。自发辐射是在没有外来光子情况下,原子自发地、独立地从高能级E 2向低能级E 1的跃迁。自发辐射是随机过程,跃迁时发出的光在相位、偏振态和传播方向上都彼此无关。受激辐射是处于高能级E 2的原子,在受到能量为hv = E 2-E 1的外来光子的激励时,跃迁到低能级E 1,并辐射一个与外来光子的频率、相位、振动方向和传播方向都相同的光子。 1916年,爱因斯坦根据物质发光和吸收必须符合能量守恒的基本原则,预言除了大量的自发辐射以外还必然存在着少量的受激辐射,并且这种受激辐射还 激光技术的发展历史 ◇顾 颖 会进一步引发同类的受激辐射,因此可以获得受激辐射被增强的效应。爱因斯坦的论断为激光的发明提供了理论基础。 图1 自发辐射和受激辐射 图2 爱因斯坦 此后,科学家们多次企图在原子发光实验中验证受激辐射的存在,但是要从大量的自发辐射中区分出只含万分之几的受激辐射确实是十分困难的,所以始终未能获得成功。 第二次世界大战时期,由于军事上雷达技术的需要,微波辐射和分子光谱学得到迅速发展,研究前沿向更短的波长领域推进,以达到更高分辨率的目标。战争结束后,美国军方对毫米级波谱学的研究工作保持着强烈的兴趣,因为其方便的部件可以用于减少导弹的重量、设计安装在坦克和潜水艇上的轻量级短波雷达、以及用于提高短波通讯的安全性。科学家们在军方的资助下能够利用战后剩余的微波设备继续微波辐射研究。1951年,美国哥伦比亚大学教授汤斯(Charles Townes)开始了“受激辐射微波放大器”(Microwave Amplification by Stimulated Emission of Radiation-MASER ,译作脉塞)的研究。1954年,汤斯和他的学生古尔德(Gordon Gou)合作制成了第一台脉塞,他成功地隔离了激发态氨(Ammonia)分子并实现了粒子数反转(上能级分子数分布大于下能级分子),把一束受激的氨分子束瞄准进入谐振腔,使腔内激发态氨分子受激跃迁产生24千兆赫频率的辐射信号。第一个脉塞辐射的波长略大于1厘米,功率只有几十毫微 瓦,但是能量集中在很窄的谱线内。同年,苏联科学

飞秒激光技术

飞秒激光技术 金属的氧化腐蚀一度是件让人头疼的事。如何让金属不在岁月中失去光泽?飞秒激光技术从光学手段入手,不但让金属免遭腐蚀,还能将其变成神奇的超疏水材料。 水是生命之源,哪怕在一些只能算作潮湿的地方,细菌等微生物都能够得以生存或成长;同时水也是许多化学反应所需的基本条件,比如因水的存在,金属会以不被察觉的速度氧化。 不过在许多地方,人们并不希望金属氧化或菌落滋生——比如室外的天线、飞机的机翼、煮饭的锅……人们期待将一些疏水、超疏水材料用在这些地方。 其实超疏水材料在我们身边比比皆是:“出淤泥而不染,濯清涟而不妖”的荷花、荷叶就是典型的超疏水材料,许多昆虫的足上也有超疏水材料,比如大名鼎鼎的水黾,它们正是靠着“不沾水的腿”,在水面行走如飞。 在疏水材料家族中,鲜见金属的身影。不过,美国罗切斯特大学光学院的物理学家郭春雷(音译)与同事最新的研究发现,利用一项叫作飞秒激光的技术,他们能够把金属变成比荷花还要疏水的“极疏水材料”。疏水效果之强,以至于水滴滴在金属表面不仅不会散开,甚至会不断弹起。 飞秒激光让金属获超疏水“技能” 这项听来让人难以置信的研究刊发于美国物理联合会1月20日出版的《应用物理杂志》上。郭春雷研究团队使用超高能且超短的激光脉冲来改变金属的表面,持续时间为毫微微秒(即飞秒)量级。他们用这样的超短飞秒脉冲轰击铂、钛、铜3种样品,获得了上述新型的表面材料。 这种工艺的优势在于“激光在金属上创造的结构本质上是材料表面的一部分。”郭春雷在近期的新闻报道中说,这意味着它们不会被擦掉,并且正是这些结构使得金属具有超级疏水性能。 据研究人员介绍,超能激光脉冲在金属表面刻蚀出大量肉眼不及的诸如洼坑、小珠状和细纹等“痕迹”,这些痕迹形成了密集分布且高低不平的纳米微结构。这种纳米微结构从根本上改变了金属表面的光学性质和润湿性质。 特氟龙是一种常规疏水材料,常作为“不粘锅”涂层的不二之选。但飞秒激光处理过的金属材料远比特氟龙光滑。水滴从特氟龙涂层表面滚落,需要在水滴滚落之前将这个表面倾斜到70度,而经飞秒激光轰击过的金属,只需要倾斜不到5度甚至不必倾斜,水滴就能从表面滚落。

