5款常用电子管前级线路

5款常用电子管前级线路
5款常用电子管前级线路

5款常用电子管前级线路

[ 转载者:chenying | 时间:2008-03-28 16:54:51 | 作者: | 来源:未知 | 浏览:709次 ] 第一款介绍为1/2 6DJ8电子管作一级共阴极放大,见图①。由於是实验关系,只求了解各线路的特性及优缺点,也为求简单易制成功,除此机外,全不设稳压线路,特别是高压,相信在一般聆听环境,区别不会太显著,当

然是设稳压电路更好。零件方面,除交连电容用较佳品种如VitaminQ、Rel Cap、Wima外;电阻除了6DJ8SRPP

用东京光音外,其他均用0.5元一只货色;整流管用Mur1100E;电源变压器分别高低压各用一只,每只约10

到20元,效果也算好。另外,以下各比试结论均只以300B单端电子管后级及KEF IS 3/5A为配搭器材,结论

当然有其局限性。本线路简单易制,不失为初学者入门之选,成功率极高,也可尝试校声乐趣,即改变输出电

容数值,改变负载电阻数值或加设负反馈等。交连电容牌子方面,曾以300B后级最后交连至强放电子管的位置

作试听,试用了Mitppmfx、RelCappp、Kimber及Vitamin Q,结果是Mit音质细微通透,但却欠了动态;Rel Cap

声厚而有力;Kimber音色通透高贵;SpragueVita-rain Q则醇厚顺滑兼备,泛音丰富,而动态也最好,表现最

全面。笔者喜用一些旧的Vitamin0,因不用煲而数值也十分准确。音效方面,此机背景聆静,音质通透,分

析力高,全频表现算平均,力度及控制力一般,但却少了厚度及顺滑音色,声底偏向干及清。曾试用1.8mA及4.5mA作偏流,高偏流时声音较细致。笔者未试过加入负反馈,读者可自行尝试,听声选择合乎自己的音色。

要注意反馈电阻要接到栅极而不是阴极,因一级共阴极放大输出波形是反相的,如接人阴极,便会使阴极电位

下降,相对地是栅极电位提高了而形成正反馈,这区别於两极共阴极放大电路把反馈电阻接回第一级阴极。

6DJ8一级共阴极放大,输出电容并了多只Wima 电容

6SN7 SRPP线路

第二款是6SN7SRPP线路,相信不少读者试制过此线路,见图②。名为分路调节推挽线(Shunt regulated push-pull),一般人相信该线路有下列优点:失真率低、线性度优良、放大率高、过荷量宽及输出阻抗低等。

原理是下级电子管为共阴极,其增益取决於屏极阻抗,大部分发生於上级电子管身上,上级电子管为一恒流源,作为下级电子管的有源负载,另外,也作为一阴极跟随器,信号由下级电子管屏极输送至上级电子管栅极。R1及R2均为同值。但上级电子管绝对不是能达到百分百的恒流目的,故后期有Mufollower线路的发明,日后再与读者讨论。无论如何,此机也极易制作成功,但笔者却有一点保留,只觉此线路没有特殊地方,通透感、顺滑及力度均一般。虽然力度、厚度及音乐感均比一级6DJ8好,但笔者仍取6DJ8一级线路。

6SN7 SRPP输出电容用Vitamin Q 0.22μ1000V并Wima Black Box 0.01μ

6DJ8 SRPP 加bufier线路

第三款是6DJ8SRPP加buffer,buffer电子管可用6DJ8、6922、6FQ7、12AU7、12AX7,线路见图③。它是近期Canary及金牛牌—,款前级的线路,此线路比一级的6DJ8顺滑厂也清爽了,控制力好了,声底也厚了一点,过荷量十分充裕。确实比一级的线路更为优越,相信也比单用6DJ8作SRPP不加buffer的线路更佳。但要提的是buffer电子管需用12AU7,因它能调和6DJ8的晶体管音效特性,也保持爽朗清醇的音色,有点似XLO线的音效。笔者以自己的制品换上RCA l2AU7 做buffer与Canary机buffer换上Amperex金脚6922作

比较(原是用6FQ7),始终仍以12AU7作buffer较正。如拥有Canary前级的朋友,只要改—厂中间电子管座灯丝的供电接脚,即4、5脚短接后接正电,9脚接负电,其他零件不用换,便可换上12AU7电子管。另外,笔者也曾试用了两对(并接)被称是人间妙品的整流子C25P40F/FR,此对整流子可作为晶体管后级用,规格为25A 400V。这次试音用一对Forte lA后级作Bi-amp及Reference3A Baccarat喇叭,用一对后最明显是低音更为有力,音乐器件分隔度清楚,声底爽朗了;用两对后,分隔度则更上一层楼。笔者也曾阅读过上一级电子管用1/2 6DJ8、下一级电子管1/2 12AU7及另一上下两级均用12AU7的SRPP线路,不知效果如何。回过头来再说此机,音效有晶体管机的爽朗明快,也具有点电子管机的柔顺音质,分析力佳,如听惯了Marantz 7的声音,定有耳目一新的感觉,或许会爱上它。笔者却较为贪心,认为发烧友最好是鱼与熊掌兼得之。

6DJ8 SRPP with buffer(12AU7):左右电子管为Philips 6922,中间电子管为RCA 12AU7,

输出电容Rel Cap 0.22μ并Wima 0.22μ

6SN7两级放大负反馈线路

第四款介绍的为一6SN7两级放大有负反馈的线路,见图④。笔者用了CV 181电子管,此线路也极易制作,中音的厚度及顺滑度为众机之冠,功率普通,可惜是高及低频均未算特殊,收敛了一点,不知是否因中频太好反而令高低频显得失色,有点像旧日I另3/5A。不过,即使音效不全面,但也极讨人欢心,特别是播放提琴及女声。不知加了一级buffer后,能否改善高低频,让此机表现更全面,笔者定会一试,如有好结果,定向各位报告。无论如何,笔者会选它而舍

6SN7SRPP,因它起码有一极强的项目。

和田茂前级线路

第五款线路为一以12AX7两极放大加一级以12AU7 white cathode fo11ower由日本人推

荐,取名为和田茂氏前级,前两级与Marantz 7相似,最后一级使用与SRPP相似的white cathode follower电路见图5、6。以Marantz 7线路来说,负载除了下一极的输入阻抗外,还有反馈网络,造成第三电子管的交流负载相当重,特别是对于高频。和田茂氏的SRPP跟随电路,似乎特别针对此而加入,与一般的电压放大不同,无电压增益,只作减少输出阻抗和稳流作用,使其带负载

