电石法生产氯乙烯

电石法生产氯乙烯
电石法生产氯乙烯

合肥工业大学

课程设计

设计题目: 5万吨/年电石法制氯乙烯

学院:化学与化工学院专业:化学工程与工艺班级:

学生:方柳陈志指导教师:张旭系主任: (签名)

一、设计要求:

1、根据设计题目,进行生产实际调研或查阅有关技术资料,选

定合理的流程方案和设备类型,并进行简要论述。(字数不小于8000

字)

2、设计说明书内容:封面、目录、设计题目、概述与设计方案

简介、工艺方案的选择与论证、工艺流程说明、专题论述、参考资料

等。

3、图纸要求:工艺流程图1张(图幅2号);设备平面或立面布

置图1张(图幅3号))。

二、进度安排:

三、指定参考文献与资料

《过程装备成套技术设计指南》(兼用本课程设计指导书)、《过程装备成套技术》、《化工单元过程及设备课程设计》

摘要

本次课程设计主要是设计氯乙烯的生产成套装置。氯乙烯是生

产聚氯乙烯的主要原料,到目前为止,全球有93%以上的氯乙烯采用氧氯化法生产。在国内,考虑到石油资源不足,价格较高,而电石资源丰富,所以大部分工厂都采用电石法制取氯乙烯。本次主要介绍电石法制取氯乙烯。先后介绍了从原料气氯化氢、乙炔的制备到氯乙烯的合成、氯乙烯的精馏等一系列生产过程的工艺流程、工艺原理以及主要设备选型等问题。

关键词:氯乙烯;电石法;乙炔;氯化氢;工艺流程;精馏

一乙炔的制备

乙炔生产的工艺原理

(1)电石的破碎

通常厂家采购的电石都是大块的电石,而电石料块进入发生器的合理径为25~50mm,因此在进发生器前必须破碎,通常是将大块的电石放入颚式破碎机,粗破后料块直径为80~100mm,通过皮带机输入电石仓库,然后经过二次破碎,径粒达到25~50mm,破碎后料块通过皮带机径除铁器除铁后输入日料库,作为发生器的入料电石。进入破碎机的电石温度应≤130℃,否则会烫坏,烧坏皮带;进入发生器的电石温度应该≤80℃,否则对发生系统不安全。

(2)电石的除尘

化学工程里把气体与微粒子混合物中分离粒子的操作称作除尘。针对电石及其粉尘的特性,选用的除尘方法一般有以下几种。

①旋风除尘。旋风除尘器对数微米以上的粗粉尘非常有效。采用简单的旋风除尘器和风机进行除尘,利用电石粉尘在风机的作用下,在除尘器内旋转所产生的离心力,将电石粉尘从气流中分离出来。这种方式结构简单,器身无运动部件,不需要特殊的附属设备,安装投资较少,操作、维护也方便,压力损失中等,动力消耗不大,运转维护费用低,也不受浓度、温度的影响。但由于电石粉尘比较细,用这

种简单的除尘方式很难达到环保要求,除尘效率不高。

②湿法除尘。湿法除尘具有投资少,结构简单,占地面积小,特别是对易燃易爆气体的除尘效果更好,在操作时不会产生捕集到的电石灰尘再飞扬。电石除尘通常采用旋风除尘和湿法的冲激式除尘器相结合。这种除尘方式虽然效率较高,但由于系统压力损失大,管道容易积灰。冬天用蒸汽时,积灰易受潮结块,造成管道堵塞,清理比较困难。除尘器内排出的电石渣水,多耗了水又易造成二次污染,除尘器排出的气体中水蒸气在寒冷的北方也容易结冰,因此这种除尘方式适合于气候湿润、冬天不冷的地方使用。

(3)袋式过滤除尘

布袋除尘室依靠编制的或毡织的滤布作为过滤材料来达到分离含尘气体中电石尘的目的,除尘效率一般可达99%。滤布在长期与粉尘的接触和反复清理的过程中,其性能会发生变化,这在实际使用中影响很大。滤布一般在一到两年内大多数孔眼就会被堵塞,及时清理也不能达到所需的气量,或产生滤布破损事故,此时需要更换滤布。因此滤布的选型非常重要,一般要考虑材质、织法、透气率、阻力降、压损比等。

(4)乙炔的发生

仓库内经破碎至25~50mm的电石,在皮带机的输送下,加入到经氮气置换合格的第一贮斗,再加入到经氮气置换合格的第二贮斗,在由电

磁振动加料根据发生器的控制需求加入发生器内。电石遇到发生器内的水生成粗乙炔气体由发生器顶部逸出,经喷淋预冷器及正水封进入喷淋冷却塔及气柜中。反应所放出的热量是由过量的冷却塔废水和清净塔废水及渣浆上清液或工业补充水连续加入发生器并通过溢流管溢流而出,上述加水量以维持发生温度在(85±5)℃为标准。为了使发生器液相中的电石颗粒表面因水解反应产生的浓渣浆层被耙齿不断更新破坏,使电石表面不断地能偶与水充分接触,发生器内设置了多层隔板和耙齿,通过耙齿的搅拌使电石颗粒的表面得到不断的更新并缓缓地向下一层隔板推动,使得水解速度更快,更完全;水解反应的副产物电石渣浆不断从溢流管流出,而较浓的渣浆及矽铁杂质由发生器内的搅拌耙齿送至底部间歇排放。当发生器压力因加料故障或停车时,压力低于控制范围时,气柜内贮存的乙炔将借压差经逆水封,进入发生器内以保持设备处于正压,确保安全生产。发生器的安全水封连接管道安装于发生器液面略上方的气相部位。当发生器气相出口管道或冷却内电石渣堵塞而压力剧增时,乙炔气经管道冲破安全水封自动排空。

在湿式发生器中电石加入液相中发生水解反应,生成乙炔,反应式如下:

CaC

2+2H

2

O

2

)

(OH

Ca

→+mol

KJ

H

C/

130

2

2

+

由于工业品电石中含有不少杂质,在发生器水相中也同时进行一些副

反应,生成相应的PH 3、S H 2、NH 3等杂质气体,其反应时如下:

22)(OH Ca O H CaCO →+

↑+→+S H OH Ca O H CaS 222)(2

322232)(36PH OH Ca O H P Ca +→+↑

↑+→+322232)(36NH OH Ca O H N Ca

↑+→+4222)(24SiH OH Ca O H Si Ca

↑+→+322332)(36AsH OH Ca O H As Ca

发生器生成的是由乙炔气和杂质气体共同组成的、含有大量水蒸气的粗乙炔气,进入清净工序。乙炔发生工艺流程图见1-1。

(5)乙炔的净化

粗乙炔气由于电石内杂质常含有硫化氢、磷化氢、氨、砷比氢等杂质气体。它们合对氯乙烯合成的氯化高汞触媒进行不可逆吸附,破坏其“活性中心”而加速触媒活性的下降,其中磷化氯会降低乙炔的自燃点,与空气接触会自燃,均应彻底脱除。目前多数工厂均采用次氯酸钠液体清净剂,其与杂反进行氧化反应:

NaCl PO H NaClO PH 44433+→+

NaCl SO H NaClO S H 44422+→+

NaCl O H SiO NaClO SiH 424224++→+

NaCl AsO H NaClO AsH 44433+→+

清净过程反应产物磷酸、硫酸等由后面的碱洗过程予以中和为盐类,再由废碱液排出:

O H PO Na NaOH PO H 2434333+→+

2422Na NaOH SO H →+O H SO 242+

O H CO Na NaOH CO 23222+→+

对于生产中液体清净剂次氯酸钠浓度和pH 值的选择,主要考虑到清净效果及安全因素两个方面。塔内次氯酸钠溶液的有效氯含量不低于%,而补充新鲜溶液的有效氯应该控制在~范围内,pH 值在7~为宜。

处理后的乙炔气经乙炔气冷却器出去饱和水分,制的纯度达%以上,不含S 、P 的合格精制乙炔气送氯乙烯合成工序。

乙炔生产中的主要设备

(1)乙炔发生器

乙炔发生器是是以电石水解反应制取乙炔的主要设备,目前国内多半采用的是湿式立式发生器。本次设计采用φ的六层隔板发生器,其乙炔生产能力为每小时2400m 3

以上。其示意图如图1-2。

图1-1 乙炔发生工艺流程图

图1-2 乙炔发生器示意图

(2) 清净塔

清净塔式清净系统的主要设备。图1-3为典型的填料式清净塔的结构。清净塔常用的填料有拉西瓷环、塑料阶梯环或波纹填料,如采用陶瓷环尺寸越小,则接触表面积越大,空隙率越小,根据生产经验,一般使用φ25~50mm瓷环,每个瓷环的填充高度为6~9米。

作为清净作用的填料塔,推荐空塔气速在~s,气体在塔内总停留

时间为40~60s,以确保化学吸收完全。由于乙炔清净属于化学吸收过程,清净效果除了与吸收剂浓度、pH值以及吸收温度有关外,还与气液的接触时间有关。

由于清净塔的液相介质为次氯酸纳,以及清净反应生成的硫酸、磷酸等,它对塔体采用的碳钢有腐蚀作用,需要对其进行防腐处理,原来的清净塔采用的是钢衬胶,衬胶在有温度的情况下容易老化脱落,现在有些厂家采用新型的内衬材料,如内衬PO,内衬四氟等,使用寿命长。

图1-3 清净塔示意图

(3)乙炔水环泵

在乙炔气输送设备的选择上,首先要考虑乙炔的性质和对输送设备的要求,从乙炔的化学、物理性质看,它是易燃易爆的气体,不一在高压条件下输送,以确保安全。从输送要求看,乙炔要经过一系列的净化设备,必然产生压力损失,为了克服压力损失,就要有一定的压头,而同时又必须达到生产所需的气量,一确保生产平衡。为此,选用水环泵来输送乙炔气体。其特点是叶轮与泵壳间隙较大,不易因碰撞而产生火花,对易燃易爆的气体输送安全可靠。泵内的工作液为水,使乙炔成湿气状态,抑制了乙炔的爆炸性质。水环泵具有一定的抽气能力,输送压力不是很高,而量大的性能,虽然能量转换效率不高,但对输送乙炔气体是相当安全、适合的。

二氯化氢的制备

工艺流程

(1)原材料、辅助材料、公用工程规格及消耗

①原材料规格及消耗

(ⅰ)氯氢处理来的氢气

反应工程第五章习题答案

化学反应工程习题(第五章) 5.1乙炔与氯化氢在HgCl 2-活性炭催化剂上合成氯乙烯的反应 2223C H HCl C H Cl +? ()A ()B ()C 其动力学方程式可有如下种种形式: (1) 2 (/)/(1)A B C A A B B C C r p p p K K p K p K p κ=-+++ (2) /(1)(1)A B A B B B C C A A r K K p p K p K p K p κ=+++ (3) /(1)A A B A A B B r K p p K p K p κ=++ (4) /(1)B A B B B C C r K p p K p K p κ=++ 试说明各式所代表的反应机理和控制步骤。 解:(1) A A σσ+? B B σσ+? A B C σσσσ+?+ (控制步骤) C C σσ?+ (2) 11A A σσ+? 22 122111 B B A B C C C σσσσσσσσ+?+→+?+(控制步骤) (3) A A σσ+? B B σσ+? A B C σσ+→+ (控制步骤) (4) B B σσ+? A B C σσ+→ (控制步骤) C C σσ?+ 5.2 在Pd-Al 2O 3催化剂上用乙烯合成醋酸乙烯的反应为 243222321C H C H C O O H O C H C O O C H H O 2 ++ ?+ 实验测得的初速率数据如下[功刀等,化工志,71,2007(1968).] 115℃, AcOH 200p mmHg =,2 92O p m m H g =。 24()C H p m m H g 70 100 195 247 315 465 5 010(/) r m ol hr g ??催化剂 3.9 4.4 6.0 6.6 7.25 5.4 注:1mmHg=133.322Pa

电石法生产氯乙烯

合肥工业大学 课程设计 设计题目: 5万吨/年电石法制氯乙烯 学院:化学与化工学院专业:化学工程与工艺班级: 学生:方柳陈志指导教师:张旭系主任: (签名) 一、设计要求: 1、根据设计题目,进行生产实际调研或查阅有关技术资料,选定合理的流程方案和设备类型,并进行简要论述。(字数不小于8000字) 2、设计说明书内容:封面、目录、设计题目、概述与设计方案简介、工艺方案的选择与论证、工艺流程说明、专题论述、参考资料等。 3、图纸要求:工艺流程图1张(图幅2号);设备平面或立面布置图1张(图幅3号))。 二、进度安排: 三、指定参考文献与资料 《过程装备成套技术设计指南》(兼用本课程设计指导书)、《过程装备成套技术》、《化工单元过程及设备课程设计》

摘要 本次课程设计主要是设计氯乙烯的生产成套装置。氯乙烯是生产聚氯乙烯的主要原料,到目前为止,全球有93%以上的氯乙烯采用氧氯化法生产。在国内,考虑到石油资源不足,价格较高,而电石资源丰富,所以大部分工厂都采用电石法制取氯乙烯。本次主要介绍电石法制取氯乙烯。先后介绍了从原料气氯化氢、乙炔的制备到氯乙烯的合成、氯乙烯的精馏等一系列生产过程的工艺流程、工艺原理以及主要设备选型等问题。 关键词:氯乙烯;电石法;乙炔;氯化氢;工艺流程;精馏

