高中物理学史和物理方法总结

高中物理学史和物理方法总结
高中物理学史和物理方法总结

高中物理学史总结

1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,最早研究“匀加速直线运动”,导出S正比于t2并给以实验检验;伽利略的科学推理方法是人类思想史上最伟大的成就之一。17世纪,伽利略通过构思的斜面理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。另外他还发现了“摆的等时性”。

1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。牛顿于1687年正式发表万有引力定律,1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量(微小形变放大思想);另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。历史上关于光的本质有两种学说:一种是牛顿主张的微粒说——认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说——认为光是在空间传播的某种波。

爱因斯坦,德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程E=mc2”。经典力学不适用于微观粒子和高速运动物体。1905年爱因斯坦:受到普朗克的启发在德国物理学家赫兹首先发现“光电效应”实验(注:实验做法)的基础上提出了“光子说”,成功地解释了光电效应规律,提出著名的爱因斯坦光电效应方程:E k=hv—W)因此获得诺贝尔物理奖。

1905年爱因斯坦:提出狭义相对论,有两条基本原理:

①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;

②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

狭义相对论的其他结论:

①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)

②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。

③相对论质量:物体运动时的质量大于静止时的质量。

1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子,把物理学带进了量子世界;E与频率υ成正比,即E=hv;另外其在热力学方面也有巨大贡献。

1913年,丹麦物理学家玻尔把普朗克的量子理论应用到原子系统上,提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础;玻尔最先得出氢原子能级表达式。十九世纪末以前建立的物理学通常称为经典物理学,按照经典物理学理论,如果带电粒子做变速运动,包括振动和圆周运动,粒子一定以电磁波的形式向外辐射能量,辐射的频率等与振动或圆周运动的频率。为了解释与经典物理学的一系列矛盾,玻尔提出了自己的原子结构假说,即玻尔理论。

英国物理学家汤姆生发现电子,说明原子是可分的,有复杂的内部结构,并提出原子的枣糕模型,在当时能解释一些实验现象。并测得了电子的比荷e/m;研究了阴极射线,并指

出:阴极射线是高速运动的电子流,因此获得了诺贝尔物理学奖。汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。

1896年,法国物理学家贝克勒尔:首次发现铀的天然放射现象,说明原子核也有复杂的内部结构即原子核也是可分的。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。

1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。1934年,老居里夫妇的女儿女婿约里奥-居里夫妇用α粒子轰击铝箔时,首先发现了正电子和人工放射性同位素。

1909-1911英国物理学家卢瑟福进行了α粒子散射实验,说明了原子中的正电荷与原子质量一定集中在一个很小的核上,提出原子核式结构模型。1919年卢瑟福用氦核轰击氮核的实验产生了氧的同位素,第一次实现了原子核的人工转变,并产生了氢原子核,命名为质子。卢瑟福还预言了中子的存在。1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。

1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。

法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。还提出了著名的分子电流假说。②发现电流的相互作用规律③发明了电流计④提出分子电流假说⑤总结了电流元之间的作用规律——安培定律1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。1837年,法拉第最早引入了电场概念,并提出用电场线表示电场,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。

赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用莱顿瓶所做的实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。

麦克斯韦:英国科学家;1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,建立了完整的电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体,小到电子质子,大到行星太阳都有一种波与之对应,波长是λ=h/p,这种波称物质波,又称德布罗意波。

1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。

1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e的电荷量,获得诺贝尔奖。

焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。

17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。提出了机械波的波动现象规律——惠更斯原理。在对光的研究中,提出了光的波动说。

1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比,即欧姆定律。在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。

1895年,德国物理学家伦琴继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线,并为他夫人的手拍下世界上第一张X射线的人体照片。X射线具有很强的穿透本领,能使荧光物质发出荧光,还能使照相底片感光。高速电子流射到任何固体上都能产生这种射线。

1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时,发现了康普顿效应,证实了光的粒子性。康普顿效应不仅证明光子具有能量,也证明光子具有动量,碰撞过程中遵守动量和能量守恒。

1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。

托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地通过“杨氏双缝干涉实验”观察到了光的干涉现象,证实了光的波动性。

17世纪,德国天文学家开普勒提出开普勒三大定律。

18世纪中叶,美国人富兰克林提出了正、负电荷的概念。1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。