能力远比共屏极接法的跟随器大得多,高频响应及信噪比均比共屏极接法好。

输出级交连电容可由3μ至10μ,取决于后级输入阻抗,用10μ时觉得声底厚重力度好,但却有点实的感觉,用1μ则欠了低频,结果是并了1μ、2.2μ及0.22μ,取其中间值,效果较好。

音质方面,即保持了Marantz 7 线路的醇厚音色,富于音乐味,但动态及高频响应均能胜出,分析力好,信噪比极高。此线路也是以上各线路中表现最平均及全面,各项音效得分都高,笔者推荐读者试制。

但12AU7的阴极工作电压为148V,对灯丝电压高出百余伏,较手册阴极对灯丝限制值90V高,当然,也能工作,但会减短电子管的寿命,请用分压电阻把灯丝浮于约90V工作。

和田茂氏电路部分,输出电容并接Solen 2.2μ,Wima 1μVitamin Q 0.22μ及Sprague 0.02μ

和田茂氏前级全图,电源部分简单,信噪比极高

最后,笔者再次强调这是比试的结论,只配搭300B单端后级LS3/5A喇叭,并不是最全面及绝对的,虽知音响效果是各方面配搭,聆听环境更为重要,无需定论那一前级是最好,只要配搭得宜,自能得出良好音效。更重要是取决于个人修养及喜好,即爱听那类音乐及音效,如要活泼爽朗,可选6DJ8SRPP;如要醇和通透,可选Marantz 7;如要更醇厚,可选ECC 32(6SN7)两级放大。笔者十分看重器材配搭,也是电子管机的忠实拥护者,希望与各位分享一下喜爱电子管机的原因。长期以来都有电子管和晶体管之争,晶体管机帮批评电子管机高失真率,说会倒致减低了音乐的透明度及线条等,但大家可试听听300B或845单端机种的音效,相信没有人敢说它通透度不足、音乐缺乏线条或质感等。

我想,音响也是享受生活的一种方式,换机换室改善声效是一种享受及艺术,也反映人(发烧友)喜爱变化及追求完美的特性,故可不必拘泥於谁能全面胜过谁。各位晶体管友,有谁敢保证阁下永不会改听电子管机呢?我也当然不能保证自己永不会改用晶体管机。不过,主观而论,以香港地区稠密的居住环境而言,一般家庭较少会具备一独立而有吸音及隔音设备的音响室,以四壁均为石灰墙的家居而言,用电子管机作为聆听工具,定更合宜,特别对於一般中下价音响器材而言。

各位晶体管友,如想扩宽一下耳朵视野,愿意花钱的话,不妨购买Jadis、Conrad-Johnson、AudioResearch电子管前后级:如只抱试—试心情的话,也可购买香港地区产品如Houston、Allegro 电子管前后级等,品种也多(可试各种电子管的音效),三、四千元已有交易,音效理应在很大程度及多方面胜过同价晶体管机。

几款经典电子管前级线路的特色2

几款经典电子管前级线路的特色 2007-03-12 16:39:26来源:詹海峰《音响技术》关键字: 电子管前级几款经典电子管前级线路的特色 电子管在音响应用方面,最简单又最实用的莫过于作前级放大,因为前级不需要昂贵又复杂的输出变压器,同时也由于它需要的工作电源电压高,这使得讯号的放大倍数较大、动态裕量高,即使是放大到几十伏电压也不会因为供电压的限制而造成削波失真。 我十年前的音源是飞利浦早期的16bit CD机,出于电子管前级能给干硬的数码声增添音乐韵味和改善听感,也由于因它较易制作和回报率高,这些年来也制作过不少不同线路几款前级,当然这不是想研究出什么伟大的经典之作,但边学边玩的制作乐趣也让人得到一定享受和进步。前一段时间笔者再从收藏箱中将这几部前级取出来并略经改良以重温旧梦。这几部前级各具特色,值得电子管爱好者他细玩赏聆听,为了吸引更多读者制作胆机,也期望能抛砖引玉,笔者在这里向各位介绍和比较这些前级线路及它们的音效特色,以供读者作参考。 6N11一级共阴极放大线路 6N11的国外型号为6DJ8,用6N11制作一级共阴极放大的前级线路如图1.此机是笔者制作的第一部电子管前级,当年为了求简单和制作容易,高压不设稳压线路,当然采用稳压供电时效果更好,现为了取得较好的音效,笔者给它加了一个简单的三端稳压电源,并且原来串在电源中的5W2.5K电阻也用一个小型扼流圈替换,这使得滤波效果更好,电源的质量得到简单的提高。灯丝用稳压直流供电时可减低交流噪声,而用交流供电时,虽对电子管寿命有益,但对信噪比的影响较大,而且灯丝接地点须反复试验才有较好的效果,结果灯丝还是采用了直流稳压供电。

电子管基础知识大全

电子管,电子管基础知识大全(图) 电子管的基本参数: 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7.阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v;10.内阻: kΩ。 几个常用值的计算: 放大因数μ=阳极电压Uak/栅极电压Ugk 表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。 跨导S=阳极电流Ia/栅极电压Ugk 表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的变化。 内阻Ri=栅极电压Uak/阳极电流Ia 表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的变化。 上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri 先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。 这回就先说电子管的构造和工作原理吧。照顾一下咱的老习惯,以后所涉及的管型和单元电路均以国产管为例,在最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。 在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。 不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅极。 先说二极管: 考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路电流。把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属,陶瓷)封装壳,再抽成几近真空,就是电子二极管。 需要说明的是由于制造工艺,杂质附着以及材料本身等原因,管内会残留微量余气,成品管都在管内涂敷了一层吸气剂。吸气剂一般使用掺氮的蒸散型锆铝或锆钒材料。目前除特殊用途外(如超高频和高压整流等),为便于使用和增加一至性,均为两只二极管,或二极三极,或三极三极以及二极五极等合装在一个管壳内,这就是复合管。