一乙炔的制备 乙炔生产的工艺原理 (1)电石的破碎 通常厂家采购的电石都是大块的电石,而电石料块进入发生器的合理径为25~50mm,因此在进发生器前必须破碎,通常是将大块的电石放入颚式破碎机,粗破后料块直径为80~100mm,通过皮带机输入电石仓库,然后经过二次破碎,径粒达到25~50mm,破碎后料块通过皮带机径除铁器除铁后输入日料库,作为发生器的入料电石。进入破碎机的电石温度应≤130℃,否则会烫坏,烧坏皮带;进入发生器的电石温度应该≤80℃,否则对发生系统不安全。 (2)电石的除尘 化学工程里把气体与微粒子混合物中分离粒子的操作称作除尘。针对电石及其粉尘的特性,选用的除尘方法一般有以下几种。 ①旋风除尘。旋风除尘器对数微米以上的粗粉尘非常有效。采用简单的旋风除尘器和风机进行除尘,利用电石粉尘在风机的作用下,在除尘器内旋转所产生的离心力,将电石粉尘从气流中分离出来。这种方式结构简单,器身无运动部件,不需要特殊的附属设备,安装投资较少,操作、维护也方便,压力损失中等,动力消耗不大,运转维护费用低,也不受浓度、温度的影响。但由于电石粉尘比较细,用这种简单的除尘方式很难达到环保要求,除尘效率不高。 ②湿法除尘。湿法除尘具有投资少,结构简单,占地面积小,特别是对易燃易爆气体的除尘效果更好,在操作时不会产生捕集到的电石灰尘再飞扬。电石除尘通常采用旋风除尘和湿法的冲激式除尘器相结合。这种除尘方式虽然效率较高,但由于系统压力损失大,管道容易积灰。冬天用蒸汽时,积灰易受潮结块,造成管道堵塞,清理比较困难。除尘器内排出的电石渣水,多耗了水又易造成二次污染,除尘器排出的气体中水蒸气在寒冷的北方也容易结冰,因此这种除尘方式适合于气候湿润、冬天不冷的地方使用。 (3)袋式过滤除尘 布袋除尘室依靠编制的或毡织的滤布作为过滤材料来达到分离含尘气体中电石尘的目的,除尘效率一般可达99%。滤布在长期与粉尘的接触和反复清理的过程

乙炔氢氯化装置的流程模拟

石河子大学毕业设计题目:乙炔氢氯化装臵的流程模拟 院(系):化学化工学院 专业:化学工程与工艺 学号: 姓名: 指导教师: 完成日期:2012年6月

摘要 我国是世界上PVC生产和消费发展最快的国家。我国PVC生产多采用电石作为原料,与发达国家采用的石油乙烯路线相比,存在工艺技术落后、消耗高、污染严重的问题。 本设计简要介绍了合成氯乙烯的工艺,着重介绍了乙炔法合成氯乙烯生产工艺流程。对乙炔法合成氯乙烯装臵的动态模拟技术进行了研究。根据物料、能量及动量守恒方程等,对系统中的基本单元设备分别建立了机理模型;结合氯乙烯合成化学反应机理模型及对转化器结构的分析,建立了描述氯乙烯转化器特性的一维动态机理模型,并根据模型形式和特点采用了适当的数值计算方法。在模拟的基础上,对年产12万吨的聚氯乙烯进行了计算。 关键词:乙炔; 氯乙烯; 流程模拟

Abstract China is the world’s fastest—growing country in producing and consuming of PVC.Compared with oil ethylene as raw material in developed countries,the application of Calcium carbide in China, result in high consumption and pollution. The Processes of vinyl chloride synthesis have been introduced briefly,and the production process of acetylene is emphasized especially in this paper. The dynamic simulation technology of plants for vinyl chloride synthesis from acetylene process has been studied in this paper. According to the equilibrium of mass, energy and reaction mechanism and production data,the mechanism models of basic unit plants in VCM system have been founded. By analyzing the structure of the reactor,a dynamic mechanism model of vinyl chloride synthesis converter was founded. The model may describe the characteristics of vinyl chloride converter. According to the form and characteristies of the model,a proper arithmetic is chosen. On the basis of simulation, an annual output of 120000 tons of vinyl chloride was calculated. Keywords: acetylene; vinyl chloride; process simulation

氯化氢与乙炔混合爆炸原因及预防措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.氯化氢与乙炔混合爆炸原因及预防措施正式版

氯化氢与乙炔混合爆炸原因及预防措 施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 用氢气与氯气氯化合成氯化氢,并与乙炔气混合生产氯乙烯,是聚氯乙烯生产的一个重要生产工序。20xx年夏,河北某树脂厂由于突然停电,使该工序的乙炔混合器及相关管道发生了爆炸,由于时至中午,现场人员稀少,虽未造成人员伤亡,但也造成了巨大损失。那么,造成这起事故的原因又是什么呢?笔者试图对其作一分析,以便相同生产借鉴。 1.氯乙烯的生产工艺过程及其火灾危险性 (1)氯乙烯的生产工艺过程氯乙烯的生

产工艺过程如图1所示。电石←水氢气 ↘↓(精乙炔)合成→(氯化氢)→混合→(粗氯乙烯)→精制(精氯乙烯)氯气↗图1氯乙烯的生产工艺过程 (2)氯乙烯生产工艺过程的火灾危险性氯乙烯生产工艺过程的火灾危险性主要来自于原料的危险性: ①氢气在标准状态下,氢气是一种无色无臭无味的非常易燃的气体,爆炸极限4%~75%。遇氟气、氯气不需引燃源引燃就能够发生猛烈的爆炸。氢在常温下较不活泼,不溶于水。高温下变的高度活泼,能与许多金属和非金属直接化合。氢在钢制设备中被吸附会引起“氢脆”,导致工艺设备的损坏;液氢可使低碳钢以及大多数铁

氯化氢

盐酸 百科名片 盐酸,学名氢氯酸,是氯化氢(化学式:HCl)的水溶液,是一元酸。盐酸是一种强酸,浓盐酸具有极强的挥发性,因此盛有浓盐酸的容器打开后能在上方看见酸雾,那是氯化氢挥发后与空气中的水蒸气结合产生的盐酸小液滴。盐酸是一种常见的化学品,在一般情况下,浓盐酸中氯化氢的质量分数在37%左右。同时,胃酸的主要成分也是盐酸。 【基本信息】 【理化特性】 【化学反应】 【工业制法】 【实验室制法】 【主要用途】 【危险概述】 【操作防护】 【基本信息】 【理化特性】 【化学反应】 【工业制法】 【实验室制法】 【主要用途】 【危险概述】 【操作防护】 ?【应急处理】 ?【相关法规】 ?【储存与运输】 【基本信息】

盐酸 化学品中文名称:盐酸 化学品英文名称:hydrochloric acid 英文名称2:chlorohydric acid hydrogen chloride acide chlorhydrique 技术说明书编码:995 CAS No.:7647-01-0 分子量:36.46 【理化特性】 20℃时101.3 kPa下的数据 主要成分:HCl 含量: 工业级36%。 外观与性状:无色或微黄色易挥发性液体,有刺激性气味。 一般实验室使用的盐酸为0.1mol/L pH=1 一般使用的盐酸pH在2~3左右(呈强酸性) 熔点(℃):-114.8(纯HCl) 沸点(℃):108.6(20%恒沸溶液) 相对密度(水=1): 1.20 相对蒸气密度(空气=1): 1.26 饱和蒸气压(kPa):30.66(21℃) 溶解性:与水混溶,溶于碱液。 禁配物:碱类、胺类、碱金属、易燃或可燃物。 【化学反应】 其酸能与酸碱指试剂反应,紫色石蕊试剂与PH试纸变红色,无色酚酞不变色。

