(61)MICROBIAL LIMIT TESTS《微生物限度测定》USP31

(61)MICROBIAL LIMIT TESTS《微生物限度测定》USP31
(61)MICROBIAL LIMIT TESTS《微生物限度测定》USP31

?61? MICROBIAL LIMIT TESTS

This chapter provides tests for the estimation of the number of viable aerobic microorganisms present and for freedom from designated microbial species in pharmaceutical articles of all kinds, from raw materials to the finished forms. An automated method may be substituted for the tests presented here, provided it has been properly validated as giving equivalent or better results. In preparing for and in applying the tests, observe aseptic precautions in handling the specimens. Unless otherwise directed, where the procedure specifies simply ―incubate,‖ hold the container in air that is thermostatically controlled at

a temperature between 30and 35, for a period of 24 to 48 hours. The term ―growth‖ is used in a special sense herein, i.e., to designate the presence and presumed proliferation of viable microorganisms.

PREPARATORY TESTING

The validity of the results of the tests set forth in this chapter rests largely upon the adequacy of a demonstration that the test specimens to which they are applied do not, of themselves, inhibit the multiplication, under the test conditions, of microorganisms that may be present. Therefore, preparatory to conducting the tests on a regular basis and as circumstances require subsequently, inoculate diluted specimens of the material to be tested with separate viable cultures of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella. This can be done by adding 1 mL of not less than 10-3 dilution of a 24-hour broth culture of the microorganism to the first dilution (in pH 7.2 Phosphate Buffer, Fluid Soybean–Casein Digest Medium, or Fluid Lactose Medium) of the test material and following the test procedure. Failure of the organism(s) to grow in the relevant medium invalidates that portion of the examination and necessitates a modification of the procedure by (1) an increase in the volume of diluent, the quantity of test material remaining the same, or by (2) the incorporation of a sufficient quantity

of suitable inactivating agent(s) in the diluents, or by (3) an appropriate combination of modifications (1) and (2) so as to permit growth of the inocula. The following are examples of ingredients and their concentrations that may be added to the culture medium to neutralize inhibitory substances present in the sample: soy lecithin, 0.5%; and polysorbate 20, 4.0%. Alternatively, repeat the test as described in the preceding paragraph, using Fluid Casein Digest–Soy Lecithin–Polysorbate 20 Medium to demonstrate neutralization of preservatives or other antimicrobial agents in the test material. Where inhibitory substances are contained in the product and the latter is soluble, a suitable, validated adaptation of a procedure set forth in the section Membrane Filtration under Test for Sterility of the Product to be Examined under Sterility Tests ?71?, may be used.

If in spite of the incorporation of suitable inactivating agents and a substantial increase in the volume of diluent, it is still not possible to recover the viable cultures described above and where the article is not suitable for employment of membrane filtration, it can be assumed that the failure to isolate the inoculated organism is attributable to the bactericidal activity of the product. This information serves to indicate that the article is not likely to be contaminated with the given species of microorganism. Monitoring should be continued in order to establish the spectrum of inhibition and bactericidal activity of the article.

BUFFER SOLUTION AND MEDIA

Culture media may be prepared as follows, or dehydrated culture media may be used provided that, when reconstituted as directed by the manufacturer or distributor, they have similar ingredients and/or yield media comparable to those obtained from the formulas given herein.

In preparing media by the formulas set forth herein, dissolve the soluble solids in the water, using heat, if necessary, to effect complete solution, and add solutions of hydrochloric acid or sodium hydroxide in quantities sufficient to

yield the desired pH in the medium when it is ready for use. Determine the pH

at 25 ± 2.

Where agar is called for in a formula, use agar that has a moisture content of not more than 15%. Where water is called for in a formula, use Purified Water.

PH 7.2 Phosphate Buffer

Stock Solution— Dissolve 34 g of monobasic potassium phosphate in about 500 mL of water contained in a 1000-mL volumetric flask. Adjust to pH 7.2 ±0.1 by the addition of sodium hydroxide TS (about 175 mL), add water to volume, and mix. Dispense and sterilize. Store under refrigeration.

For use, dilute the Stock Solution with water in the ratio of 1 to 800, and sterilize.

Media

Unless otherwise indicated, the media should be sterilized by heating in an autoclave (see Steam Sterilization under Sterilization ?1211?), the exposure time depending on the volume to be sterilized.

I. Fluid Casein Digest–Soy Lecithin–Polysorbate 20 Medium

Dissolve the pancreatic digest of casein and soy lecithin in 960 mL of water,

heating in a water bath at 48to 50for about 30 minutes to effect solution. Add 40 mL of polysorbate 20. Mix, and dispense as desired.

II. Soybean–Casein Digest Agar Medium

pH after sterilization: 7.3 ± 0.2.

III. Fluid Soybean–Casein Digest Medium

IV. Mannitol–Salt Agar Medium

Mix, then heat with frequent agitation, and boil for 1 minute to effect solution. pH after sterilization: 7.4 ± 0.2.

V. Baird–Parker Agar Medium

Heat with frequent agitation, and boil for 1 minute. Sterilize, cool to between

45and 50, and add 10 mL of sterile potassium tellurite solution (1 in 100) and 50 mL of egg-yolk emulsion. Mix intimately but gently, and pour into plates. (Prepare the egg-yolk emulsion by disinfecting the surface of whole shell eggs, aseptically cracking the eggs, and separating out intact yolks into a sterile graduated cylinder. Add sterile saline TS to obtain a 3 to 7 ratio of egg yolk to saline. Add to a sterile blender cup, and mix at high speed for 5 seconds.)

pH after sterilization: 6.8 ± 0.2.

VI. Vogel–Johnson Agar Medium

Boil the solution of solids for 1 minute. Sterilize, cool to between 45and 50, and add 20 mL of sterile potassium tellurite solution (1 in 100).

pH after sterilization: 7.2 ± 0.2.

VII. Cetrimide Agar Medium

Dissolve all solid components in the water, and add the glycerin. Heat, with frequent agitation, and boil for 1 minute to effect solution.

pH after sterilization: 7.2 ± 0.2.

VIII. Pseudomonas Agar Medium for Detection of Fluorescin

Dissolve the solid components in the water before adding the glycerin. Heat, with frequent agitation, and boil for 1 minute to effect solution.

pH after sterilization: 7.2 ± 0.2.

IX. Pseudomonas Agar Medium for Detection of Pyocyanin

Dissolve the solid components in the water before adding the glycerin. Heat, with frequent agitation, and boil for 1 minute to effect solution.

pH after sterilization: 7.2 ± 0.2.

X. Fluid Lactose Medium

Cool as quickly as possible after sterilization.

pH after sterilization: 6.9 ± 0.2.

XI. Fluid Selenite–Cystine Medium

Final pH: 7.0 ± 0.2.

Mix, and heat to effect solution. Heat in flowing steam for 15 minutes. Do not sterilize.

XII. Fluid Tetrathionate Medium

Heat the solution of solids to boiling. On the day of use, add a solution prepared by dissolving 5 g of potassium iodide and 6 g of iodine in 20 mL of water. Then add 10 mL of a solution of brilliant green (1 in 1000), and mix. Do not heat the medium after adding the brilliant green solution.

XIII. Brilliant Green Agar Medium

Boil the solution of solids for 1 minute. Sterilize just prior to use, melt the medium, pour into petri dishes, and allow to cool.

pH after sterilization: 6.9 ± 0.2.

XIV. Xylose–Lysine–Desoxycholate Agar Medium

Final pH: 7.4 ± 0.2.

Heat the mixture of solids and water, with swirling, just to the boiling point. Do not overheat or sterilize. Transfer at once to a water bath maintained at about 50, and pour into plates as soon as the medium has cooled.

XV. Bismuth Sulfite Agar Medium

Final pH: 7.6 ± 0.2.

Heat the mixture of solids and water, with swirling, just to the boiling point. Do not overheat or sterilize. Transfer at once to a water bath maintained at about 50, and pour into plates as soon as the medium has cooled.