5款较常用的电子管前级制作电路图

5款较常用的电子管前级制作电路图 第一款介绍为1/2 6DJ8电子管作一级共阴极放大,见图①。由於是实验关系,只求了解各线路的特性及优缺点,也为求简单易制成功,除此机外,全不设稳压线路,特别是高压,相信在一般聆听环境,区别不会太显著,当然是设稳压电路更好。零件方面,除交连电容用较佳品种如VitaminQ、Rel Cap、Wima外;电阻除了6DJ8SRPP用东京光音外,其他均用0.5元一只货色;整流管用Mur1100E;电源变压器分别高低压各用一只,每只约10到20元,效果也算好。另外,以下各比试结论均只以300B单端电子管后级及KEF IS 3/5A为配搭器材,结论当然有其局限性。本线路简单易制,不失为初学者入门之选,成功率极高,也可尝试校声乐趣,即改变输出电容数值,改变负载电阻数值或加设负反馈等。交连电容牌子方面,曾以300B后级最后交连至强放电子管的位置作试听,试用了Mitppmfx、RelCappp、Kimber及Vitamin Q,结果是Mit音质细微通透,但却欠了动态;Rel Cap声厚而有力;Kimber音色通透高贵;SpragueVita-rain Q则醇厚顺滑兼备,泛音丰富,而动态也最好,表现最全面。笔者喜用一些旧的Vitamin0,因不用煲而数值也十分准确。音效方面,此机背景聆静,音质通透,分析力高,全频表现算平均,力度及控制力一般,但却少了厚度及顺滑音色,声底偏向干及清。曾试用1.8mA及4.5mA作偏流,高偏流时声音较细致。笔者未试过加入负反馈,读者可自行尝试,听声选择合乎自己的音色。要注意反馈电阻要接到栅极而不是阴极,因一级共阴极放大输出波形是反相的,如接人阴极,便会使阴极电位下降,相对地是栅极电位提高了而形成正反馈,这区别於两极共阴极放大电路把反馈电阻接回第一级阴极。 6DJ8一级共阴极放大,输出电容并了多只Wima 电容 6SN7 SRPP线路 第二款是6SN7SRPP线路,相信不少读者试制过此线路,见图②。名为分路调节推挽线(Shunt regulated push-pull),一般人相信该线路有下列优点:失真率低、线性度优良、放大率高、过荷量宽及输出阻抗低等。原理是下级电子管为共阴极,其增益取决於屏极阻抗,大部分发生於上级电子管身上,上级电子管为一恒流源,作为下级电子管的有源负载,另外,也作为一阴极跟随器,信号由下级电子管屏极输送至上级电子管栅极。R1及R2均为同值。但上级电子管绝对不是能达到百分百的恒流目的,故后

6N11电子管前级放大器

6N11电子管前级放大器 2018年2月21日17:06 6N11电子管前级放大器电子管放大器的音色是发烧友们 所喜好的,下面介绍一个用6N11制作的胆前级。放大器分前级和后级,我们常说的功放是将两者合二为一的机器。前级主要作用是对输入的微弱信号进行电压放大,以推动后续的功率放大管。一般情况下。前级放大器因工作电流较小,元器件比较简单,材料容易购买而制作相对容易。自制放大器时线路的选取很重要,考虑到业余条件的限制,DIY时选取简洁线路较容易取得成功。在设计电压放大级时主要考虑是有足够的增益,频响和失真、噪声等特性。在晶体管(俗称“石”)和电子管(俗称“胆”)放大器中,由于电子管的放大因数(μ)很大,往往用一个电子管就相当于用几个晶体管构成的电路,因此两者比较电子管功放制作的成功率远高于晶体管机。用于前级电压放大的电子管,一般有6N1、6N3、6N11、12AX7、12AT7、12AU7、6SL7、6SN7、6SJ7和EF86等多种三极管和五极管。由于等效输入噪声较大,6SJ7、EF86等五极管现在一般已不常采用。了解一只电子管的特点和衡量它的性能,常用跨导(S)、内阻(Ri)、放大因数(μ)表示,其中跨导是电子管栅压对屏流的控制能力;内阻是当栅极电压为定值时,屏极电压的变化量与相应的屏极电流变化量之比,内阻

越小,电子管的负载能力、频响方面要好些,应优先采用;放大因数是用来表示放大品质的量。跨导、内阻、放大因数三者的关系是:μ=S×Ri。前级电压放大用电子管,常常按它们的放大因数分成高μ、中μ、低μ类型。μ值大于35的叫高μ管。如以上列举的12AX7、12AT7、6SL7。μ值大的管子,放大倍数较大,但输入范围较小。适合做小信号前级和功放的第一级。μ值在20-35之间的称为中μ管.如12AU7、6SN7、6N3、6N11等,它们的特点是输入范围要大一些,有相对较小的失真。6N11(国外同类产品称为6DJ8或6922)是高频低噪声双三极九脚电子管。它的板极为非封闭形,两片板极的中间部分贴近栅极,两三极管之间有屏蔽板隔离,所以使用时。米勒效应引起输入电容的增加部分较少,频响容易做得很宽。由于这一特点,6N11以前主要用于高频电压放大。常被用于示波器的X、Y轴偏向放大。6N11的内阻比12A系列电子管低,兼之它的跨导大,噪声低,既能充分体现电子管的大动态长处,又有晶体管频响宽、速度高的特点,因此近年来在高保真音响设备中被广泛使用。国内外很多功放的输入级,甚至在CD唱机的数码转换器中都能看到它的踪影。下面是采用一个6N11电子管即能完成立体声左右声道放大的前级放大器它以Simpleisbest(简洁是好)的宗旨设计,线路非常简洁实用,而且音质水平较高,非常适合爱动手的入门爱好者制作。该线路为经典的阻容耦合单级

电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要1 20W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,F U50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照 以下链接:/dispbbs.asp?boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。

常用电子管管脚接线图68168

常用电子管管脚接线图(1) 管脚图例管子型号管子型号(1) 管子型号(2) A 6AQ8 ECC85 A 6BQ7A ECC180 A 6BZ7A A 6CG7 A 6FQ7(第9脚为NC) A 6DJ8 ECC88 B 6681 E83CC B 7025 B 12AY7 6н4п B ECC99 B E80CC B 6N4 B 6N10 B 2025 B1 5687 B1 7119 E182CC 常用电子管管脚接线图(3)

管脚图例管子型号管子型号(1) 管子型号(2) C 6SL7GT C 5691 C 6SN7GT C 5692 C 6N8P 6н8с C 6N9P 6н9с C ECC33 C 6AS7G C 6080 C 6N5P 6н5с F 45 F 50 F 300B F 4300B 常用电子管管脚接线图(5) 管脚图例管子型号管子型号(1) 管子型号(2) G 211 G 845 H EL34 6CA7 常用电子管管脚接线图(6)