电石法氯乙烯乙炔生产工艺要点.doc

电石法氯乙烯乙炔生产工艺(全版) 生产原理 电石水解反应原理 CaC2+2H2O→Ca(OH)2+C2H2+130KJ/mol(31kcal/mol) 由于工业电石含有大量杂质,CaC2在水解反应的同时,还进行一些副反应,生成相应的杂质气体,其反应式如下: CaO+2H2O→Ca(OH)2+63.6kJ/mol CaS+2H2O→Ca(OH)2+H2S↑ Ca3P2+6H2O→3Ca(OH)2+2PH3↑ Ca3N2+6H2O→3Ca(OH)2+2NH3↑ Ca2Si+4H2O→2Ca(OH)2+SiH4↑ Ca3As2+6H2O→3Ca(OH)2+2AsH3↑ 清净原理: 上述水解反应中,生成的粗乙炔气中含有硫化氢、磷化氢等杂质气体,在清净时主要进行如下 化反应. H2S+4NaClO→H2SO4+4NaCl PH3+4NaClO→H3PO4+4NaCl SiH4+4NaClO→SiO2+2H2O+4NaCl AsH3+4NaClO→H3AsO4+4NaCl 上述反应生成的H2SO4 、H3PO4等酸类物质,部份夹带于气体中,进入中和塔,在塔内与氢氧化钠进行中和反应,主要的反应式如下: H3PO4+3Na OH→Na3PO4+3H2O H2SO4+2NaOH→Na2SO4+2H2O 生成的盐类物质溶解于液相中,通过排碱时排放。 工序任务 将破碎好的电石加入发生器内与水发生水解反应,按生产需要,调节电磁振荡器电流,维持气柜高度,生成的粗乙炔气进行冷却、压缩、清净(除去粗乙炔气中的H2S、PH3等杂质),使其纯度达到98%以上,满足合成工序流量要求。 工序岗位职责 熟悉本工序工艺流程,设备结构,物料性能,掌握操作法及基本生产原理,以及安全、消防环境保护要求。严格遵守岗位操作规程、交接班制度、安全生产制度、巡回检查制度、设备维护保养制度。 严格控制各项工艺控制指标,准确及时填写原始记录,做到无漏项,无涂改,无污迹,字体工整(要求用仿宋体)。 八小时工作负责处理和排除各种生产故障,保证实现优质、高产低消耗,同时保证设备卫生清洁和环境卫生。遵守劳动纪律、不串岗、不睡岗、不擅自离岗,有事离岗必须向班长请假。 服从班组长、工段长的领导和分厂、生产调度的指挥,接受安全巡岗检查。 工序原料质量要求 电石 电石质量应符合(表1)要求。 表1电石质量标准 GB/T10655-89 指标名称指标 优级品一级品二级品三级品 发气量,L/Kg

氯化氢的性质

氯化氢的性质 无色有刺激性气味的气体。标准状态下密度为1.00045克/升,熔点-114.80℃,沸点-85℃。在空气中发白雾,溶于乙醇、乙醚,极易溶于水。实验室中用水吸收时不得把导管口伸入水下,而要在导管口连接倒放的漏斗,使其边缘紧贴水面以利吸收并防止倒吸。因HCl的沸点低,不易液化,若混入少量氯气可用活性炭吸附掉易液化的C12。若Cl2中混入HCl则可用少量水或饱和食盐水洗气以除去溶解度甚大的HCl。干燥HCl气不活泼,对锌、铁均无反应。其水溶液叫盐酸,常用的浓盐酸密度为l.18~l.19克/厘米3(含HCl36~38%的溶液)相当于12摩/升左右。浓盐酸是挥发性强酸,加热蒸发时则HCl逸出得比水多,致使浓度下降,至20%即不再下降,成为“恒沸点溶液”。盐酸具有酸的通性,其酸根Cl-无氧化性,为非氧化性酸 1.氢的构成及热物理性质 氢有三种同位素:原子量为1的氕(符号H);原子量为2的氘(符号D)和原子量为3的氚(符号T)。氕(通称氢)和氘(亦称重氢)是稳定的同位素;氚则是一种放射性同位素,半衰期为12.26年。氚放出b射线后转变成。氚是极稀有的,在1018个氢原子中只含有0.4~67个氚原子,所以自然氢中几乎全部是氕(H)和氘(D),它们的含量比约为6400:1。不论是那种方法获得的氢,其中氕的含量高达99.987%,氘(D)含量的范围在(0.013~0.016)%之间。事实上,因为氢是双原子气体,所以绝大多数的氘原子都是和氕原子结合在一起形成氘化氢(HD)。分子状态的氘-D2在自然氢中几乎不存在。因此,普通的氢实际上是H2和HD的混合物,HD在混合物里的数量在(0.026~0.032)%之间。 在通常状况下,氢是无色、无味无嗅的气体,极难溶解于水。氢是所有气体中最轻的,标准状态下的密度为0.0899,只有空气密度的/14.38。在所有的气体中,氢的比热容最大、热导率最高、粘度最低。氢分子以超过任何其它分子的速度运动,所以氢具有最高的扩散能力;不仅能穿过极小的空隙,甚至能透过一些金属,如钯(Pd)从240开始便可以被氢渗透。 氢的转化温度比室温低得很多,其最高转化温度约为204K。因此,必须把氢预冷到此温度以下再节流方能产生冷效应。 众所周知,氢是一种易燃易爆物质。氢气在氧或空气中燃烧时产生几乎无色的火焰(若氢中不含杂质),其传播速度很快,达2.7m/s;着火能很低,为0.2mJ。在大气压力及293K 时氢气与空气混合物的燃烧体积分数范围是(4~75)%(以体积计);当混合物中氢的体积分数为(18~65)%时特别容易引起爆炸。因此进行液氢操作时需要特别小心。而且应对液氢纯度进行严格的控制与检测。 氢不仅在低温技术中可以用作工质,或者液化之后可作为低温冷却剂,而且氢还是比较理想的清洁能源。在火箭技术中氢被作为推进剂,同时利用氢为原料还可以产生重氢,以满足核动力的需要。 二、氢的正仲转化 由双原子构成的氢分子H2内,由于两个氢原子核自旋方向的不同,故存在着正、仲两种形状。正氢(o-H2)的原子核自旋方向相同,仲氢(p-H2)的原子核自旋方向相反。