激光加工技术的现状及国内外发展趋势

激光加工技术的现状及国内外发展趋势——激光英才网 作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。 激光加工是国外激光应用中最大的项目,也是对传统产业改造的重要手段,主要是kW 级到10kW级CO2激光器和百瓦到千瓦级Y AG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理等。 激光加工应用领域中,CO2激光器以切割和焊接应用最广,分别占到70%和20%,表面处理则不到10%。而Y AG激光器的应用是以焊接、标记(50%)和切割(15%)为主。在美国和欧洲CO2激光器占到了70~80%。我国激光加工中以切割为主的占10%,其中98%以上的CO2激光器,功率在1.5kW~2kW范围内,而以热处理为主的约占15%,大多数是进行激光处理汽车发动机的汽缸套。这项技术的经济性和社会效益都很高,故有很大的市场前景。 在汽车工业中,激光加工技术充分发挥了其先进、快速、灵活地加工特点。如在汽车样机和小批量生产中大量使用三维激光切割机,不仅节省了样板及工装设备,还大大缩短了生产准备周期;激光束在高硬度材料和复杂而弯曲的表面打小孔,速度快而不产生破损;激光焊接在汽车工业中已成为标准工艺,日本Toyota已将激光用于车身面板的焊接,将不同厚度和不同表面涂敷的金属板焊接在一起,然后再进行冲压。虽然激光热处理在国外不如焊接和切割普遍,但在汽车工业中仍应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理。在工业发达国家,激光加工技术和计算机数控技术及柔性制造技术相结合,派生出激光快速成形技术。该项技术不仅可以快速制造模型,而且还可以直接由金属粉末熔融,制造出金属模具。 到了80年代,Y AG激光器在焊接、切割、打孔和标记等方面发挥了越来越大作用。通常认为Y AG激光器切割可以得到好的切割质量和高的切割精度,但在切割速度上受到限制。随着Y AG激光器输出功率和光束质量的提高而被突破。Y AG激光器已开始挤进kw级CO2激光器切割市场。Y AG激光器特别适合焊接不允许热变形和焊接污染的微型器件,如锂电池、心脏起搏器、密封继电器等。Y AG激光器打孔已发展成为最大的激光加工应用。 目前,国外激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打

飞秒激光超微细加工技术简介

飞秒激光超微细加工技术简介 摘要:本文首先简单地介绍了飞秒激光和超微细加工技术飞秒激光加工技术的技术背景,然后较为详细地介绍了飞秒激光超微细加 工技术及其特点与应用,结合飞秒激光超微细加工技术的特点 将其与其它的微机械加工技术进行了比较,最后分析飞秒激光 超微细加工技术的发展趋势和应用前景。 关键词:飞秒激光超微细加工技术飞秒激光超微细加工 Femtosecond laser micro machining technology Introduction Abstract: This paper first briefly describes the technical background of the femtosecond laser and micro machining technology and femtosecond laser micro machining technology, then a more detailed description the femtosecond laser micro machining technology and its features and applications, combined with the femtosecond laser micro machining technology will be characterized by with other micro-machining technology, the final analysis of the femtosecond laser micro machining technology trends and application prospects. Keywords:femtosecond laser micro machining technology femtosecond laser ultra-fine processing 0引言 激光(Laser,即Light Amplification by stimulated Emission of Radiation的缩写),意思是利用辐射受激得到的加强光,激光加工(Laser Beam Machining)就是把激光的方向性好和输出功率高的特性应用到材料的加工领域中去。【1】用聚焦的方法,把激光束汇聚在面积很小的一个区域,从而在该区域提供足够的热量使该区域的材料荣华或者气化从而达到机械加工的目的,显然激光加工是一种非接触式的加工,可以用于各种材料的微细加工。知道了什么是激光加工,那么飞秒激光超微细加工和普通的激光加工又有什么区别呢?