精品文档 。 3欢迎下载 管脚图例 管子型号 管子型号(1) 管子型号(2) I 7027A K 7868 常用电子管管脚接线图(7) 管脚图例 管子型号 管子型号(1) 管子型号(2) L 807 L FU-7 г-807 M 6AU6 EF94 M 6BA6 EF93 M 6BD6 M 6J4 6ж4п M 6J5 6ж5п 常用电子管管脚接线图(8) 管脚图例 管子型号 管子型号(1) 管子型号(2) M1 6AG5 EF96 M1 6AK5 EF95 M1 6BC5 M1 6J1 6ж1п M1 6J3 6ж3п N 6267 EF86 N 6J8 6ж32п 常用电子管管脚接线图(9) 管脚图例 管子型号 管子型号(1) 管子型号(2) N1 6BX6 EF80 N1 6EJ7 EF184 O 6SJ7GT O 5693 O 6J8P 6ж8с 常用电子管管脚接线图(10) 管脚图例 管子型号 管子型号(1) 管子型号(2) P 5AR4 GZ34 P 5V4G P 5Z4GT GZ30 P GZ32 P GZ33 P GZ37 P U54 P 5Z4P 5ц4с Q 5U4G Q 5U4GB Q 5Z3P 5ц3с 常用电子管管脚接线图(11)

几款经典电子管前级线路的特色

几款经典电子管前级线路的特色 詹海峰《音响技术》2000年6期 电子管在音响应用方面,最简单又最实用的莫过于作前级放大,因为前级不需要昂贵又复杂的输出变压器,同时也由于它需要的工作电源电压高,这使得讯号的放大倍数较大、动态裕量高,即使是放大到几十伏电压也不会因为供电压的限制而造成削波失真。 我十年前的音源是飞利浦早期的16bit CD机,出于电子管前级能给干硬的数码声增添音乐韵味和改善听感,也由于因它较易制作和回报率高,这些年来也制作过不少不同线路几款前级,当然这不是想研究出什么伟大的经典之作,但边学边玩的制作乐趣也让人得到一定享受和进步。前一段时间笔者再从收藏箱中将这几部前级取出来并略经改良以重温旧梦。这几部前级各具特色,值得电子管爱好者他细玩赏聆听,为了吸引更多读者制作胆机,也期望能抛砖引玉,笔者在这里向各位介绍和比较这些前级线路及它们的音效特色,以供读者作参考。 6N11一级共阴极放大线路 6N11的国外型号为6DJ8,用6N11制作一级共阴极放大的前级线路如图1。此机是笔者制作的第一部电子管前级,当年为了求简单和制作容易,高压不设稳压线路,当然采用稳压供电时效果更好,现为了取得较好的音效,笔者给它加了一个简单的三端稳压电源,并且原来串在电源中的5W2.5K电阻也用一个小型扼流圈替换,这使得滤波效果更好,电源的质量得到简单的提高。灯丝用稳压直流供电时可减低交流噪声,而用交流供电时,虽对电子管寿命有益,但对信噪比的影响较大,而且灯丝接地点须反复试验才有较好的效果,结果灯丝还是采用了直流稳压供电。 本线路简单易制,成功率极高,不失为电子管爱好者入门之选。 6N11(6DJ8)电子管原本是用于电脑或电视机的高频VHF放大的Cascode线路,英国音响杂志“Class Audio”曾有两篇文章探讨这个电子管的优缺点。其中一篇的作者以测量多个6DJ8的技术指标来证明该电子管在各方面表现都不理想,如它的屏流偏置为15MA时,互导率虽高达12500microhms,,但是一般音频放大电路选择偏置于典型的 1.5MA时,互导率仅为780—800microhms,因此该文作者表示这种电子管只能用在高偏流的阴极输出线路上。而另一篇文章的作者表示应该测试更多牌子的同类电子管才可作定论。虽然该管在过去争议颇多,但是目前很多电子管厂如Audio Research、Sonic Frontiers、Conrad-Johnson及近期的BAT甚至多个品牌的国产前级都使用该管,由此可见它的声音自然有不凡之处。 在这部前级中除耦合电容改用较佳的Wima、Solen电容外,电阻还是用低噪无磁的国产军工大红袍,当年这些电阻售价只有一枚0.1元,可异目前这种电阻越来越少。整流管用IN5407,高低压电源共用一个50W左右的环形电源变压器。这个线路笔者没有尝试加入负回馈,读者可以自己尝试,但此时要注意反馈电阻要接往的是栅极而不是阴极,这与两极共阴极放大输出端的波形是反相的,如入阴极,会使阴极极电位下降,相对栅极电位提高而形成正反馈。除了加设负回馈,当然也可尝试换用不同品牌的电容作校声试验,也可通过改变输出电容数值或改变负载电阻数值等作进一步尝试。目前市场上拆机旧装二手电容贷源充足,数值也较齐全,品牌不少,笔者曾试用了Wima、Solen、Rel和美国斯碧铁壳油浸电容以及国产天逸、新德克等,结果是Wima 音质通透,速度适中,但音乐味有些偏淡;Solen音色高贵偏冷,动态较好;斯碧铁壳油浸电容韵味足,通透感中上,各方面表现较为平均;而REL音色醇厚,新德克韵味不错,但通透性、分析力稍感欠缺。 这个一级共阴极放大前级的特点是音质通透、音乐的背景宁静,分析力较高,全频表现相当均衡,但由于只是一级放大,因此它的放大能力、力度及控制力只是中级水平,声底偏向清冷和不够柔润。如果换用英国大循的ECC88或德律风根的ECC88时音质的柔润性可有所提高,使用飞利浦的6DJ8时声音有些甜美柔和,当改用改良型号管如俄国Sovtek场感均有较大水平的提高,而用

自己DIY制作马蹄斯电子管胆前级(附电路图)

自己DIY制作马蹄斯电子管胆前级(附电路图) 电子管输入阻抗比较高,安装完后,尽量装箱接地,可以做到静如深海。最简单也可以用个月饼罐来做即可。GE 5670效果测试,现在市场价格涨价很利害。成本高了很多现在1个管子价格高达30元。材料使用已算高端,不要和那些6N3和普通件的前级比价格,觉得价格贵可以换6N3,都兼容制作无比简单,还免调试,如果没60V的电源,拿个双24或者双33的牛,中间抽头不接就是,一样的.以马蹄斯电路为蓝本制作,电路简洁,采用美国全新原盒GE 5670 2枚。如果觉得美国全新原盒GE 5670价格高的话,可以自己买6N3代换,价格少了20多元。估计60多元一套就搞定.电位器是用台湾16形电位器,GE 5670管的高度也比 6N3矮很多,装箱也好装机器不用露出机外。材料配套使用非常好,偶合是全新WIMA和瑞典EVOX 电阻是美国DALE(不喜欢DALE的非标值也可以选718电阻)灯丝电压是LM317稳压成6V。电子管座也是镀金的. 主电容是拆机BC 1500UF ,虽然是拆机但声音很好,比日系高压电容好不少pcb尺寸是132mmx99mm 体积不大可以方便放在小机器内,胆机不用露出箱体电路放大倍数是10倍,觉得大的话可以减小22K的数值即可.变压器要求60VX1 9VX1 (可带误差)60V电流有100MA-200MA就可以了, 8v要