电石乙炔法合成氯乙烯工艺及设备

电石乙炔法合成氯乙烯工艺及设备 马晶,王硕,韩晓丽 摘要:电石与水反应生成乙炔,乙炔除杂质后与氯化氢混合后进入转化器进行反应,反 应在装有氯化汞和活性炭为催化剂的列管内进行。改进转化器列管内结构,使流体流动状态改变,管中心温度降低,提高触媒使用寿命,提高单台转化器生产能力。在我国目前很多用电石法制氯乙烯的厂家的情况下值得推广应用。 关键词:电石乙炔法; 氯乙烯;转化器;结构 随着我国经济的不断发展,各种新材料合成及其他相关领域的开发促使了氯产品和产业的快速发展,同时如何能达到更高的产量是人们关注的问题。氯乙烯是氯产品中比较基础的一种产品,又名乙烯基氯是一种应用于化工的重要的单体,可由乙烯或乙炔制得,为无色、易液化气体,沸点-13.9 ℃,临界温度142 ℃,临界压力5.22 MPa。氯乙烯有毒,与空气混合易形成爆炸物,爆炸极限4%~22%(体积分数)。其单体的生产方法主要分为乙炔法(电石法)、乙烯法、烯烃法、联合法、乙烯氧氯化法和乙烷一步氧氯化法。我国因石油资源相对较少,电石原料分布广泛,所以目前很多化工企业仍采用电石法制取氯乙烯。 1 电石法制氯乙烯主要化学反应 电石与水反应产生乙炔,除杂质后与氯化氢混合、干燥后进入转化器。反应在转化器管内进行,列管内内装入以活性炭为载体的氯化汞(含量一般为载体质量的10%)催化剂。常压下进行反应,反应为放热反应,管外用加压循环热水冷却,保证温度控制在100~180 ℃。乙炔转化率达99%,氯乙烯收率在95%以上。副产物是二氯乙烷(约1%),也有少量乙烯基乙炔、二氯乙烯、三氯乙烷等。 生产工艺中,乙炔和氯化氢在转化器内合成氯乙烯的反应: (1)在氯化汞催化剂存在下,乙炔与氯化氢加成直接合成氯乙烯。 原料乙炔和氯化氢制备方法 (2)电石气制备乙炔方法: (3)氯化氢的制备方法:氯碱车间的氯气和氢气通入合成炉。 2 影响反应转化率的因素 2.1 原料乙炔与氯化氢的配比 在反应中乙炔可与催化剂氯化汞反应生成氯化亚汞和单质汞,所以在实际生产中要使原料气中氯化氢过量以避免催化剂中毒,减少副反应的发生。在气体纯度稳定的情况下,乙炔和氯化氢摩尔配比一般应保证在1.05~1.10 之间。可通过测定转化器出口气体中的氯化氢含量(HCl 体积分数在3%~8%)控制原料气比例,净化泡沫塔的出口温度、酸浓度值也可作为控制配比的相关参考依据。但氯化氢过多,会生成多氯化物等副产物。乙炔和氯化

采用电石法生产聚氯乙烯

采用电石法生产聚氯乙烯(PVC)的上市公司一览◇电石法:利用电石(碳化钙CaC2),遇水生成乙炔(C2H2),将乙炔与氯化氢(HCl)合成制出氯乙烯单体(CH2CHCl),再通过聚合反应使氯乙烯生成聚氯乙烯—[CH CHCI]n—的化学反应方法。具体代表厂家为:新疆天业(600075)、中泰化学(002092)、青岛海晶等。 ◇乙烯法:从石油中提取乙烯(C2H4),让氯气与乙烯发生取代反应,制得氯乙烯单体,经聚合反应生成聚氯乙烯树脂。代表厂家为:齐鲁石化、上海氯碱等。 电石法比石油法成本低,但电石法生产的氯乙烯单体在质量上比石油法稍差(也就造成了石油法PVC稍优于电石法),且电石法造成的污染较大。但石油价格的持续走高,使电石法的生存空间和利润空间不断扩展。有相当多的企业或投资人正在进入这一行业,特别是西部企业,在资源(电石多由西部企业生产、煤矿也较丰富)、能耗(水电成本较低)、人力(人工成本低)等方面都具有优势。近两年内,西部将有几百万吨的电石法PVC投产,行业竞争将愈演愈烈。同时随着PVC出口退税的调整(从11%降至5%)以及国家对两高一资企业的限制(电石将极其紧张),国内市场将极其惨烈。 ◇西部电石法生产企业成本优势突出 在电力成本支撑电石价格难以下跌的情况下,拥有一体化优势的西部企业利用自备电厂或当地较为便宜的电石价格,拥有成竞争优势。自备电厂的发电成本仅为0.18-0.20 元/度,远低于0.37-0.39 元/度的电网电价;电石供应价格也在2400-2600 元/吨,低于内地电石价格200 元/吨以上。在市场价格偏低、行业内企业普遍开工不足的情况下,西部电石法PVC 生产企业依旧保持了较高的开工率和合理的库存水平,拥有自备电厂的企业,在目前的价格水平下依旧拥有较强盈利能力。英力特一季度开工率约为70%,随后逐步提高至二季度90%、三季度的100%;新疆天业也从一季度约80%开工率提升至三季度的100%;中泰化学更是一直保持了100%的满负荷生产。

乙烯氧氯化法生产氯乙烯[1]

乙烯氧氯化法生产氯乙烯 一、概述 1.氯乙烯的性质和用途 氯乙烯在常温常压下是一种无色的有乙醚香味的气体,沸点-13.9℃,临界温度142℃,临界压力为5.12MPa,尽管它的沸点低,但稍加压力,就可得到液体的氯乙烯。氯乙烯易燃,闪点小于-17.8℃,与空气容易形成爆炸混合物,其爆炸范围为4~21.7%(体积)。氯乙烯易溶于丙酮、乙醇、二氯乙烷等有机溶剂,微溶于水,在水中的溶解度是0.001g/L。氯乙烯具有麻醉作用,在20~40%的浓度下,会使人立即致死,在10%的浓度下,—小时内呼吸管内急动而逐渐缓慢,最后微弱以致停止呼吸。慢性中毒会使人有晕眩感觉,同时对肺部有刺激,因此,氯乙烯在空气中的允许浓度为500ppm。 氯乙烯是分子内包含氯原子的不饱和化合物。由于双键的存在,氯乙烯能发生一系列化学反应,工业应用最重要的化学反应是其均聚与共聚反应。 氯乙烯是聚氯乙烯的单体,在引发剂的作用下,易聚合成聚氯乙烯。氯乙烯也可以和其它不饱和化合物共聚,生成高聚物,这些高聚物在工业上和日用品生产上具有广泛的用途。因此,氯乙烯的生产在有机化工生产中占有重要的地位。 2.氯乙烯的生产方法

氯乙烯首先在工业上实现生产是在20世纪30年代,当时是使用电石水解成,乙炔和氯化氢进行加成反应得到的。其化学反应方程式为:CaC2 + 2H2O → Ca(OH)2 + C2H2 C2H2 + HCl CH2CHCl 50年代前,电石是由焦炭与生石灰在电炉中加热生成: CaO+3C CaC2 + CO 随着氮乙烯需求量的增加,人们致力于寻找生产氯乙烯更廉价的原料来源。在50年代初期,乙烯成为生产氯乙烯更经济、更合理的原料。实现了由乙烯和氯气生产氯乙烯的工业生产路线。该工艺包括乙烯直接氯化生产二氯乙烷及二氯乙烷裂解生产氯乙烯。 随后,人们注意到二氯乙烷裂解过程,除生成氯乙烯外还生成氯化氢。由此,工业界想到由氢化氢可以连同乙炔生产工艺一起生产氯乙烯。 CH 2=CH2十C12 → CH 2C1—CH 2C1 CH 2C1—CH 2C1 → CH 2=CHC1十HC1 十HCl → CH 2=CHC1 50年代后期,开发出乙烯氧氯化工艺以适应不断增长的对氯乙烯的需求。 在这个过程中,乙烯、氧气和氯化氢反应生成二氯乙烷,和直接氯化过程结合在一起,两者所生成的二氯乙烷一并进行裂解得到氯乙烯,这种