激光技术简介及发展历程介绍

激光技术简介及发展历程介绍 世界上第一台激光器诞生于1960年,我国于1961年研制出第一台激光器,40多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等等。这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。 一、激光技术应用简介 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行 切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为: 1.冠钧激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。 2.冠钧激光加工工艺。包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加工工艺。 激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。 激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器。

激光技术在日常生活中的应用

激光技术在日常生活中的应用 ?世界上第一台激光器诞生于1960年,我国于1961年研制出第一台激光器,40多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等等。这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。 一、激光技术应用简介 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为: 1.激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。 2.激光加工工艺。包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加 工工艺。 激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。 激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器。 激光打标:在各种材料和几乎所有行业均得到广泛应用,目前使用的激光器有YAG 激光器、CO2激光器和半导体泵浦激光器。 激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打孔的迅速发展,主要体现在打孔用YAG激光器的平均输出功率已由5年前的400w 提高到了800w至1000w。国内目前比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉丝模的生产及钟表和仪表的宝石轴承、飞机叶片、多层印刷线路板等行业的生产中。目前使用的激光器多以YAG激光器、CO2激光器为主,也有一些准分子激光器、同位素激光器和半导体泵浦激光器。 ?激光热处理:在汽车工业中应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理,同时在航空航天、机床行业和其它机械行业也应用广泛。我国的激光热处理应用远比国外广泛得多。目前使用的激光器多以YAG激光器,CO2激光器为主。

飞秒激光简介

飞秒激光简介 ●飞秒激光和传统准分子的区别 ●飞秒激光的六大优势 ●飞秒激光优越性 ●飞秒激光安全性 ●飞秒激光看得见的优势 ●飞秒激光昂贵的原因 飞秒激光和传统准分子的区别 飞秒激光被视为神秘之光,是一种以脉冲形式运转的激光,持续时间非常短。只有几个飞秒(一飞秒就是10的负15次方秒,也就是1/1000万亿秒),它比利用电子学方法所获得的最短脉冲要短几千倍,是人类目前在实验条件下所能获得的最短脉冲。 飞秒激光完全是人类创造的奇迹。它能聚焦到比头发的直径还要小的空间区域,用来进行微精细加工。用飞秒激光进行切割,几乎没有热传递。美国劳伦斯利弗莫尔国家实验室的研究人员发现,这种激光束能安全地切割高爆炸药。生物医学专家已将它作为超精密外科手术刀,用于视力矫正,既能减少组织损伤又不会留下后遗症,甚至可对单个细胞动精密手术或者用于基因疗法。https://www.360docs.net/doc/315404622.html,/ 让我们再来看看准分子激光是怎么工作的。准分子激光与生物组织作用时发生的不是热效应,而是光化反应。 所谓光化反应,是指组织受到远紫外光激光作用时,会断裂分子之间的结合键,将组织直接分离成挥发性的碎片而消散无踪。对周围组织则没有影响,达到对角膜的重塑目的,能精确消融人眼角膜预计去除的部分空间精确度达细胞水平,不损伤周围组织。它的波长短,不会穿透人的眼角膜,因此对于眼球内部的组织没有任何不良的作用。 常用的准分子激光术式有LASIK、LASEK、超薄LASIK和飞秒激光(这些术式均可加波前像差和虹膜定位技术)。LASIK、和超薄LASIK都是用板层刀制作角膜瓣,LASEK是用酒精制作角膜瓣,而飞秒激光是通过激光来完成对角膜瓣的制作,所以更精确更精准,术后的视觉质量会更好。