XVI. Triple Sugar–Iron–Agar Medium

pH after sterilization: 7.3 ± 0.2.

XVII. MacConkey Agar Medium

Boil the mixture of solids and water for 1 minute to effect solution.

pH after sterilization: 7.1 ± 0.2.

XVIII. Levine Eosin–Methylene Blue Agar Medium

Dissolve the pancreatic digest of gelatin, the dibasic potassium phosphate, and the agar in the water, with warming, and allow to cool. Just prior to use, liquefy the gelled agar solution, add the remaining ingredients, as solutions, in the following amounts, and mix: for each 100 mL of the liquefied agar solution—5 mL of lactose solution (1 in 5), 2 mL of the eosin Y solution (1 in 50), and 2 mL of methylene blue solution (1 in 300). The finished medium may not be clear.

pH after sterilization: 7.1 ± 0.2.

XIX. Sabouraud Dextrose Agar Medium

Mix, and boil to effect solution.

pH after sterilization: 5.6 ± 0.2.

XX. Potato Dextrose Agar Medium

Dissolve by heating, and sterilize.

pH after sterilization: 5.6 ± 0.2.

For use, just prior to pouring the plates, adjust the melted and cooled to 45 medium with sterile tartaric acid solution (1 in 10) to a pH of 3.5 ± 0.1. Do not reheat the pH 3.5 medium.

SAMPLING

Provide separate 10-mL or 10-g specimens for each of the tests called for in the individual monograph.

PROCEDURE

Prepare the specimen to be tested by treatment that is appropriate to its physical characteristics and that does not alter the number and kind of microorganisms originally present, in order to obtain a solution or suspension of all or part of it in a form suitable for the test procedure(s) to be carried out.

For a solid that dissolves to an appreciable extent but not completely, reduce the substance to a moderately fine powder, suspend it in the vehicle specified, and proceed as directed under Total Aerobic Microbial Count, and under Test for Staphylococcus aureus and Pseudomonas aeruginosa and Test for Salmonella species and Escherichia coli.

For a fluid specimen that consists of a true solution, or a suspension in water or a hydroalcoholic vehicle containing less than 30 percent of alcohol, and for a solid that dissolves readily and practically completely in 90 mL of pH 7.2 Phosphate Buffer or the media specified, proceed as directed under Total Aerobic Microbial Count, and under Test for Staphylococcus aureus and Pseudomonas aeruginosa and Test for Salmonella species and Escherichia coli.

For water-immiscible fluids, ointments, creams, and waxes, prepare a suspension with the aid of a minimal quantity of a suitable, sterile emulsifying agent (such as one of the polysorbates), using a mechanical blender and

warming to a temperature not exceeding 45, if necessary, and proceed with the suspension as directed under Total Aerobic Microbial Count, and under Test for Staphylococcus aureus and Pseudomonas aeruginosa and Test for Salmonella species and Escherichia coli.

For a fluid specimen in aerosol form, chill the container in an alcohol-dry ice mixture for approximately 1 hour, cut open the container, allow it to reach room temperature, permit the propellant to escape, or warm to drive off the propellant if feasible, and transfer the quantity of test material required for the procedures specified in one of the two preceding paragraphs, as appropriate. Where 10.0 g or 10.0 mL of the specimen, whichever is applicable, cannot be obtained from 10 containers in aerosol form, transfer the entire contents from 10 chilled containers to the culture medium, permit the propellant to escape, and proceed with the test on the residues. If the results of the test are

inconclusive or doubtful, repeat the test with a specimen from 20 more containers.

Total Aerobic Microbial Count

For specimens that are sufficiently soluble or translucent to permit use of the Plate Method, use that method; otherwise, use the Multiple-Tube Method. With either method, first dissolve or suspend 10.0 g of the specimen if it is a solid, or 10 mL, accurately measured, if the specimen is a liquid, in pH 7.2 Phosphate Buffer, Fluid Soybean–Casein Digest Medium, or Fluid Casein Digest–Soy Lecithin-Polysorbate 20 Medium to make 100 mL. For viscous specimens that cannot be pipeted at this initial 1:10 dilution, dilute the specimen until a suspension is obtained, i.e., 1:50 or 1:100, etc., that can be pipeted. Perform the test for absence of inhibitory (antimicrobial) properties as described under Preparatory Testing before the determination of Total Aerobic Microbial Count. Add the specimen to the medium not more than 1 hour after preparing the appropriate dilutions for inoculation.

PLATE METHOD

Dilute further, if necessary, the fluid so that 1 mL will be expected to yield between 30 and 300 colonies. Pipet 1 mL of the final dilution onto each of two sterile petri dishes. Promptly add to each dish 15 to 20 mL of Soybean–Casein Digest Agar Medium that previously has been melted and cooled to

approximately 45. Cover the petri dishes, mix the sample with the agar by tilting or rotating the dishes, and allow the contents to solidify at room temperature. Invert the petri dishes, and incubate for 48 to 72 hours. Following incubation, examine the plates for growth, count the number of colonies, and express the average for the two plates in terms of the number of microorganisms per g or per mL of specimen. If no microbial colonies are recovered from the dishes representing the initial 1:10 dilution of the specimen, express the results as ―less than 10 microorganisms per g or per mL of specimen.‖

MULTIPLE-TUBE METHOD

Into each of fourteen test tubes of similar size place 9.0 mL of sterile Fluid Soybean–Casein Digest Medium. Arrange twelve of the tubes in four sets of three tubes each. Put aside one set of three tubes to serve as the controls. Into each of three tubes of one set (―100‖) and into a fourth tube (A) pipet 1 mL of the solution or suspension of the specimen, and mix. From tube A, pipet 1 mL of its contents into the one remaining tube (B) not included in a set, and mix. These two tubes contain 100 mg (or 100 μL) and 10 mg (or 10 μL) of the specimen, respectively. Into each of the second set (―10‖) of three tubes pipet

1 mL from tube A, and into each tube of the third set (―1‖) pipet 1 mL from tube

B. Discard the unused contents of tubes A and B. Close well, and incubate all of the tubes. Following the incubation period, examine the tubes for growth: the three control tubes remain clear and the observations in the tubes containing the specimen, when interpreted by reference to Table 1, indicate the most probable number of microorganisms per g or per mL of specimen.

Table 1. Most Probable Total Count by Multiple-Tube Method

Test for Staphylococcus aureus and Pseudomonas aeruginosa

To the specimen add Fluid Soybean–Casein Digest Medium to make 100 mL, mix, and incubate. Examine the medium for growth, and if growth is present, use an inoculating loop to streak a portion of the medium on the surface of Vogel–Johnson Agar Medium (or Baird–Parker Agar Medium, or Mannitol–Salt Agar Medium) and of Cetrimide Agar Medium, each plated on petri dishes. Cover and invert the dishes, and incubate. If, upon examination, none of the plates contains colonies having the characteristics listed in Tables 2 and 3 for the media used, the test specimen meets the requirements for freedom from Staphylococcus aureus and Pseudomonas aeruginosa.

Table 2. Morphologic Characteristics of Staphylococcus aureus on Selective

Agar Media

Table 3. Morphologic Characteristics of Pseudomonas aeruginosa on

Selective and Diagnostic Agar Media

Coagulase Test (for Staphylococcus aureus )— With the aid of an inoculating loop, transfer representative suspect colonies from the agar surfaces of the Vogel –Johnson Agar Medium (or Baird –Parker Agar Medium, or Mannitol –Salt Agar Medium) to individual tubes, each containing 0.5 mL of mammalian, preferably rabbit or horse, plasma with or without suitable additives. Incubate in a water bath at 37, examining the tubes at 3 hours and subsequently at suitable intervals up to 24 hours. Test positive and negative controls

simultaneously with the unknown specimens. If no coagulation in any degree is observed, the specimen meets the requirements of the test for absence of Staphylococcus aureus .