氯化氢

第一节:氯化氢合成工艺技术 1 生产能力 1.1 设计能力 1.1.1 十万吨系统设计能力:6.7万吨HCl/年 1.1.2 五万吨系统设计能力:4.7万吨HCl/年 1.2 实际生产能力 1.2.1十万吨系统有三台石墨合成炉及其配套设备,满负荷运行日产氯化氢气体198.67吨,单台炉产能66.22吨/日。 1.2.2 五万吨系统共有5台钢制合成炉及其配套设备,正常生产时运行4台合成炉,运行负荷日产氯化氢气体156吨,单台炉产能39吨/日。 12.3 五万吨系统通过改造,新增两台二合一副产蒸汽石墨合成炉及其配套设备,日常开一备一,满负荷运行日产氯化氢气体150吨,单台炉产能150吨/天。系统在满负荷运行状态下,可副产压力在0.8-1.0 MPa饱和蒸汽4.375吨/h,装置年开工率按8000h计,年产蒸汽3.5万吨。 1.2.4因原料气含有一定量的水份,故生产系统在正常运行时产生一定量的冷凝酸(盐酸),其产量约为:十万吨系统5吨/日,氯化氢气体损耗量约为日产总量的0.78%;五万吨系统 3.5吨/日,氯化氢气体损耗量约为日产总量的 0.52%。 1.2.5 如后工序生产出现异常,本装置生产的氯化氢气体将部分或全部倒入吸收系统制取盐酸,五万吨系统满负荷运行每小时生产氯化氢气体约3800m3 /h,用水吸收制取浓度31%盐酸可生产20.08T/h;十万吨系统满负荷运行每小时生产氯化氢气体约5500 m3 /h,用水吸收制取浓度31%盐酸可生产28.02 T/h。

1.2.6根据实际生产情况,五万吨合成系统仍有一定的生产余量,但吸收装置受设备自身因素影响已满负荷运行,如全部降量制取盐酸,前系统必须降电流;十万吨系统合成系统已趋于满负荷,无法对现有装置进行提量,如全部降量制取盐酸,三套吸收装置无法全部吸收,前系统必须降电流,将氯化氢产量降至3200 m3 /h。 2 产品及副产品 2.1 本装置的产品:氯化氢气体,副产品:盐酸(合成酸、高纯酸)、蒸汽 产品名称:氯化氢气体;分子式:HCL ;分子量36.568 2.2 氯化氢的性质 2.2.1 物理性质 2.2.1.1 氯化氢是一种有毒、有害、有强烈刺激性气味的气体。气态氯化氢在标准状况下密度为1.63kg/m3,恒沸点:108.65℃,这是氯化氢水溶液(盐酸)所具有的特性,浓盐酸在加热蒸馏时,其馏出物是含有少量水分的氯化氢气体,在0.1MPa情况下,到此温度后一直持续到浓度降低到20.24%,温度上升至108.65℃为止,到此温度后不再上升,因此称之为恒沸点。而稀盐酸在加热蒸馏时,其馏出物是含有少量氯化氢的水份,在0.1MPa情况下,这种蒸馏也持续到酸浓度增加到20.24%,温度为108.65℃时为止,因此决不可能借助于加热煮沸来完全除去溶液中的氯化氢。 2.2.2.2 气态氯化氢极易溶于水,在20℃,0.1MPa情况下,1体积水能溶解442体积的氯化氢气体,在标准状态(0℃,760mmHg)下,1升水可吸收525.2升的氯化氢气体,但氯化氢在水中的溶解度受温度影响很大,一般地,气态氯化氢在水中的溶解度是随温度升高而逐渐下降的。用水吸收氯化氢气体是一个大量放热的过程,1克分子氯化氢溶解于水时产生5.375千卡的热量。

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理 1生产方法 按其所用原料可大致分为下列几种: ⑴乙烯法 此法系以乙烯为原科,可通过三种不同途径进行,其中两种是先以乙烯氯化制成二氯乙烷:C2H4 + Cl2 → C2H4Cl2 然后从二氯乙烷出发,通过不同方法脱掉氯化氢来制取氯乙烯;另一种则直接从乙烯高温氯化来制取氯乙烯。现分述如下: ①二氯乙烷在碱的醇溶液中脱氯化氢(也称为皂化法) C2H4Cl2+ NaOH → C2H3Cl + NaCl + H2O 此法是生产氯乙烯最古老的方法。为了加快反应的进行,必须使反应在碱的醇溶液小进行。这个方法有严重的缺点:即生产过程间歇,并且要消耗大量的醇和碱,此外在生产二氯乙烷时所用的氯,最后成为氯化钠形式耗费了,所以只在小型的工业生产中采用。 ②二氯乙烷高温裂解 C2H4Cl2→ C2H3Cl + HCl 这个过程是将二氯乙烷蒸气加热到600℃以上时进行的,与此同时,还发生脱掉第二个氯化氢生成乙炔的反应,结果使氯乙烯产率降低。为了提高产率,必须使用催化剂。所用的催化剂为活性炭、硅胶、铝胶等,反应在480~520℃下进行,氯乙烯产率可达85%。 ③乙烯直接高温氯化 这一方法不走二氯乙烷的途径,直接按下式进行: C2H4 +Cl2→ C2H3Cl + HCl 由上式可以看出这一反应是取代反应,但实际上乙烯与氯在300℃以下主要是加成反应,生成二氯乙烷。要想使生成氯乙烯的取代反应成为唯一的反应,则必须使温度在450℃以上,而要避免在低温时的加成过程,可以采用将原科单独加温的方法来解决,但在高温下反应激烈,反应热难以移出,容易发生爆炸

氯化氢与乙炔混合爆炸原因及预防措施示范文本

氯化氢与乙炔混合爆炸原因及预防措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

氯化氢与乙炔混合爆炸原因及预防措施 示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 用氢气与氯气氯化合成氯化氢,并与乙炔气混合生产 氯乙烯,是聚氯乙烯生产的一个重要生产工序。20xx年 夏,河北某树脂厂由于突然停电,使该工序的乙炔混合器 及相关管道发生了爆炸,由于时至中午,现场人员稀少, 虽未造成人员伤亡,但也造成了巨大损失。那么,造成这 起事故的原因又是什么呢?笔者试图对其作一分析,以便相 同生产借鉴。 1.氯乙烯的生产工艺过程及其火灾危险性 (1)氯乙烯的生产工艺过程氯乙烯的生产工艺过程如图 1所示。电石←水氢气↘↓(精乙炔)合成→(氯化氢)→混合→ (粗氯乙烯)→精制(精氯乙烯)氯气↗图1氯乙烯的生产工艺