求电流大一点,灯丝耗电大一些.PCB原设计是BD139 后用C5171觉得更暖一点,这里温度很低,不需要散热.全机是免调试,安装无错误就直接开声,电子管输入电阻高,注意装箱和做好屏蔽,使信噪比最高。材料美国全新原盒GE 56702PCB1瑞典evox 3u34美国DALE阻18LED1台湾电位器1LM317 ON全新1BC1500U-100V原装拆机 1BC2200uf`1整流管8稳压管2471电容2WIMA 4741散热X119脚电子管座镀金2220UF 松下3

EL34电子管特性参数

EL34电子管特性参数表 下表是EL34的主要应用特性。由表可知,EL34作单端A类放大时,屏极负载阻抗2kΩ下最大输出功率为l 1 w(失真率10%)。当它作推挽放大时,屏一屏负载阻抗3.8kΩ下的最大输出功率可达36W(失真率5%)。 电子管EL34管脚图

EL34胆管参数 热丝加热 UH……………………………6.3 V IH……………………………1.5 A 极限额定值 阳极电压……………………… 800 V 第二栅极电压………………… 500 V 第一栅极电压………………… -100 V 阳极耗散功率………………… 25 W 第二栅极耗散功率…………… 8 W 阴极电流………………………150 mA 第一栅极电阻 自偏压时………………………0.7 MΩ 固定偏压时……………………0.5 MΩ 热丝阴极间电压………………±100 V 玻壳温度………………………250 ℃ 极间电容 输入电容…………………… 15.2 PF 输出电容…………………… 8.4 PF 跨路电容…………………… 1.1 PF 第一栅极热丝间电容……… 1.0 PF 热丝阴极间电容…………… 10 PF 静态参数 Ua…………………………… 250 V Ug2……………………………250 V Ug3…………………………… 0 V -Ug1…………………………12.2 V Ia…………………………… 100 mA

Gm…………………………… 11 mA/V ri…………………………… 15 kΩ μg1-g2 (11) 推荐工作状态(参考值) 单管A1类放大(固定偏压) Ua(b) …………………… 265 265 V Ua……………………………250 250 V Ug2……………………… Rg2=2k Rg2=0 Ug3……………………………0 0 V -Ug1……………………… 14.5 13.5 V Ia(0) ………………………70 100 mA Ig2(0) …………………… 10 14.9 mA Gm…………………………… 9 11 mA/V ri……………………………18 15 kΩRL…………………………… 3 2 kΩPout………………………… 8 11 W Dtot…………………………10 10 % 推挽B1类放大(固定偏压)Ua……………………………375 400 V ▲Rg2………………………… 600 800 ΩUg3………………………… 0 0 V -Ug1………………………… 33 36 V Ia(0) …………………2×30 2×30 mA Ia(maxsig) ………2×107.5 2×110.5 mA Ig2(0) ………………2×4.7 2×4.5 mA Ig2(maxsig) ………2×23.5 2×23 mA Rl(a-a) ………………3.5 3.5 kΩ ü(g1-g1)(r.M.S) ……… 46.7 50 V Pout……………………48 54 W Dtot……………………2.8 1.6 %

部分电子管参数

常用电子管资料 12c 3p 三极管分米波振荡 12g 2p 复合管检波, 低频电压放大和自动音量控制 12h3p 二极管超高频检波及变频 12j1s 锐截止五极管小功率放大及高频振荡 12k3p 遥截止五极管高频电压放大 13p1p 输出五极管束射四极管低频功率放大 1b2 复合管检波和低频电压放大 1k2 遥截止五极管高频电压放大 1z1 二极管电视行回扫回程脉冲电压整流 1z11 二极管电视行扫描回程脉冲电压整流 1z1b 二极管电视行扫描回程脉冲电压整流 1z7b 二极管高频脉冲整流 2d1p 二极管分米波波段作检波用 2j14b 锐截止五极管高频电压放大 2j27 锐截止五极管高频电压放大 2j27s 锐截止五极管小功率放大及高频振荡 2p19b 输出五极管束射四极管功率放大 2p2 输出五极管束射四极管低频功率放大 2p29 输出五极管束射四极管小功率发射 2p29o 输出五极管束射四极管小功率发射 2p29s 输出五极管束射四极管功率放大及高频振荡 2p3 输出五极管束射四极管功率放大 2z2p 二极管高压整流 2z2p-t 二极管高压整流 4j1s 锐截止五极管小功率放大及高频振荡 4p1s 输出五极管束射四极管振荡及功率放大

5z1p 二极管小功率全波整流 5z2p 二极管小功率全波整流 5z3p 二极管小功率全波整流 5z3pa 二极管专用设备整流 5z4p 二极管小功率全波整流 5z4pa 二极管小功率全波整流 5z8p 二极管全波整流 5z9p 二极管全波整流 6b8p 复合管高频和低频电压放大, 检波和自动音量控制6c 1 三极管高频电压放大 6c 11 三极管超高频振荡 6c 12 三极管栅地电路中作低噪声超高频放大 6c 16 三极管宽频带电压放大 6c 19 三极管稳压电路中作电压调整管 6c 1j 三极管超高频振荡 6c 3 三极管宽频带高频电压放大 6c 3-q 三极管宽频带高频电压放大 6c 31b-q 三极管电压放大 6c 32b-q 三极管电压放大 6c 4 三极管宽频带高频电压放大 6c 4-q 三极管宽频带高频电压放大 6c 5d 三极管分米和厘米波波段的小功率振荡 6c 5p 三极管检波和低频电压放大 6c 6b 三极管低频电压放大及高频振荡 6c 6b-m 三极管低频电压放大及高频振荡 6c 6b-q 三极管低频电压放大及高频振荡 6c 7b 三极管低频电压放大 6c 7b-q 三极管低频电压放大 6c 8p 三极管高频脉冲振荡 6d3d 二极管分米波和厘米波的上限作检波用