飞秒激光器

飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲时域宽度是如此的短,目前已经达到了4fs以内。1飞秒(fs),即10-15s ,仅仅是1千万亿分之一秒,如果将10fs作为几何平均来衡量宇宙,其寿命仅不过1min而已;飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量级,其聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高。飞秒激光完全是人类创造的奇迹。 近二十年来,从染料激光器到克尔透镜锁模的钛宝石飞秒激光器,以及后来的二极管泵浦的全固态飞秒激光器和飞秒光纤激光器,虽然说脉冲宽度和能量的记录在不断刷新,但最大进展莫过于获得超飞秒脉冲变得轻而易举了。桑迪亚国家实验室的R.Trebino说:“过去1 0年中,(超快)技术已有显著改善, 钛蓝宝石激光器和现在的光纤激光器正在使这种(飞秒) 激光器的运转变得简洁和稳定。这种激光器现在人们已可买到, 而10年前, 你却必须自己建立。”比如,著名的飞秒激光系统生产商美国Clark-MXR公司将产生高功率飞秒脉冲的所有部件全部集成到一个箱子里,采用掺铒光纤飞秒激光器作为种子源,加上无需调整(NO Tweak)的特殊设计,形成了世界上独一无二,超稳定、超紧凑的CPA2000系列钛宝石啁啾脉冲放大系统。这种商品化的系统不需要飞秒专家来操作,完全可以广泛应用于科研和工业上的许多领域里。 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。飞秒脉冲激光的最直接应用是人们利用它作为光源, 形成多种时间分辨光谱技术和泵浦/探测技术。它的发展直接带动物理、化学、生物、材料与信息科学的研究进入微观超快过程领域, 并开创了一些全新的研究领域, 如飞秒化学、量子控制化学、半导体相干光谱等。飞秒脉冲激光与纳米显微术的结合, 使人们可以研究半导体的纳米结构(量子线、量子

中国激光行业SWOT分析

中国激光行业SWOT分析 光谷激光连锁—蔡光斌目录: 前言 一、行业现状 二、目前存在的问题 三、我们的机遇与挑战 四、策略 前言 激光加工是一门21世纪发展极快的制造新技术,各国政府和工业部门都非常重视激光器和激光加工技术设备的发展。中国加入WTO以来国内正在迅速形成的“全球制造基地”,形成日益增长的巨大的激光加工应用市场和国际竞争新格局,中国的激光器和激光加工技术产业必将有一个大的发展。国内外投资者和激光业者正在抢滩这一市场。国内外从事激光器和激光加工技术系统研发、生产和经营的企业正面临极好机遇和挑战。 一、行业现状: 1、激光行业特点 A激光器市场的发展很大程度上依赖于某个特别应用市场的健康发展。80%的激光器销售主要集中在三大阵营:通信、数据存储和材

料加工。 B激光市场细分亮点:光纤激光器、二极管激光器、绿光激光器、锁模(超快)激光器以及用于制造太阳能电池的激光器成为市场中增长最为强劲 C激光器发展趋势:全固态激光器将取代传统激光器,并不断开拓新的重大应用领域。其方向为:微/小/中型器件沿着多样化、智能化、产业化方向发展,大功率器件将向高平均功率/高光束质量发展,而战略性应用的高能全固态激光器将得到特别加强而开发出更多新技术,如目前正待发展的热容运转技术和功率合成技术。;大功率半导体激光器及其阵列将成为新型高能激光源 2、国际激光市场特点: A激光市场几乎跟经济大环境同步衰退,市场的下滑引发市场份额的急剧变化。2009年全球经济经历了一场金融海啸的大洗礼,激光行业也未能幸免。2009年全球激光器市场的实际销售额为53.2亿美元,比2008年70.1亿美元的总销售额下降了24.1%,退回到了2003年的销售水平。主要原因是激光设备大多应用到工业制造领域,而制造业领域的整体衰退大大影响了激光厂商的业绩。 B世界激光器市场可划分为三大区域:美国(包括北美)占55% ,欧州占22%,日本及太平洋地区占23%。在世界激光市场上日本在光电子技术方面占首位,美国占第二位;在激光医疗及激光检测方面则美国占首位;而在激光材料加工设备方面则是德国占首位。相干

相关文档
最新文档