Oxidase and Pigment Tests (for Pseudomonas aeruginosa )— With the aid of an inoculating loop, streak representative suspect colonies from the agar surface of Cetrimide Agar Medium on the agar surfaces of Pseudomonas Agar

Medium for Detection of Fluorescin and Pseudomonas Agar Medium for Detection of Pyocyanin contained in petri dishes. If numerous colonies are to be transferred, divide the surface of each plate into quadrants, each of which may be inoculated from a separate colony. Cover and invert the inoculated

media, and incubate at 35 ± 2for not less than three days. Examine the streaked surfaces under UV light. Examine the plates to determine whether colonies having the characteristics listed in Table 3 are present.

Confirm any suspect colonial growth on one or more of the media as Pseudomonas aeruginosa by means of the oxidase test. Upon the colonial growth place or transfer colonies to strips or disks of filter paper that previously has been impregnated with N,N-dimethyl-p-phenylenediamine dihydrochloride: if there is no development of a pink color, changing to purple, the specimen meets the requirements of the test for the absence of Pseudomonas aeruginosa. The presence of Pseudomonas aeruginosa may be confirmed by other suitable cultural and biochemical tests, if necessary.

Test for Salmonella species and Escherichia coli

To the specimen, contained in a suitable vessel, add a volume of Fluid Lactose Medium to make 100 mL, and incubate. Examine the medi um for growth, and if growth is present, mix by gently shaking. Pipet 1-mL portions into vessels containing, respectively, 10 mL of Fluid Selenite–Cystine Medium and Fluid Tetrathionate Medium, mix, and incubate for 12 to 24 hours. (Retain the remainder of the Fluid Lactose Medium.)

Test for Salmonella Species— By means of an inoculating loop, streak portions from both the selenite-cystine and tetrathionate media on the surface of Brilliant Green Agar Medium, Xylose–Lysine–Desoxycholate Agar Medium, and Bismuth Sulfite Agar Medium contained in petri dishes. Cover and invert the dishes, and incubate. Upon examination, if none of the colonies conforms to the description given in Table 4, the specimen meets the requirements of the test for absence of the genus Salmonella.

Table 4. Morphologic Characteristics of Salmonella Species on Selective Agar

Media

If colonies of Gram-negative rods matching the description in Table 4 are found, proceed with further identification by transferring representative suspect colonies individually, by means of an inoculating wire, to a butt-slant tube of Triple Sugar–Iron–Agar Medium by first streaking the surface of the slant and then stabbing the wire well beneath the surface. Incubate. If examination discloses no evidence of tubes having alkaline (red) slants and acid (yellow) butts (with or without concomitant blackening of the butt from hydrogen sulfide production), the specimen meets the requirements of the test for the absence of the genus Salmonella.*

Test for Escherichia coli— By means of an inoculating loop, streak a portion from the remaining Fluid Lactose Medium on the surface of MacConkey Agar Medium. Cover and invert the dishes, and incubate. Upon examination, if none of the colonies conforms to the description given in Table 5 for this medium, the specimen meets the requirements of the test for absence of Escherichia coli.

Table 5. Morphologic Characteristics of Escherichia coli on MacConkey Agar

Medium

If colonies matching the description in Table 5 are found, proceed with further identification by transferring the suspect colonies individually, by means of an inoculating loop, to the surface of Levine Eosin–Methylene Blue Agar Medium, plated on petri dishes. If numerous colonies are to be transferred, divide the surface of each plate into quadrants, each of which may be seeded from a separate colony. Cover and invert the plates, and incubate. Upon examination, if none of the colonies exhibits both a characteristic metallic sheen under reflected light and a blue-black appearance under transmitted light, the specimen meets the requirements of the test for the absence of Escherichia coli. The presence of Escherichia coli may be confirmed by further suitable cultural and biochemical tests.

Total Combined Molds and Yeasts Count

Proceed as for the Plate Method under Total Aerobic Microbial Count, except for using the same amount of Sabouraud Dextrose Agar Medium or Potato Dextrose Agar Medium, instead of Soybean Casein Digest Medium, and

except for incubating the inverted petri dishes for 5 to 7 days at 20to 25.

Retest

For the purpose of confirming a doubtful result by any of the procedures outlined in the foregoing tests following their application to a 10.0-g specimen, a retest on a 25-g specimen of the product may be conducted. Proceed as directed for Procedure, but make allowance for the larger specimen size.

*Additional, confirmatory evidence may be obtained by use of procedures set fort h in Official Methods of Analysis of the AOAC, 12th ed. (1975), sections 46.013-46.026.

校园网网络安全设计方案

[摘要] 计算机网络安全建设是涉及我国经济发展、社会发展和国家安全的重大问题。本文结合网络安全建设的全面信息,在对网络系统详细的需求分析基础上,依照计算机网络安全设计目标和计算机网络安全系统的总体规划,设计了一个完整的、立体的、多层次的网络安全防御体系。 [关键词] 网络安全方案设计实现 一、计算机网络安全方案设计与实现概述 影响网络安全的因素很多,保护网络安全的技术、手段也很多。一般来说,保护网络安全的主要技术有防火墙技术、入侵检测技术、安全评估技术、防病毒技术、加密技术、身份认证技术,等等。为了保护网络系统的安全,必须结合网络的具体需求,将多种安全措施进行整合,建立一个完整的、立体的、多层次的网络安全防御体系,这样一个全面的网络安全解决方案,可以防止安全风险的各个方面的问题。 二、计算机网络安全方案设计并实现 1.桌面安全系统 用户的重要信息都是以文件的形式存储在磁盘上,使用户可以方便地存取、修改、分发。这样可以提高办公的效率,但同时也造成用户的信息易受到攻击,造成泄密。特别是对于移动办公的情况更是如此。因此,需要对移动用户的文件及文件夹进行本地安全管理,防止文件泄密等安全隐患。 本设计方案采用清华紫光公司出品的紫光S锁产品,“紫光S锁”是清华紫光“桌面计算机信息安全保护系统”的商品名称。紫光S锁的内部集成了包括中央处理器(CPU)、加密运算协处理器(CAU)、只读存储器(ROM),随机存储器(RAM)、电可擦除可编程只读存储器(E2PROM)等,以及固化在ROM内部的芯片操作系统COS(Chip Operating Sys tem)、硬件ID号、各种密钥和加密算法等。紫光S锁采用了通过中国人民银行认证的Sm artCOS,其安全模块可防止非法数据的侵入和数据的篡改,防止非法软件对S锁进行操作。 2.病毒防护系统 基于单位目前网络的现状,在网络中添加一台服务器,用于安装IMSS。

校园网络与信息安全管理办法

校园网络与信息安全管理办法 桑梓镇辛撞中心小学 2018.9

校园网络与信息安全管理办法 学校校园网是为教学及学校管理而建立的计算机信息网络,目的在于利用先进实用的计算机技术和网络通信技术,实现校园内计算机互联、资源共享,并为师生提供丰富的网上资源。为了保护校园网络系统的安全、促进学校计算机网络的应用和发展,保证校园网络的正常运行和网络用户的使用权益,更好的为教育教学服务,特制定如下管理办法。 第一章总则 1、本管理制度所称的校园网络系统,是指由校园网络设备、配套的网络线缆设施、网络服务器、工作站、学校办公及教师教学用计算机等所构成的,为校园网络应用而服务的硬件、软件的集成系统。 2、校园网络的安全管理,应当保障计算机网络设备和配套设施的安全,保障信息的安全和运行环境的安全,保障网络系统的正常运行,保障信息系统的安全运行。 3、按照“合法合规,遵从标准”的原则开展网络与信息安全管理工作,网络及信息安全管理领导小组负责相应的网络安全和信息安全工作,定期对相应的网络用户进行有关信息安全和网络安全教育并对上网信息进行审查和监控。 4、所有上网用户必须遵守国家有关法律、法规,严格执行安全保密制度,并对所提供的信息负责。任何单位和个人不得利用联网计算机从事危害校园网及本地局域网服务器、工作站的活动。 5、进入校园网的全体学生、教职员工必须接受并配合国家有关部门及学校依法进行的监督检查,必须接受学校校园网络及信息安全管理领导小组进行的网络系统及信息系统的安全检查。