过程 (2)氯乙烯生产工艺过程的火灾危险性氯乙烯生产工艺过程的火灾危险性主要来自于原料的危险性: ①氢气在标准状态下,氢气是一种无色无臭无味的非常易燃的气体,爆炸极限4%~75%。遇氟气、氯气不需引燃源引燃就能够发生猛烈的爆炸。氢在常温下较不活泼,不溶于水。高温下变的高度活泼,能与许多金属和非金属直接化合。氢在钢制设备中被吸附会引起“氢脆”,导致工艺设备的损坏;液氢可使低碳钢以及大多数铁合金变脆。 ②氯气通常情况下,氯气是通过电解食盐或食盐水的方法制得的黄绿色有毒液化气体,有强烈刺激臭,毒性猛烈,具有腐蚀性和极强的氧化性。液氯本身不燃,但在日光或灯光下与其他易燃气体混合时,即可起火和爆炸。金属在氯气中能够燃烧,氯气与氢气混合后在阳光下即可发生猛烈爆炸;松节油在氯气中能自燃;氯气与乙炔气混合时不

乙炔法生产聚氯乙烯

一、工业生产方法、原理和发展历程 聚氯乙烯(PVC)是全球五大热塑性合成树脂之一,产量仅次于聚乙烯,约占世界合成树脂总消费的30%。PVC树脂价格低廉,其制品广泛应用于工农业建设和人民的日常生活。从整个世界PVC市场的地区分布情况来看,当前,北美洲和亚洲是世界最大的PVC消费市场;未来十几年间,拉美和中国将成为PVC消费增长最快的地区、因此,伴随我国经济的长期持续发展,PVC生产企业降存在着较大的利润空间。 1.1 PVC的发展历程 1835年法国人V.勒尼奥用氢氧化钾在乙醇溶液中处理二氯乙烷首先得到氯乙烯。20世纪30年代,德国格里斯海姆电子公司基于氯化氢与乙炔加成,首先实现了氯乙烯的工业生产。初期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。1940年,美国联合碳化物公司开发了二氯乙烷法。为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。1960

年,美国陶氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法, 1 此法得到了迅速发展。乙炔法、混合烯炔法等其他方法由于能耗高而处于逐步被淘汰的地位。 氯乙烯可发生加成反应。在引发剂(如有机的过氧化物或偶氮化合物)作用下发生加聚反应,生成聚氯乙烯(PVC)塑料。还可以与某些不饱和化合物共聚成为改善某些性能的改性品种。如与醋酸乙烯酯的共聚物,用于制造薄膜、涂料、塑料地板、唱片、短纤维等;又如与偏二氯乙烯CCl2=CH2的共聚物具有无毒、透明、防腐等特性,可用于制渔网,座垫织物、滤布、包装薄膜等,商品名莎纶、合成1,1,2-三氯乙烷等。工业上用乙炔与氯化氢于汞盐作用下加成,或由乙烯氯化后热解生成氯化氢和氯乙烯、二氯乙烷热裂解等方法制得。 1.2 PVC生产方法及原理 PVC的生产工艺有多种,根据其单体氯乙烯的不同,生产工艺主要分为电石法制PVC和乙烯法制PVC两种。 电石法制PVC是一条煤化工路线,首先用生石灰和以焦炭为主的碳素原料生产电石,在利用电石与

氯化氢与乙炔混合爆炸原因及预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 氯化氢与乙炔混合爆炸原因及预防措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9210-88 氯化氢与乙炔混合爆炸原因及预防 措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 用氢气与氯气氯化合成氯化氢,并与乙炔气混合生产氯乙烯,是聚氯乙烯生产的一个重要生产工序。20xx年夏,河北某树脂厂由于突然停电,使该工序的乙炔混合器及相关管道发生了爆炸,由于时至中午,现场人员稀少,虽未造成人员伤亡,但也造成了巨大损失。那么,造成这起事故的原因又是什么呢?笔者试图对其作一分析,以便相同生产借鉴。 1.氯乙烯的生产工艺过程及其火灾危险性 (1)氯乙烯的生产工艺过程氯乙烯的生产工艺过程如图1所示。电石←水氢气↘↓(精乙炔)合成→(氯化氢)→混合→(粗氯乙烯)→精制(精氯乙烯)氯气↗图1氯乙烯的生产工艺过程 (2)氯乙烯生产工艺过程的火灾危险性氯乙烯生

化工聚录乙烯生产技术电石法聚氯乙烯生产技术习题库

、填空题 1、乙炔属微毒类化合物,具有轻微的作用。 2、乙炔发生器总加水量与电石用量之比称为。 3、乙炔为色气体,极易,与空气混合有的危险。 4、与作用生成乙炔气。 5、工业用乙炔气主要含有和等杂质。 6混料槽中搅拌的型式是和的组合。 7、乙炔与氯化氢在升汞催化剂存在下的气相加成反应实际上是非均相的,分五 个步骤进行,其中反应为控制阶段。 8、气体经绝热压缩后和升高,体积。 9、工业上用合成法生产氯化氢时,氯气与氢气的物质的量比通常控制在 Cl2:H2=,燃烧时氯气通入燃烧器的管,氢气通入燃烧器 的管,反应时火焰颜色通常为色。 10、合成炉的作用是把与燃烧反应生成气体。 11、文丘里管是由、、等四部分组成。 12、次氯酸钠溶液有效氯控制在,pH值左右。 13、水环泵在正常操作中要控制好和。 14、压缩机的工作过程分为、和三个步骤。 15、点炉时若炉内有残留的氢气易使爆破。 16、生产中乙炔和氯化氢的配比要求不过量,过量。 17、低沸物主要指的是。高沸物主要指的是、等。 18、聚氯乙烯的外观是色粉末,当温度高于100C时开始分解放出。 19、对于PVC生产来说,聚合温度越低,其树脂粘度,聚合度是由决定的,而空 隙率与成反比。 20、精馏就是利用物质的沸点不同,在一定范围内的温度下,经过 多次蒸发和冷凝而分离出不同纟组分物质的过程。 21、生产工艺中采用台泡沫水洗塔,连接工艺为形式。

22、悬浮法生产PVC时,由于采用的分散剂种类不同,产品有型和型之分。 23、转化用触媒是以为载体,以为催化剂。 24、有机类引发剂能溶于或类中,所以称为油溶性引发剂,而无机类引发剂则溶于,属于水溶性。悬浮和本体聚合选用引发剂,而乳溶聚合则选用引发剂。微悬浮聚合两类引发剂都适用。 25、氯乙烯聚合用引发剂种类较多,根据其在60r时的半衰期长短,可将引发 剂分为活性引发剂、活性引发剂、活性引发剂。 26、氯乙烯悬浮聚合的机理可分为、、和四个阶段,其中是聚合的控制步骤。 27、终止剂双酚A 是色针状结晶,其结构式是。 28、聚氯乙烯在火焰上能燃烧并降解,放出、和等,但离开火焰即自熄。 29、乙炔发生后,发生器排掉的渣水主要成分是,分子式。 30、湿式立式乙炔发生器的电石加料操作,应严格按照向和贮斗顺序排置换, 然后将吊斗内的电石加入的操作顺序。 31、乙炔能与、、等金属生成炔金属,稍受震动即会爆炸。 32、影响精馏的主要因素有、、 33、电石粒度越小,与水的接触面积越,反应速度也越。通常,电石加入发生器的粒度控制在mm 以下。 34、在氯氢合成工艺中,合成炉火焰过黄或黄色,是由于过量的缘故;系统停车,原则上是先断后断。 35、正常生产时乙炔总管压力氯化氢压力,以防氯化氢倒入乙炔工段腐蚀设备。 36、单台转化器出口含乙炔,i组,n组。 37、氯化汞分子式,别名,, 38、生产聚氯乙烯的主要原料为,其化学式为,式量为。 39、聚氯乙烯的工业生产方法目前有种,他们是、40、对于PVC生产来说,聚合温度越低,其树脂粘度,聚合度是由决定的,而空 隙率与成反比。 41、有机类引发剂又可分为和化合物。工业上引发剂的活性常以来表示。 42、氯乙烯聚合用引发剂种类很多,根据60 r半衰期的长短,可将引发剂分成 三类: (1)引发剂,t < 1h