电子管前级

和田茂氏电子管前置放大器 由于电子管(俗称“胆”)在音质、音色上有着优异和独特的特色,另外也因为其电路较简单稳定,制作与调试都比晶体管机更方便,因此电子管在音响方面的应用近十年来又再兴起,特别是在业余土炮发烧圈里更是热度高涨。 电子管的Hi—Fi功放应用电路早在五六十年代就达到设计的高峰了,经过三四十年后,现在常见的应用电路和电子管基本上还没有什么改变,与当时的面貌相差无几,土炮发烧友如能自己选读自修一些有关于电子管理论常识,定能事半功倍。 电子管在音响应用方面,最简单而又最实用的地方莫过于用它作前级信号放大,因为前级无需要复杂和昂贵的输出变压器,这点比用作后级功放简单得多。同时也由于它需要的工作电源电压高,放大倍数较大,即使放大到几十伏电压也不会因为电源电压限制而造成削波失真,在这方面就算是Hi-End级的晶体管前级也无法提供如此高的输出信号! 笔者十年前因购买的CD音源是较早期的16bit机种,出于电子管能给尖利干硬的数码声增添音乐韵味、改善听感,也因电子管前级较易制作及回报率高,多年来也尝试制作过不同线路音效的多款电子管前级,当然也不是指望能研制出什么伟大经典线路,但最少也能享受制作的乐趣。 在电子管前级中,在50年代末推出的Marantz 7的地位可以称得上至高无上,现在玩电子管的发烧友中没有听过Marantz 7的大名者,相信已经没有多少人。Marantz 7的主线路如图1所示,(本刊在1999年第2期有详细仿制文章。)电路中,VRl、VR2用作电压放大,VR3

接成阴极跟随器作为信号缓冲,VR3的作用相当于用NPN管连接的射随器。Marantz 7电路最大特色就是整体环路反馈设计,这也是Marantz 7赖以成名的一个主要因素。但由于Marantz 7输出端是接上一个三级阴——阴型负反馈网络,此网络高频高端阻抗约在20kf~以下,这显然太小了,这种设计无疑对VR3造成相当大负担。另外,为了防止高频自激,Marantz 7在VRl和VR2之间接上一个22PF电容,构成高频局部负反馈,这种设计也降低高频放大倍数。Marantz 7这个传统线路在高频端造成高频开环增益不够,负反馈对高频失真的改善并不是十分理想,但令人感到困惑的是电子管发烧界对它的主观音效感受相当高。不少见多识广的资深发烧友认为:与当代最出色的电子管前级例如Audio Research SP—11,Convergent SL —1,Matisse Reference、c-j Premier 7(Seven)等前级相比,Marantz 7并非无敌,至少它的分析力与高低频伸延度就不见得特别出色,而分析力和频域延伸度却是Matisse和Audio Research的强项。尽管Marantz 7的声底异常通透,瞬变表现令人满意,但它最吸引人之处还是那种难以言传的中频音色美。笔者相信不少人都认为它的音色属于阴柔型,但实际上,Marantz 7的音色还是偏向阳刚一派,它能将音乐中的光辉、力感发挥无遗,重播铜管乐时,乐器的“亮度”也有十分的耀人光辉,播放弦乐时,琴声柔韧而有实质感,人声感情更是丰富。这与法国名牌Jadis胆机将音乐中的阴柔美感淋漓尽致表现可以称为异曲同工之妙,如果Marantz 7不作任何修改,音色平衡度会偏高,但只要最后一级的耦合电容值为0.33~0.47μF时,其音效之佳已足以令人满意。

常用国产电子管参数

常用国产电子管参数

常用国产电子管参数 参数 类别 典型特性参数极限运用参数 用途备注 参数名称 灯丝阳极 第一 (控 制) 栅压 帘栅 内 阻 互(跨) 导 放 大 系 数 灯丝 最高 阳极 电压 最大 阳极 功耗 帘栅电 压 电 流 电 压 电 流 第 二 栅 压 第 二 栅 流 电压 (大) 电压 (小) 最高 电压 最大 功耗 符号U f I f U a I a U g1U g2Ig 2R i Sμ U f max U f min U a max P a M U g2m ax P g2 max 单位V A V mA V V mA kΩmA — v —V V V W V W 型 号 二

5AR 4 5 1.9 2 × 55 14 8 极 管 ZB 2= 75 n R l =2 k Ω 5Z1P52± 0.2 2× 500 125—————— 5.5 4.51400 6 2—— 5Z2P52± 0.2 2× 400 125—————— 5.5 4.51400 5 0—— 负载 2.7k Ω 5Z3P52± 0.3 2× 500 230—————— 5.5 4.51500115—— 负载 2kΩ 5Z4P52± 0.2 2× 500 122—————— 5.5 4.51300 6 0—— 负载 4.7k Ω

5Z8P52± 0.7 2× 500 400—————— 5.5 4.51700200—— 负载 1kΩ 5Z9P52± 0.3 2× 500 190—————— 5.5 4.51700100—— 负载 2.2k Ω 6Z4 6.30.62× 350 72——————7 5.71000 2 5—— 负载 5.2k Ω 6Z5P6.30.62× 400 70—————— 6.9 5.71100 3 0—— 负载 5.7k Ω 6H Z 6.30.3 2× 150 17——————7 5.74503—— 负载 10k Ω 300 B-98 5 30 45 -60 56 三极 管 300 BC 5 1.2 30 60 -60 5.3

6922电子管胆前级放大电路

6922电子管胆前级放大电路 2018年4月2日17:58 665 6922电子管胆前级放大电路 和韵T99是欧博音响公司的五周年纪念版前级,其外形秀巧,电路简洁,音质纯静而无音染。 T99前级放大电路如图所示。从图中可见,它除了两 个电子三极管之外,几乎就没有什么元件了,所以在介绍它之前先说一说电子管及其在音频设备应用中的地位。电子管的物理特性在某些方面仍优于晶体管,如近代的6N15、6N3电子管,其电极间距离10-3m量级,在几百伏屏压下电子在真空中的速度达107m/s,渡越时间为10-10s量级,对 于10MHz的频率周期为10-8s。在这个渡越时间内,各电极的电压相位基本无变化,因此电子管可以毫无困难地工作到300~500MHz,也就是说,在音频放大中根本不必考虑 电子管的频率特性问题,任何一种电子管都至少可满足 10kHz的音频放大要求。另外在100kW以上的高频大功率 放大器中,电子管仍独步天下,晶体管则望尘莫及,因此目前在军事领域和高科技领域仍在部分使用电子管。至于普遍认为电子管高频特性不如晶体管,并不是管子本身的问题,而是由于电子管在做电压放大时其内阻与分布电容所形成 的低通电路以及在做功率放大时输出变压器的漏感等寄生