6、使用校园网的全体师生有义务向校园网络及信息安全管理领导小组和有关部门报告违法行为和有害信息。 第二章网络安全管理细则 1、网络管理中心机房及计算机网络教室要装置调温、调湿、稳压、接地、防雷、防火、防盗等设备,管理人员应每天检查上述设备是否正常,保证网络设备的安全运行,要建立完整、规范的校园网设备运行情况档案及网络设备账目,认真做好各项资料(软件)的记录、分类和妥善保存工作。 2、校园网由学校信息中心统一管理及维护。连入校园网的各部门、处室、教室和个人使用者必须严格使用由信息中心分配的IP地址,网络管理员对入网计算机和使用者进行及时、准确登记备案,由信息中心负责对其进行监督和检查。任何人不得更改IP及网络设置,不得盗用IP地址及用户帐号。 3、与校园网相连的计算机用户建设应当符合国家的有关标准和规定,校园内从事施工、建设,不得危害计算机网络系统的安全。 4、网络管理员负责全校网络及信息的安全工作,建立网络事故报告并定期汇报,及时解决突发事件和问题。校园网各服务器发生案件、以及遭到黑客攻击后,信息中心必须及时备案并向公安机关报告。 5、网络教室及相关设施未经校领导批准不准对社会开放。 6、按照信息安全等级保护工作规定,完成定级、备案等工作,留存安全审核日志。校园网中对外发布信息的Web服务器中的内容必须经领导审核,由负责人签署意见后再由专人(信息员)发布。新闻公布、公文发布权限要经过校领导的批准。门户网站不得链接企业网站,不得发布商业广告,不得在网页中设置或植入商品、商业服务的二维码。

校园网络安全设计方案

校园网络安全设计方案 10网工2班组员:张婵、张茜、张越、张喻博、赵子龙、祝美意、杨越峦、张力 随着因特网的迅速发展,校园网的建设日益普遍。而在高校中,如何能够保证校园网络的安全运行,同时又能提供丰富的网络资源,达到办公、教学及学生上网的多种需求已成为了一个难题。校园网络的安全不仅有来自外部的攻击,还有内部的攻击。所以,在校园网建设中使用安全技术是刻不容缓的。现从防火墙、VPN、防病毒、入侵检测和防御系统、上网行为管理和用户审计系统、数据备份系统、主页防篡改、网络安全管理制度几个方面,设计我校的网络安全方案。 防火墙:防火墙是一种将内部网和公众网分开的方法。它能限制被保护的网络与与其他网络之间进行的信息存取、传递操作。 防火墙的概念:通常防火墙是指部署在不同网络或网络安全域之间的一系列部件组合,是一种有效的网络安全策略。防火墙提供信息安全服务,设置在被保护内部网络的安全与不安全的外部网络之间,其作用是阻断来自外部的、针对内部网络的入侵和威胁,保护内部网络的安全。它是不同网络或网络安全域之间信息的唯一出入口,根据安全策略控制出入网络的信息流,并且本身具有较强的抗攻击能力。 防火墙的分类:按软件与硬件的形式,防火墙分为软件防火墙、硬件防火墙和芯片防火墙;按防火墙的技术,总体分为包过滤型和应用代理型两大类;按防火墙的结构分为单一主机防火墙、路由器集成式防火墙、分布式防火墙;按防火墙的部署位置分为边界防火墙、个人防火墙、混合防火墙。 防火墙的安全策略:(1)所有从内到外和从外到内的数据包都必须经过防火墙(2)只有被安全策略允许的数据包才能通过防火墙(3)防火墙本身要有预防入侵的功能(4)默认禁止所有服务,除非是必须的服务才被允许 防火墙的设计:(1)保障校园内部网主机的安全,屏蔽内部网络,禁止外部网用户连接到内部网(2)只向外部用户提供HTTP、SMTP和POP等有限的服务(3)向内部记账用户提供所有Internet服务,但一律通过代理服务器(4)禁止访问黄色、反动网站(5)要求具备防IP 地址欺骗和IP地址盗用功能(6)要求具备记账和审计功能,能有效记录校园网的一切活动。 校园网络在设置时应从下面几个方面入手:(1)入侵检测:具有黑客普通攻击的实时检测技术。实时防护来自IP Source Routing、IP Spoofing、SYN flood、IC-MP flood、UDP flood、Ping ofDeath、拒绝服务和许多其它攻击。并且在检测到有攻击行为时能通过电子邮件或其它方式通知系统管理员。(2)工作模式选择:目前市面上的防火墙都会具备三种不同的工作模式,路由模式、NAT模式和透明模式。我们选择的是透明模式,防火墙过滤通过防火墙的封包,而不会修改数据包包头中的任何源或目的地的信息。所有接口运行起来都像是同一网络中的一部分。此时防火墙的作用更像是Layer2(第二层)交换机或桥接器。在透明模式下,接口的IP地址被设置为0.0.0.0, 防火墙对于用户来说是可视或透明的。(3)策略设置:防火墙可以提供具有单个进入和退出点的网络边界。由于所有信息流都必须通过此点,因此可以筛选并引导所有通过执行策略组列表产生的信息流。策略能允许、拒绝、加密、认证、排定优先次序、调度以及监控尝试从一个安全段流到另一个安全段的信息流。可以决定哪些用户和信息能进入和离开以及它们进入和离开的时间和地点。(4)管理界面:管理一个防火墙的方法一般来说有两种:图形化界面和命令行界面,我们选择为通过web方式和java等程序编写的图形化界面进行远程管理。(5)内容过滤:面对当前互联网上的各种有害信息,我们的防火墙还增加了URL阻断、关键词检查、Java Ap-ple、ActiveX和恶意脚本过滤等。(6)防火墙的性能考虑:防火墙的性能对于一个防火墙来说是至关重要的,它决定了每秒钟可能通过防火墙的最大数据流量,以bps为单位,从几十兆到几百兆不等。千兆防火墙还

校园网网络安全设计方案

校园网网络安全设计方案 网络技术的高速发展,各种各样的安全问题也相继出现,校园网被“黑”或被病毒破坏的事件屡有发生,造成了极坏的社会影响和巨大的经济损失。维护校园网网络安全需要从网络的搭建及网络 安全设计方面着手。 一、基本网络的搭建。 由于校园网网络特性(数据流量大,稳定性强,经济性和扩充性)和各个部门的要求(制作部门和办公部门间的访问控制),我们采用下列方案: 1. 网络拓扑结构选择:网络采用星型拓扑结构(如图1)。它是目前使用最多,最为普遍的局域网拓扑结构。节点具有高度的独立性,并且适合在中央位置放置网络诊断设备。 2.组网技术选择:目前,常用的主干网的组网技术有快速以太网(100Mbps)、FDDI、千兆以太网(1000Mbps)和ATM(155Mbps/622Mbps)。快速以太网是一种非常成熟的组网技术,它的造价很低,性能价格比很高;FDDI也是一种成熟的组网技术,但技术复杂、造价高,难以升级;ATM技术成熟,是多媒体应用系统的理想网络平台,但它的网络带宽的实际利用率很低;目前千兆以太网已成为一种成熟的组网技术,造价低于ATM网,它的有效带宽比622Mbps的ATM 还高。因此,个人推荐采用千兆以太网为骨干,快速以太网交换到桌面组建计算机播控网络。 二、网络安全设计。 1.物理安全设计为保证校园网信息网络系统的物理安全,除在网络规划和场地、环境等要求之外,还要防止系统信息在空间的扩散。计算机系统通过电磁辐射使信息被截获而失密的案例已经很多,在理论和技术支持下的验证工作也证实这种截取距离在几百甚至可达千米的复原显示技术给计算机系统信息的保密工作带来了极大的危害。为了防止系统中的信息在空间上的扩散,通常是在物理上采取一定的防护措施,来减少或干扰扩散出去的空间信号。正常的防范措施主要在三个方面:对主机房及重要信息存储、收发部门进行屏蔽处理,即建设一个具有高效屏蔽效能的屏蔽室,用它来安装运行主要设备,以防止磁鼓、磁带与高辐射设备等的信号外泄。为提