氯化氢合成

氯化氢合成、冷冻工艺介绍 第一章氯化氢合成岗位任务 1.氯化氢合成的任务 调节氢气与氯气配比,通过燃烧合成合格的氯化氢气体,供转化工序使用,或用水吸收制成合格的盐酸。 2.罐区岗位任务 将转化回收酸及二合一工业酸回收至罐区贮槽,然后利用二合一工业酸将回收酸配制成浓度≥28%的盐酸送盐酸解析。 第二章氯化氢合成岗位工作原理 1.反应方程式 H2+Cl2 2HCl↑+44.126J 2H2+O2 2H2O+Q 3Cl2+2Fe 2FeCl3+Q 2.氢气的纯度对合成反应的影响 如果氢气纯度低,氢气中必定含有较多的空气和水分。当氢气中含氧达到5%以上时则形成氢气与氧气的爆炸混合物,不利于安全生产。氢气中含少量水分,虽然可以促进氢气与氯气的合成反应,但含水分过高则会造成合成炉等设备的腐蚀。此外,更重要的是,氢气纯度(主要含氮气、氧气)将影响到合成和干燥后产品氯化氢的纯度,降低石墨换热器的传热系数,最终影响到氯乙烯合成和精馏系统的收率。造成精馏尾气放空惰性气体量和含氯乙烯与乙炔浓度的增加。 3.氯气的纯度对合成反应的影响 若氯气纯度低,氯气中必定含有较多的氢气与水分,当氯气中含氢量达到5%以上时,则形成氢气与氯气的爆炸混合物,不利于安全生产。含水分和纯度对氯乙烯生产的影响如2所述4.氢气与氯气的配比对合成反应的影响 根据氢气与氯气反应方程式,两者理论是按照1﹕1分子比合成的,但工业上都是控制氢气过量的。一般在氯化氢合成中控制分子比为氢气﹕氯气=(1.05~1.1)﹕1。在合成盐酸的合成炉中,氢气过量还多些。氢气过量最多不能超过10%,不然会造成产品氯化氢纯度下降,乃至影响氯乙烯收率。而氢气过量超过20%则有可能形成爆炸混合物,不利于安全生产。 但如果氯气过量,则游离氯易与炉壁以及冷却管等反应生成黄色结晶氯化铁而腐蚀设备。游离氯还将在降膜式吸收塔中与水反应生成次氯酸,对不透性石墨起缓慢的局部氧化作用。即使少量的游离氯,也将在氯乙烯合成的混合器中与乙炔发生气相反应,生成极易爆炸的氯乙炔,造成氯乙烯合成系统的爆炸。因此,为杜绝氯化氢中产生游离氯,合成反应中严格控制氢气过量并控制在5—10%,并随时注意氯、氢流量和视镜中燃烧火焰的颜色变化。 第三章工艺流程 1.氯化氢合成工艺流程 来自氯氢处理工序的氯气、氢气,经氯气、氢气缓冲罐、氢气阻火器进入二合一合成炉内燃烧,生成氯化氢气体自炉顶排出,经空气冷却管、氯化氢缓冲罐进入石墨冷却器,冷却后的氯化氢送至转化工序。 流程方框图 电解----氢气缓冲罐-----阻火器---(电解---氯气缓冲罐)合成炉----空冷管----氯化氢缓冲罐---石墨冷---转化&降膜吸收 2.制酸的工艺流程 合成的氯化氢气体从石墨冷却器出口经降膜吸收系统,大部分氯化氢被稀酸吸收,生成盐酸

电石法生产氯乙烯培训讲学

电石法生产氯乙烯

合肥工业大学 课程设计 设计题目: 5万吨/年电石法制氯乙烯 学院:化学与化工学院专业:化学工程与工艺班级: 2012.2 学生:方柳陈志指导教师:张旭系主任: (签名) 一、设计要求: 1、根据设计题目,进行生产实际调研或查阅有关技术资料,选定合理的流程方案和设备类型,并进行简要论述。(字数不小于8000字) 2、设计说明书内容:封面、目录、设计题目、概述与设计方案简介、工艺方案的选择与论证、工艺流程说明、专题论述、参考资料等。 3、图纸要求:工艺流程图1张(图幅2号);设备平面或立面布置图1张(图幅3号))。 二、进度安排:

三、指定参考文献与资料 《过程装备成套技术设计指南》(兼用本课程设计指导书)、《过程装备成套技术》、《化工单元过程及设备课程设计》 摘要 本次课程设计主要是设计氯乙烯的生产成套装置。氯乙烯是生产聚氯乙烯的主要原料,到目前为止,全球有93%以上的氯乙烯采用氧氯化法生产。在国内,考虑到石油资源不足,价格较高,而电石资源丰富,所以大部分工厂都采用电石法制取氯乙烯。本次主要介绍电石法制取氯乙烯。先后介绍了从原料气氯化氢、乙炔的制备到氯乙烯的合成、氯乙烯的精馏等一系列生产过程的工艺流程、工艺原理以及主要设备选型等问题。 关键词:氯乙烯;电石法;乙炔;氯化氢;工艺流程;精馏

一乙炔的制备 1.1 乙炔生产的工艺原理 (1)电石的破碎 通常厂家采购的电石都是大块的电石,而电石料块进入发生器的合理径为25~50mm,因此在进发生器前必须破碎,通常是将大块的电石放入颚式破碎机,粗破后料块直径为80~100mm,通过皮带机输入电石仓库,然后经过二次破碎,径粒达到25~50mm,破碎后料块通过皮带机径除铁器除铁后输入日料库,作为发生器的入料电石。进入破碎机的电石温度应≤130℃,否则会烫坏,烧坏皮带;进入发生器的电石温度应该≤80℃,否则对发生系统不安全。 (2)电石的除尘 化学工程里把气体与微粒子混合物中分离粒子的操作称作除尘。针对电石及其粉尘的特性,选用的除尘方法一般有以下几种。 ①旋风除尘。旋风除尘器对数微米以上的粗粉尘非常有效。采用简单的旋风除尘器和风机进行除尘,利用电石粉尘在风机的作用下,在除尘器内旋转所

相关文档
最新文档