参量造成的。总之,电子管目前仍是优秀的音频放大器件,只是电路设计和变压器制作不能马虎。从听感及欣赏角度而言,晶体管和电子管应该说各有千秋,不可一概而论。电子管音色温暖、甜润、耐听,空气感及空间信息的融合性好,这在音响界已成为共识,而晶体管具有瞬态反应快、分析力高、对音像细节的镌刻更深入等优点。 电子管(三极管)是由阴极K、屏极(阳极)A、栅极G组 成的。阴极是电子管电子流的源泉,当阴极被灯丝加热到一定程度时,就会不断地向空间发射电子。在屏极与阴极间加上直流电压,使屏极电位高于阴极电位时,在屏极电场的作用下,从阴极发射的电子就会源源不断地奔向屏极,即所谓的真空管正向导通。根据电流方向与电子流方向相反的定理,电流便从屏极流向阴极,这就是所谓的屏流Ia。栅极是决定电子管放大作用的电极,位于阴极和屏极之间靠近阴极的位置。栅极的作用是抑制由阴极向屏极发射电子。当栅极加上相对于阴极为负的电压即栅负压,便在管内屏、阴之间形成两个电场:一是屏极的正电压产生的正电场,对空间电荷区的电子起吸引作用;二是栅极负压产生的负电场,对空间电荷区的电子起排斥作用,栅极电压越负,排斥作用越强,屏极电流就越小。改变栅负压即可改变屏极电流。而栅极比屏极更靠近阴极,对屏极电流的抑制作用远比屏极电压更大,约大4~100倍。栅极电压的微小变化,便能引起屏极电流

5款常用电子管前级线路各有不同音效(下)

5款常用电子管前级线路各有不同音效(下) 6SN7 两级放大负反馈线路第四款介绍的为一6SN7 两级放大有负反馈的线路,见图④。笔者用了CV 181 电子管,此线路也极易制作,中音的厚度及顺滑度为众机之冠,功率普通,可惜是高及低频均未算特殊,收敛了一点,不知是否因中频太好反而令高低频显得失色,有点像旧日I 另3/5A.不过,即 使音效不全面,但也极讨人欢心,特别是播放提琴及女声。不知加了一级 buffer 后,能否改善高低频,让此机表现更全面,笔者定会一试,如有好结果,定向各位报告。无论如何,笔者会选它而舍6SN7SRPP,因它起码有一极强的 项目。 和田茂前级线路第五款线路为一以12AX7 两极放大加一级以12AU7 white cathode fo11ower 由日本人推荐,取名为和田茂氏前级,前两级与Marantz 7 相似,最后一级使用与SRPP 相似的white cathode follower 电路见图5、6.以Marantz 7 线路来说,负载除了下一极的输入阻抗外,还有反馈网络,造成第三电子管的交流负载相当重,特别是对于高频。和田茂氏的SRPP 跟随 电路,似乎特别针对此而加入,与一般的电压放大不同,无电压增益,只作减 少输出阻抗和稳流作用,使其带负载能力远比共屏极接法的跟随器大得多,高 频响应及信噪比均比共屏极接法好。输出级交连电容可由3μ至 10μ,取决于后级输入阻抗,用10μ时觉得声底厚重力度好,但却有点 实的感觉,用1μ则欠了低频,结果是并了1μ、2.2μ及0.22μ, 取其中间值,效果较好。音质方面,即保持了Marantz 7 线路的醇厚音色,富于音乐味,但动态及高频响应均能胜出,分析力好,信噪比极高。此线 路也是以上各线路中表现最平均及全面,各项音效得分都高,笔者推荐读者试制。但12AU7 的阴极工作电压为148V,对灯丝电压高出百余伏,较手册

6N3电子管前级放大器

6N3电子管前级放大器 笔看购得块“马蹄诗”电子管前置放大器电路板。电路图如图1所示。第一级由 12AX7A担任,第二级由12AT7担任。由于手上没有12AX7A和12AT7,决定用价廉物美的6N3替代。12AX7放大倍数较高,95左右,6N3放大倍数35左右。电路结构不改,只调整电路参数。 原前置放大电路如果要用6N3取代12AX7和12AT3,需要重新设计静态工作点。6N3的特性参数见表1。改造电路首先要确定屏极工作电压。 选用台报废cD机的机箱作为前置放大器的机箱。该板原配套的电源变压器绕组电压如图2所示,次侧输入电压为200V和230v两个档上切换。由于12AX7的屏极工作电压为:250V,而6N3的屏极工作电压为150v,所以改变变压器的用法。300v绕组作为初次,输入交流220V。30v绕组作为二次侧输出绕组。该变压器 有两种灯丝电压12.6v和6.3v,由于用300v绕组作初级,6.3v绕组电压将下降 到5V左右。12.6V绕组电压下降到10v左右。6N3的灯丝电流为0.35A,2个灯丝0.7A左右,用电阻降压得到6.3V电压,R=(10-6.3)/0.7=5.2Ω,取6Ω。 利用健伍DP-880Gs的电源变压器次绕组作滤波电感,组成L—c丌型滤波器。电子管前级放大器对电源要求很高,很多文章介绍用电子管作整流和稳压,这样做成本高而且很麻烦。其实电子管整流和半导体二极管整流都是将交流变为直流,对音质影响不会太大。同样,用电子管作稳压调整管和用半导体三极管做调整管的效果,笔者认为是半导体三极管更好。 整流桥用的是电磁炉拆机件KBJ2508,25A/800v,满足要求。串联型稳压电源调整管用彩电电源调整管D1403,王要参数为1 500V/12A,满足要求。稳压管100V以上很难找到,采用24v稳压管串联方法来获得所需要的稳压值。 具体做法如下.按照电子管电源变压器安装孔尺寸钻4个φ4mm的孔,用于 固定电源变压器。整流桥D01和电源调整管钻孔固定于底板上,注意D1403要 加绝缘云母片。3个100uP/400V滤波电容用AB胶脚朝天粘在底板上,用1.5mm。多股铜芯线连接好。6个24V稳压管串联焊接在一起后,套麻皮管绝缘,通过 D1403悬空安装。R01与R02串接在起,也套麻皮管悬空安装。这个稳压电源效果非常好,只要改变稳压管的稳压值即可改变输出电压。

用6N11电子管制作的前级放大器

用6N11電子管製作的前級放大器 市售的放大器音響效果參差不齊,聲音不一定能滿足自己的要求,好產品售價也不菲,那麼能不能自己動手DIY製作呢? 回答是肯定的,只要你自備一定的工具(如電烙鐵、焊絲、萬能表),又懂得一些電子常識(可以自學嘛),那麼DIY的樂趣,不是一個買成品機使用的朋友所能體會的。 放大器分前級和後級,我們常說的合併機是將兩者合二為一的機器。前級主要作用是對輸入的微弱信號進行電壓放大,以推動後續的功率放大管。一般情況下。前級放大器因工作電流較小,元器件比較簡單,材料容易購買而製作相對容易。 自製放大器時線路的選取很重要,考慮到業餘條件的限制,DIY時選取簡潔線路較容易取得成功。在設計電壓放大級時主要考慮是有足夠的增益,頻響和失真、噪聲等特性。在晶體管(俗稱“石”)和電子管(俗稱“膽”)放大器中,由於電子管的放大因數(μ)很大,往往用一個電子管就相當於用幾個晶體管構成的電路,因此兩者比較電子管功放製作的成功率遠高於晶體管機。用於前級電壓放大的電子管, 一般有6N1、6N3、6N11、12AX7、12AT7、12AU7、6SL7、6SN7、6SJ7和EF86等多種三極管和五極管。由於等效輸入噪聲較大,6SJ7、EF86等五極管現在一般已不常採用。 了解一隻電子管的特點和衡量它的性能,常用跨導(S)、內阻(Ri)、放大因數(μ)表示,其中跨導是電子管柵壓對屏流的控制能力;內阻是當柵極電壓為定值時,屏極電壓的變化量與相應的屏極電流變化量之比,內阻越小,電子管的負載能力、