校园网网络安全解决方案.doc

xx校园网网络安全解决方案1 xx校园网网络安全解决方案 校园网网络是一个分层次的拓扑结构,因此网络的安全防护也需采用分层次的拓扑防护措施。即一个完整的校园网网络信息安全解决方案应该覆盖网络的各个层次,并且与安全管理相结合。 一、网络信息安全系统设计原则 1.1满足Internet分级管理需求 1.2需求、风险、代价平衡的原则 1.3综合性、整体性原则 1.4可用性原则 1.5分步实施原则 目前,对于新建网络及已投入运行的网络,必须尽快解决网络的安全保密问题,设计时应遵循如下思想: (1)大幅度地提高系统的安全性和保密性; (2)保持网络原有的性能特点,即对网络的协议和传输具有很好的透明性; (3)易于操作、维护,并便于自动化管理,而不增加或少增加附加操作;

(4)尽量不影响原网络拓扑结构,便于系统及系统功能的扩展; (5)安全保密系统具有较好的性能价格比,一次性投资,可以长期使用; (6)安全与密码产品具有合法性,并便于安全管理单位与密码管理单位的检查与监督。 基于上述思想,网络信息安全系统应遵循如下设计原则: 满足因特网的分级管理需求根据Internet网络规模大、用户众多的特点,对Internet/Intranet信息安全实施分级管理的解决方案,将对它的控制点分为三级实施安全管理。 --第一级:中心级网络,主要实现内外网隔离;内外网用户的访问控制;内部网的监控;内部网传输数据的备份与稽查。 --第二级:部门级,主要实现内部网与外部网用户的访问控制;同级部门间的访问控制;部门网内部的安全审计。 --第三级:终端/个人用户级,实现部门网内部主机的访问控制;数据库及终端信息资源的安全保护。 需求、风险、代价平衡的原则对任一网络,绝对安全难以达到,也不一定是必要的。对一个网络进行实际额研究(包括任务、性能、结构、可靠性、可维护性等),并对网络面临的威胁及可能承担的风险进行定性与定量相结合的分析,然后制定规范和措施,确定本系统的安全策略。

校园网络安全设计方案

校园网络安全设计方案 一、安全需求 1.1.1网络现状 随着信息技术的不断发展和网络信息的海量增加,校园网的安全形势日益严峻,目前校园网安全防护体系还存在一些问题,主要体现在:网络的安全防御能力较低,受到病毒、黑客的影响较大,对移动存储介质的上网监测手段不足,缺少综合、高效的网络安全防护和监控手段,削弱了网络应用的可靠性。因此,急需建立一套多层次的安全管理体系,加强校园网的安全防护和监控能力,为校园信息化建设奠定更加良好的网络安全基础。 经调查,现有校园网络拓扑图如下: 1.1.2应用和信息点

1.2.现有安全技术 1.操作系统和应用软件自身的身份认证功能,实现访问限制。 2.定期对重要数据进行备份数据备份。 3.每台校园网电脑安装有防毒杀毒软件。 1.3.安全需求 1.构建涵盖校园网所有入网设备的病毒立体防御体系。 计算机终端防病毒软件能及时有效地发现、抵御病毒的攻击和彻底清除病毒,通过计算机终端防病毒软件实现统一的安装、统一的管理和病毒库的更新。 2. 建立全天候监控的网络信息入侵检测体系 在校园网关键部位安装网络入侵检测系统,实时对网络和信息系统访问的异常行为进行监测和报警。 3. 建立高效可靠的内网安全管理体系 只有解决网络内部的安全问题,才可以排除网络中最大的安全隐患,内网安全管理体系可以从技术层面帮助网管人员处理好繁杂的客户端问题。 4. 建立虚拟专用网(VPN)和专用通道 使用VPN网关设备和相关技术手段,对机密性要求较高的用户建立虚拟专用网。 二.安全设计 1.1设计原则 根据防范安全攻击的安全需求、需要达到的安全目标、对应安全机制所需的安全服务等因素,参照SSE-CMM("系统安全工程能力成熟模型")和ISO17799(信息安全管理标准)等国际标准,综合考虑可实施性、可管理性、可扩展性、综合完备

XX校园网网络安全解决方案

网络安全课程设计 目录 一、校园网概况 二、校园网安全需求分析 三、产品选型和网络拓扑图介绍 四、操作系统安全配置与测试 五、应用服务器(WWW)安全配置 六、防病毒体系设计 七、防火墙设计、配置与测试 一、校园网概况

该校园网始建于2000年8月,至今已经历了四个主要发展阶段,网络覆盖已遍及现有的教学办公区和学生宿舍区。截止目前,校园网光缆铺设约一万二千米,信息点铺设接近一万,开设上网帐号8000多个,办理学校免费邮箱2000左右。 校园网主干现为双千兆环网结构。校园网接入均为千兆光纤到大楼,百兆交换到桌面,具有良好的网络性能。 校园网现有三条宽带出口并行接入Internet,500兆中国电信、100兆中国网通和100兆中国教育科研网,通过合理的路由策略,为校园网用户提供了良好的出口带宽。 校园网资源建设成效显著,现有资源服务包括大学门户网站、新闻网站、各学院和职能部门网站、安农科技网站、邮件服务、电子校务、毕博辅助教学平台、在线电视、VOD点播、音乐欣赏、公用FTP、文档下载、软件下载、知识园地、站点导航、在线帮助、系统补丁、网络安全、个人主页、计费服务、VPN、DHCP、域名服务等。还有外语学习平台,图书馆丰富的电子图书资源,教务处的学分制教学信息服务网、科技处的科研管理平台等。众多的资源服务构成了校园网的资源子网,为广大师生提供了良好的资源服务。 二、校园网安全需求分析 将安全策略、硬件及软件等方法结合起来,构成一个统一的防御系统,有效阻止非法用户进入网络,减少网络的安全风险。 定期进行漏洞扫描,审计跟踪,及时发现问题,解决问题。 通过入侵检测等方式实现实时安全监控,提供快速响应故障的手段,同时具备很好的安全取证措施。 使网络管理者能够很快重新组织被破坏了的文件或应用。使系统重新恢复到破坏前的状态,最大限度地减少损失。

校园网网络安全解决方案

课程设计任务书 题目:校园网络安全解决方案 学号: 姓名: 专业: 课程: 指导老师:职称: 完成时间:2007年 12 月----2008年 1月**学院计算机科学系制

校园网络安全解决方案 引言:校园网网络是一个分层次的拓扑结构,因此网络的安全防护也需采用分层次的拓扑防护措施。即一个完整的校园网网络信息安全解决方案应该覆盖网络的各个层次,并且与安全管理相结合。 一、网络信息安全系统设计原则 1.满足Internet分级管理需求 2.需求、风险、代价平衡的原则 3.综合性、整体性原则 4.可用性原则 5.分步实施原则 目前,对于新建网络及已投入运行的网络,必须尽快解决网络的安全保密问题,设计时应遵循如下思想: 大幅度地提高系统的安全性和保密性; 保持网络原有的性能特点,即对网络的协议和传输具有很好的透明性; 易于操作、维护,并便于自动化管理,而不增加或少增加附加操作; 尽量不影响原网络拓扑结构,便于系统及系统功能的扩展; 安全保密系统具有较好的性能价格比,一次性投资,可以长期使用; 安全与密码产品具有合法性,并便于安全管理单位与密码管理单位的检查与监督。 基于上述思想,网络信息安全系统应遵循如下设计原则: 满足因特网的分级管理需求根据Internet网络规模大、用户众多的特点,对Internet/Intranet信息安全实施分级管理的解决方案,将对它的控制点分为三级实施安全管理。 第一级:中心级网络,主要实现内外网隔离;内外网用户的访问控制;内部网的监控;内部网传输数据的备份与稽查。 第二级:部门级,主要实现内部网与外部网用户的访问控制;同级部门间的访问控制;部门网内部的安全审计。 第三级:终端/个人用户级,实现部门网内部主机的访问控制;数据库及终端信息资源的安全保护。 需求、风险、代价平衡的原则对任一网络,绝对安全难以达到,也不一定是必要的。对一个网络进行实际额研究(包括任务、性能、结构、可靠性、可维护性等),并对网络面临的威胁及可能承担的风险进行定性与定量相结合的分析,然后制定规范和措施,确定本系统的安全策略。 综合性、整体性原则应用系统工程的观点、方法,分析网络的安全及具体措施。安全措施主要包括:行政法律手段、各种管理制度(人员审查、工作流程、维护保障制度等)以及专业措施(识别技术、存取控制、密码、低辐射、容错、防病毒、采用高安全产品等)。一个较好的安全措施往往是多种方法适当综合的应用结果。一个计算机网络,包括个人、设备、软件、数据等。这些环节在网络中的地位和影响作用,也只有从系统综合整体的角度去看待、分析,才能取得有效、可行的措施。即计算机网络安全应遵循整体安全性原则,根据规定的安全策略制定出合理的网络安全体系结构。 可用性原则安全措施需要人为去完成,如果措施过于复杂,要求过高,本身就降低了安全性,如密钥管理就有类似的问题。其次,措施的采用不能影响系统

校园网网络架构建设规划与解决方案

校园网网络架构建设规划及解决方案 校园网是各类型网络中一大分支,有着非常广泛的应用及代表性。 作为新技术的发祥地,学校、尤其是高等院校,和网络的关系自然密不可分,本文就是从用户的需求分析入手,阐述了校园网的应用特点,以及网络产品如何满足校园网用户的多方 面需求,在校园网建设中的注意事项等。 总体思路及工程步骤: 进行对象研究和需求调查,弄清学校的性质、任务、网络建设的目的和发展的特点,对学校的信息化环境进行准确的描述,明确系统建设的需求和条件; 在应用需求分析的基础上,确定学校Intranet 服务类型,进而确定系统建设的具体目标, 包括网络设施、站点设置、开发应用和管理等方面的目标; 确定网络拓朴结构和功能,根据应用需求、建设目标和学校主要建筑分布特点,进行系 统分析和设计; 确定技术设计的原则要求,如在技术选型、布线设计、设备选择、软件配置等方面的标准和要求; 确定好以上四点包含的所有具体细节内容后,基本上我们就可以为用户量身定做适合他们的 解决方案了,不过一个完整的网络建设工程,有过项目经验的人都知道,当然以下三点也是必不可少的步骤。 贴近网络现状的测试方案; 规划安排校园网建设的实施步骤(项目管理); 内容完善的验收文档。

校园网建设的原则: 先进性,先进的设计思想、网络结构、开发工具,采用市场覆盖率高、标准化和技术成 熟的软硬件产品;实用性,建网时应考虑利用和保护现有的资源、充分发挥设备效益;灵活性,采用积木式模块组合和结构化设计,使系统配置灵活,满足学校逐步到位的建网原则, 使网络具有强大的可扩展性;可靠性,具有容错功能,管理、维护方便。对网络的设计、选 型、安装、调试等各环节进行统一规划和分析,确保系统运行可靠,经济性,投资合理,有 良好的性能价格比。 校园网是建构在多媒体技术和现代网络技术之上的为教学、科研、管理服务并与因特网 连接的校园内局域网络环境,是一种教育科研网络。计算机网络毕竟是个新生事物,在各方面还不尽人所知,不顾自身需求和经济实力而一掷千金的事例层出不穷。究其原因,多数为对校园网工程的具体事项了解不够,作为一项庞大的系统工程,校园网工程事关学校的发展大计,必须慎重考虑。 网络建设需求汇总: 对校园网建设进行各步骤全面的需求分析,是成功校园网建设的必要条件 ,下面就从以上方面, 结合目前校园网络建设,根据学校实际情况对学校网络建设的需求分析做一下汇总,主要是网络方面,对于终端、服务器等不做过多介绍。 软、硬件需求: 硬件是架构校园网的基础,选择硬件产品时,需要选择兼容性好、扩展性强的设备,并且 在选择过程中综合设备的性能价格等多方面的因素,而且该设备厂家必须能够提供良好的售 前及售后服务,解除用户的后顾之忧。比如对中心设备一定要采用性能稳定、功能强大、安 能有大文件、图片等数据需要传输的地方也要应用性能较好的设备。 软件包括系统和管理两种,学校应根据自身考虑来选择适合自己的软件。

教育系统网络安全建设解决方案

教育系统网络安全建设解决方案 教育信息化现状 二十一世纪是知识经济时代。随着现代科学技术的飞速发展,全球信息化浪潮势不可挡。已经迅速延伸至国防、科研、经济等各个领域,也不可避免地改变着传统教育模式。信息和教育相结合毫无疑问成为当今世界教育改革和发展中极其重要的部分,而当前蓬勃发展的以计算机和网络为主导的现代信息技术则是教育现代化必不可少的技术基础。校园网的建设是推进素质教育、迎接知识经济时代的需要。在跨世纪教育改革中,世界各国都在加快教育现代化的步伐,其信息化程度的高低已成为当今世界衡量一个国家综合国力的重要标志。要想把我国的教育信息化变革速度加快,就要将学校教育同家庭教育、社会教育,尤其是大众传播媒介的隐性教育融为一体,实现教育中人力、物力资源的多层次开发和合理配置。而运用现代教育技术建设校园网,营造清新的校园网络文化氛围就是从根本上落实教育的战略地位,解放教师的生产力和师生的创造力,为现代教育增添创新优势。建设一个高质量、高带宽、多服务、范围广的整体教育综合信息网络势在必行。 分析教育校园网 教育校园网系统划分为大型、中型、小型园区局域网系统,建成目的是为促进教学、方便管理和进一步发挥学生的创造力。

校园网系统具有以下的特点: ·高速的局域网连接--教育校园网的核心为面向校园内部师生的网络,因此园区局域网是该系统的建设重点,由于参与网络应用的师生数量众多,而且信息中包含大量多媒体信息,故大容量、高速率的数据传输是网络的一项重要要求; ·信息结构复杂--校园网既要为学生提供电子教学,又要为职能部门提供办公管理,致使应用多样化,数据成分复杂,不同类型的数据对网络传递质量的需求也各不一样,这就要求网络产品具备增强的性能来实现各种需求; ·安全可靠--校园网中同样有大量关于教学和档案管理的重要数据,不论是被损坏、丢失还是被窃取,都将带来极大的损失; ·操作方便,易于管理--校园网面向不同知识层次的教师、学生和办化人员,应用和管理应简便易行,界面友好,不宜太过专业化;·经济实用--学校对网络建设的投入显然相对国防、金融等关键机构较低,因此要求建成的网络经济实用,具备很高的性能价格比。 根据校园网功能,可将校园网应用分为:电子教学、职能管理、远程教育和互联网的引入等四大类。园区网络为教学应用服务,因此网络性能的好坏直接影响到应用系统的运行。由于教育单位的特殊性,它对整个网络系统的性能要求相对来说比较高。其中,网络速率要求主要的信息点100M交换到桌面,网络技术可支持数据、语音、图像等各种信息的传输。对于网络管理,要求采用智能化网络管理软件,实现对网络的自动监测和控制,并支持虚拟网络功能。对于核心网络