頻響方面要好些,應優先採用;放大因數是用來表示放大品質的量。跨導、內阻、放大因數三者的關係是:μ=S×Ri。 前級電壓放大用電子管,常常按它們的放大因數分成高μ、中μ、低μ類型。 μ值大於35的叫高μ管。如以上列舉的12AX7、12AT7、6SL7。 μ值大的管子,放大倍數較大,但輸入範圍較小。適合做小信號前級和功放的第一級。 μ值在 20-35之間的稱為中μ管.如12AU7、6SN7、6N3、6N11等,它們的特點是輸入範圍要大一些,有相對較小的失真。 6N11 (國外同類產品稱為6DJ8或6922)是高頻低噪聲雙三極九腳電子管。它的板極為非封閉形,兩片板極的中間部分貼近柵極,兩三極管之間有屏蔽板隔離,所以使用時。米勒效應引起輸入電容的增加部分較少,頻響容易做得很寬。由於這一特點,6N11以前主要用於高頻電壓放大。常被用於示波器的X、Y軸偏向放大。 6N11的內阻比12A系列電子管低,兼之它的跨導大,噪聲低,既能充 分體現電子管的大動態長處,又有晶體管頻響寬、速度高的特點,因此近年來在高保真音響設備中被廣泛使用。國內外很多功放的輸入級,甚至在CD唱機的數碼轉換器中都能看到它的踪影。 下面是採用一個6N11電子管即能完成立體聲左右聲道放大的前級放大器它以Simple is best(簡潔是好)的宗旨設計,線路非常簡潔實用,而且音質水平較高,非常適合愛動手的入門愛好者製作。 該線路為經典的阻容耦合單級共陰極放大電路,它既可單獨構成前級放大器,也可作為後級放大器的輸入級。 6N11經常被某些朋友說聲音相對其它電子管薄,其實,這是屏流選取不當引起的。仔細查看他們所用的線路,發覺線路中的6N11

正确认识电子管前级放大器电源的设计

正确认识电子管前级放大器电源的设计 陈国梁《音响技术》1999年06期 这几年“胆”“石”之争从来就没有停止过。依笔者认为:随着半导体的发明和数码音源的应用,电子管的退出、复出符合事物发展“螺旋式”的客观规律。与晶体管相比,电子管肯定有许多缺点,但是也有许多晶体管所没有的优点。哪怕在今后纯数字功放普及时,电子管这些优点也决定着它不可能马上退出历史舞台。然而,如果我们在使用中不是用批判的眼光去看待电子管的优缺点,或者完全否定,都是违背客观规律的。但是,就在电子管放大器电源的设计上,众说纷纭,有许多偏左或极右的观点,长期以来给众“发烧友”造成困惑。虽然也有过一些有识之士提出过一些批评,但是近两年来这些错误的做法似乎大有发展之势。对此笔者谈谈自己对这个问题的看法,并提出自己的建议。 严格说来,任何音响放大器都是一台能量转换器,因此一个有利于提高音响系统各项指标的、低消耗高可靠性的电源对音响系统来说是相当重要的。在这一点上电子管放大器绝对不符合“绿色环保”的要求,当年笔者开始玩胆机时,笔者的姐夫好奇的一句“你怎么还玩这老古董?又笨重、又耗电,不过音质还不错。”那语气和表情给我留下永恒的记忆。 “笨重、耗电,音质还不错”刚好就是电子管放大器恰如其分的写照。然而“发烧友”们所追求的也就是这不错的音质,但是在新技术一日千里的今天,我们为什么不留下优美的音质而舍弃那“笨重和耗电”呢?当然,现在我们还无法改变电子管本身的缺点,但是在电源电路中我们是可以有所作为的。遗憾的是,近两年来笔者却看到,在电子管电源方面,尤其是在前级放大器电源方面,复古越来越严重。似乎是越古老的技术越好。大家都知道:一个“大能量的、高速度的、无波纹的、零内阻的电源”是我们所追求的理想目标。只要能达到我们的目的你又何必在乎它是用什么做的呢?为此,笔者曾统计了一下%年以来在众多音响期刊上所发表的制作电子管放大器的文章,从中得出表(一)和表(二)的一些数据,感觉在文章中有一些观点和做法容易给“初哥”误导。 误区之一,滤波非电感线圈不可。不管是前级电源还是后级电源,这种做法所占比例非常大,占35.7%以上。由于电感线圈有“通直流、阻交流”的特点,用它来滤波效果确实不错。但是它也是一个非常笨重的耗能大户,它的工作原理是利用“感抗”的阻碍作用把各种高次谐波变成热和电磁波损耗掉。在一些电子管纯后级中,特别是六、七十年代的古董机中,常见到它的身影。那是在滤波电容的容量偏小,而且非常昂贵的情况下,前辈们无可奈何的选择(参看图1)。但是现在,电容的瓶颈作用不存在了,一些“发烧友”和厂家还在用电感,我认为是不足取的。它的缺点非常明显,滤波和稳压的效果完全可以由现在的高质量电容和已经非常成熟的晶体管电源电路所取代。不少的“发烧友”认为用电感听感好、胆味浓,笔者不敢苟同,笔者曾经用过晶体管有源滤波电路和大电感滤波电路进行同一前级的听音对比,听不出音质的差异,只听得出噪声的大小不同。事实上大多数“发烧友”都明白:所谓的胆味主要取决于电子管的特性和电路的设计、调试。之所以还有不少的朋友用电感滤波,也许是一种心理现象吧,而厂家总是要迎合顾客的。 误区二,在后级的影响下,电子管工作时不需要稳压,用RC滤波就可以了。用RC滤波往往是一些对电源不太重视的“发烧友”所为,在使用中效果也还可以。这是因为电子管有着与其它电子元器件不同的供电要求:电子管是靠热电子发射工作的,工作时灯丝要充分预热,

相关文档
最新文档