普教校园网络建设方案

校园网络系统建设方案

目录 第1章 ............................................................................................................................ 建设目标1 第2章 ...................................................................................................................... 网络设计原则1 2.1带宽保障 (1) 2.2有线无线一体化 (1) 2.3安全可靠性 (1) 2.4网络可控性 (1) 第3章 ............................................................................................................ 计算机系统网络设计2 3.1大目湾学校校园网拓扑图设计 (2) 3.2总体网络设计 (2) 3.3核心交换层设计 (3) 3.3.1核心交换机简介 (3) 3.4接入层设计 (6) 3.5校园无线网络设计 (7) 3.5.1无线场景化部署 (7) 3.5.2AP部署位置 (7) 3.5.3无线AP供电方案 (9) 3.5.4无线覆盖信号 (9) 3.5.5工作频段与频点规划 (9) 3.5.6基于用户、流量、频段的智能负载均衡 (10) 3.5.7RIPT边缘智能感知技术保障上网不掉线 (11) 3.5.8AP信号冗余 (12) 3.5.9无线校园网使用控制 (12) 3.6网络出口设计 (12) 3.6.1安全 (12) 3.6.2出口路由与上网行为管理 (13) 3.7网络管理 (14)

校园网的设计与规划

校园网的设计与规划 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

校园无线网络设计与规划 摘要 本设计简要地讨论了校园网络规划设计中涉及到的网络技术、规划设计方法、网络性能及应用分析等问题,为校园网络的规划、设计等方面在技术及应用上提供参考,以使在建或规划中的校园网络具备较高的整体性能。 随着信息技术的不断发展和人们对各种数据形式的信息需求和交流的不断增长,使得当今的计算机网络,特别是Internet从传统的数据处理设备(如计算机)和管理工具中驳离出来,担当一个非常重要的角色——信息技术的基础设施与获取、共享和交流信息的主要工具,并成为人们在当今社会生活及工作中不可缺少的组成部分。经过了几年的迅猛发展,计算机网络已经在很多方面改变了人们传统的工作和生活方式……Web浏览、E-mail、QQ(上网聊天)、VOD(视频点悉播)、文件传输、远程诊断、电子商务、网络大学及虚拟学校等无一不与计算机网络有着千丝万缕的联系。这些基于网络的各种应用,正在以惊人的速度扩展,几乎渗透了社会生活的各个方面。校园网络(CAN ,Campus Area Network)与其它园区局域网络一样,由于它属于单位自有,学校拥有自我建设、自我管理和自我使用的权利,因此,受经费、技术水平及其它方面的影响,校园网络在规划设计、资源建设和应用上很不平衡,差别很大,特别是在IT界目前还未实施网络工程监理的条件下,造成了不少的人力、物力、财力的巨大浪费。 校园网络的规划设计有多种解决方案,依学校的类型规模和性质的不同,以使网络的设计方案有所不同,体现在技术、应用上更是不同。在传统的语音服务(诸如电

校园网网络安全设计方案

校园网网络安全设计方案 及和深入,伴随着网络技术的高速发展,各种各样的安全问题也相继出现,校园网被“黑”或被病毒破坏的事件屡有发生,造成了极坏的社会影响和巨大的经济损失。维护校园网网络安全需要从网络的搭建及网络安全设计方面着手。 一、基本网络的搭建。 由于校园网网络特性(数据流量大,稳定性强,经济性和扩充性)和各个部门的要求(制作部门和办公部门间的访问控制),我们采用下列方案: 1. 网络拓扑结构选择:网络采用星型拓扑结构(如图1)。它是目前使用最多,最为普遍的局域网拓扑结构。节点具有高度的独立性,并且适合在中央位置放置网络诊断设备。 2.组网技术选择:目前,常用的主干网的组网技术有快速以太网(100Mbps)、FDDI、千兆以太网(1000Mbps)和ATM(155Mbps/622Mbps)。快速以太网是一种非常成熟的组网技术,它的造价很低,性能价格比很高;FDDI也是一种成熟的组网技术,但技术复杂、造价高,难以升级;ATM技术成熟,是多媒体应用系统的理想网络平台,但它的网络带宽的实际利用率很低;目前千兆以太网已成为一种成熟的组网技术,造价低于ATM网,它的有效带宽比622Mbps的ATM还高。因此,个人推荐采用千兆以太网为骨干,快速以太网交换到桌面组建计算机播控网络。 二、网络安全设计。 1.物理安全设计为保证校园网信息网络系统的物理安全,除在网络规划和场地、环境等要求之外,还要防止系统信息在空间的扩散。计算机系统通过电磁辐射使信息被截获而失密的案例已经很多,在理论和技术支持下的验证工作也证实这种截取距离在几百甚至可达千米的复原显示技术给计算机系统信息的保密工作带来了极大的危害。为了防止系统中的信息在空间上的扩散,通常是在物理上采取一定的防护措施,来减少或干扰扩散出去的空间信号。正常的防范措施主要在三个方面:对主机房及重要信息存储、收发部门进行屏蔽处理,即建设一个具有高效屏蔽效能的屏蔽室,用它来安装运行主要设备,以防止磁鼓、磁带与高辐射设备等的信号外泄。为提高屏蔽室的效能,在屏蔽室与外界的各项联系、连接中均要采取相应的隔离措施和设计,如信号线、电话

校园网络信息安全管理制度

南宁市江南区苏圩中学 学校网站信息安全管理制度 一、学校要加强机房建设,严格把好机房关。 1、建立健全管理制度,做好网络信息安全管理工作。 2、落实专人负责,实行机房岗位责任制。 3、配备技术防范器材,作好预防准备。 二、加强校园网络的信息监控 1、我校的网站必须遵守国家关于信息网络的法律法规,加强对网络要害信息的监控。对以下信息要重点监控: (1)煽动破坏宪法和法律、行政法规实施的; (2)煽动颠覆国家政权,推翻社会主义制度的; (3)煽动歧视,破坏民族团结的;捏造或者歪曲事实,散布谣言,扰乱社会秩序的; (4)散布“法轮功”传单和收看“法轮功”等有关信息的; (6)公然侮辱他人或者捏造事实诽谤他人的; (7)损害国家机关和学校信誉的;其他违反宪法和法律、行政法规的。对涉及上述内容的网络地址、目录或者服务器应按国家有关规定,予以删除关闭。 2、此外,还要对下列信息进行监控: (1)擅自进入计算机信息网络使用计算机信息网络资源的; (2)对计算机信息网络功能进行删除、修改或者增加的; (3)擅自对计算机信息网络中存储、处理或者传输的数据和应用程序进行删 除、修改或者增加的; (4)故意制作、传播计算机病毒等破坏性程序的; (5)其他危害计算机信息网络安全的。 三、落实管理责任制,搞好机房“三防”教育 1、学校机房的管理责任是: (1)负责本网络的安全保护管理工作,建立健全安全保护管理制度。 (2)落实安全保护技术措施,保障本网络的运行安全和信息安全。 (3)负责对本网络用户的安全教育和培训。 (4)对委托发布信息的单位和个人进行登记,并对所提供的信息内容按照国家网络法律进行审核。 (5)建立计算机信息网络电子公告系统的用户登记和信息管理制度。 (6)发现有网络违法犯罪、反党反社会主义宣传、色情迷信暴力宣传、传播网络病毒、危害他人通信自由行为的,应当保留有关原始记录,并在24小时内向当地公安机关报告。 2、在机房建设中,要加强“防腐朽思想、防病毒侵害、防网络泄密”的“三防”教育。学校教育信息建设中,硬件建设是基础,应用是核心。学校应与服务商合作共同推出安全管理模块,过滤不良站点、查杀病毒、建立校园网防火墙,以保证整个校园网的安全平稳运行。篇二:学校校园网络及信息安全管理制度 学校园网络及信息安全管理制度 学校校园网是为教学及学校管理而建立的计算机信息网络,目的在于利用先进实用的计算机技术和网络通信技术,实现校园内计算机互联、资源共享,并为师生提供丰富的网上资源。为了保护校园网络系统的安全、促进学校计算机网络的应用和发展,保证校园网络的正常运行和网络用户的使用权益,更好的为教育教学服务,特制定如下管理条例。 第一章总则 1、本管理制度所称的校园网络系统,是指由校园网络设备、配套的网络线缆设施、网络

校园网网络安全方案设计

西安文理学院 计算机科学系 课程设计报告 设计名称:硬件课程设计 设计题目:校园网网络安全方案设计 学生学号:************* 专业班级:*************************** 学生姓名:****** 学生成绩: 指导教师(职称):**** (***** )课题工作时间:2011.5.30 至2011.6.10

摘要 随着各院校信息化建设的不断提高,网络建设的不断发展,各大中专院校、乃至中小学都在大力发展自己的校园网建设。校园网规模的扩大,各种安全问题也随之而来,如何确保校园网络安全稳定的运行,是校园网建设中必须解决的问题。校园网作为学院重要的基础设施,担当着学院教学、科研、管理和对外交流等许多角色。校园网安全状况直接影响着学校的教学活动。在网络建成的初期,安全问题可能还不突出,但随着应用的深入,校园网上的各种数据会急剧增加,各种各样的安全问题开始困扰我们。本文通过从校园网内网安全和外网安全两个方面进行了网络安全方案的分析及选择,通过采用软硬件结合的方式,以及从防病毒、交换机端口安全、路由器配置和访问控制列表等技术实现了校园网的安全部署。 关键词:校园网;网络安全;访问控制列表

Abstract With the building of the institutions of information continues to improve, continues development of network construction, major colleges, and even schools are making great efforts to develop their own campus network construction. The expansion of the campus network, followed by a variety of security issues, how to ensure safe and stable operation of the campus network, campus network construction is to be resolved. Important as the university campus network infrastructure, play the college teaching, research, management and foreign exchange, and many of the roles. Campus network directly affect the security situation in the school’s teaching activities. Built in the early stages of the network, security may not be prominent, but with the application in depth, the campus network will be a sharp increase in a variety of data, a variety of security issues started to bother us. In this paper, internal network security from the campus network and external network security are two aspects of network security solutions for the analysis and selection, through the use of a combination of hardware and software, as well as from anti-virus, switch port security, router configuration, access control lists and other technical to achieve a campus network security deployment. Keywords:campus network;network security;access control lists

校园网络安全及防范措施

校园网络安全及防范措施 校园网建设的宗旨,是服务于教学、科研和管理,其建设原则也无外乎先进性、实用性、高性能性、开放性、可扩展性、可维护性、可操作性,但人们大多都忽略了网络的安全性,或者说在建设校园网过程中对安全性的考虑不够。据美国FBI统计,美国每年因网络安全问题所造成的经济损失高达75亿美元,而全球平均每20秒钟就发生一起Internet 计算机侵入事件。在我国,每年因黑客入侵、计算机病毒的破坏给企业造成的损失令人触目惊心。人们在享受到网络的优越性的同时,对网络安全问题变得越来越重视。 由于学校是以教学活动为中心的场所,网络的安全问题也有自己的特点。主要表现在: 1.不良信息的传播。 在校园网接入Internet后,师生都可以通过校园网络在自己的机器上进入Internet。目前Internet上各种信息良莠不齐,有关色情、暴力、邪教内容的网站泛滥。这些有毒的信息违反人类的道德标准和有关法律法规,对世界观和人生观正在形成的学生来说,危害非常大。如果安全措施不好,不仅会有部分学生进入这些网站,还会把这些信息在校园内传播。 2.病毒的危害。 通过网络传播的病毒无论是在传播速度、破坏性和传播范围等方面都是单机病毒所不能比拟的。特别是在学校接入Internet后,为外面病毒进入学校大开方便之门,下载的程序和电子邮件都可能带有病毒。 3.非法访问。 学校涉及到的机密不是很多,来自外部的非法访问的可能性要少一些,关键是内部的非法访问。一些学生可能会通过非正常的手段获得习题的答案,使正常的教学练习失去意义。更有甚者,有的学生可能在考前获得考试内容,严重地破坏了学校的管理秩序。 4.恶意破坏。 这包括对网络设备和网络系统两个方面的破坏。 网络设备包括服务器、交换机、集线器、通信媒体、工作站等,它们分布在整个校园内,管理起来非常困难,某些人员可能出于各种目的,有意或无意地将它们损坏,这样会造成校园网络全部或部分瘫痪。 另一方面是利用黑客技术对校园网络系统进行破坏。表现在以下几个方面:对学校网站的主页面进行修改,破坏学校的形象;向服务器发送大量信息使整个网络陷于瘫痪;利用学校的BBS转发各种非法的信息等。 5.使用者自身的特点 校园网络有别于一般的Intranet。首先,它的主要使用者为处于青少年阶段的学生,他们好奇心强、求胜逞强心重、法律意识比较淡泊,大部分学校对他们的信息道德教育不到位,使他们产生崇拜黑客的想法,总想一试身手;其次,某些网站为了点击率及自身的利益,提供黑客软件及教程下载;此外,学生精力旺盛,掌握了大量的计算机和网络专业知识,所以他们易产生黑客行为或编写病毒程序。 校园网安全的防范措施 目前,比较成熟的网络安全技术产品有:防火墙、入侵检测、身份认证、病毒防范、信息过滤、数据加密、VPN、VLAN、容错、数据备份、地址绑定等。但网络安全不只是这些技术产品的简单堆砌,它是包括从系统到应用、从设备到服

校园网的网络安全管理和维护

网络工程实践课程设计报告 题目:校园网的网络安全管理和维护 学生姓名: 学号: 专业班级: 同组姓名: 指导教师: 设计时间:

目录 一、课程设计的目的和意义 (2) 二、课程设计的内容和要求 (3) 三、课程设计的相关技术 (5) 四、课程设计过程 (6) 五、课程设计小结 (9)

建设校园网应达到的目的有一下几点: 1、通过与INTERNET的互联,共享国内外院校以及商业机构的网络资源、并与他们建立包括E-MAIL(电子邮件)在内的国际通讯联系。 2、将全校的局域网互联,使全校师生共享校内网络信息资源(教学、科研、图书等信息),改善校内信息流通状况,促进校园内部网络应用的开发。 3、通过与INTERNET互联,展示大学校园校况及大学教育发展的状况,扩大该校在国内外的影响,突出该校在教育研究和建设中的重要地位。 4、使学生通过对校园网的使用,熟悉和掌握现代通讯工具,了解INTERNET 的商业应用价值,为今后走向教学岗位,适应新的计算机应用环境打下基础。 5、利用校园网建立现代化的教学、科研环境,为今后的CAI(计算机辅助教学)、网络上的协作研究创造条件。 6、通过校园网为周边地区的企事业单位提供广泛的网络信息服务。 借助于校园网络,我们要逐渐培养用户使用网络来搜寻、发掘、获取及运用信息的习惯,进而对网络应用产生兴趣,将其融入日常工作和生活中,为网络应用的普及奠定良好的基础。利用校园内各院系现有的局部计算机网络环境建立校园网络,可充分利用网络及计算机相关设备,提高设备的利用率。以校园网络取代传统的布告栏,让用户可以更方便迅速地获知各种重要的学习信息、工作信息和生活信息。通过各校校园网络的连接,可以更便利地互相交换信息,促进各个大学间的学术交流。通过校园网络使教师和科研人员能及时了解国内外科技发展动态,加强对外技术合作,促进教学和科研水平的提高。为开展网上远距离教学和校内多媒体交互式教学提供支持平台。以校园网络为依托,建立各种课程的计算机辅助教学、计算机辅助考试和答疑批阅系统。建立以校园网络为基础的行政、教学及师生之间交互式管理系统。建立新的通讯方式和环境,提高工作效率。

相关文档
最新文档