1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;

人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。

1957年10月,苏联发射第一颗人造地球卫星;

1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。

16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。

1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

1932年,美国物理学家劳伦兹发明了回旋加速器,能在实验室中产生大量的高能粒子。

1835年,美国科学家亨利发现自感现象,日光灯的工作原理即为其应用之一。

1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

1621年,荷兰数学家斯涅耳找到了折射现象中入射角与折射角之间的规律——折射定律。

1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。

物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验——量子论(微观世界);

19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

激光——被誉为20世纪的“世纪之光”;

1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。

1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。

1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。

1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

1964年提出夸克模型;

粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;

轻子-不参与强相互作用的粒子,如:电子、中微子;

强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子胡克:英国物理学家;发现了胡克定律(F

=kx)

开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。

劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。

威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。

1800年,英国物理学家赫谢尔发现红外线。红外线具有明显的热效应。应用:红外遥感和红外高空摄影。

1801年,德国物理学家里特发现紫外线。紫外线具有明显的化学作用、荧光效应。应用:杀菌、消毒、黑光灯灭害虫。

在物理学中,突出问题的主要方面,忽略次要因素,建立“理想化的物理模型”并将其作为作为研究对象,是经常采用的一种科学研究方法,质点、点电荷就是这种物理模型之一。

求解计算题时,一般应该先用字母代表物理量进行计算,得出用已知量表达未知量的关系式,然后再把数值代入式中,求出未知量的值。这样做能够清楚地看出未知量与已知量的关系,计算也比较简单。

2018高中物理学史(归纳整理版)

2018年高考物理学史总结 物理学史这部分内容在高考卷上通常以选择题形式出现(实验题中也会小概率出现),分值在6分以下,一般情况下不会出偏难怪的,毕竟这不是考纲里的重点。复习建议:以现有的生活经验常识为主,稍加了解就可以。现总结如下:1、伽利略 (1)通过理想实验推翻了亚里士多德“力是维持运动的原因”的观点 (2)推翻了亚里士多德“重的物体比轻物体下落得快”的观点 2、开普勒:提出开普勒行星运动三定律; 3、牛顿 (1)提出了三条运动定律。 (2)发现表万有引力定律; 4、卡文迪许:利用扭秤装置比较准确地测出了引力常量G 5、爱因斯坦 (1)提出的狭义相对论(经典力学不适用于微观粒子和高速运动物体) (2)提出光子说,成功地解释了光电效应规律,并因此获得诺贝尔物理学奖(3)提出质能方程2 E ,为核能利用提出理论基础 MC 6、库仑:利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。 7、焦耳和楞次 先后独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律(这个很冷门!以教材为主!) 8、奥斯特 发现南北放置的通电直导线可以使周围的磁针偏转,称为电流的磁效应。 9、安培:研究电流在磁场中受力的规律(安培定则),分子电流假说,磁场能对电流产生作用 10、洛仑兹:提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。 11、法拉第 (1)发现了由磁场产生电流的条件和规律——电磁感应现象(教材上是这样的,实际不是有一定历史原因,以教材为主!) (2)提出电荷周围有电场,提出可用电场描述电场,提出电磁场、磁感线、电场线的概念 12、楞次:确定感应电流方向的定律,愣次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 13、亨利:发现自感现象(这个也比较冷门)。 14、麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。 15、赫兹: (1)用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。 (2)证实了电磁理的存在。 16、普朗克 提出“能量量子假说”——解释物体热辐射(黑体辐射)规律电磁波的发射和吸收不是连续的,而是一份一份的,即量子理论

高中物理知识点和方法总结

2012物理高考知识点和方法总结 解物理计算题一般步骤 思维方法篇 1.平均速度的求解及其方法应用 ① 用定义式:t s ??=一v 普遍适用于各种运动; ② v =V V t 02 +只适用于加速度恒定的匀变速直线运动 2.巧选参考系求解运动学问题 3.追及和相遇或避免碰撞的问题的求解方法: 关键:在于掌握两个物体的位置坐标及相对速度的特殊关系。 基本思路:分别对两个物体研究,画出运动过程示意图,列出方程,找出时间、速度、位移的关系。解出结果,必要时进行讨论。 追及条件:追者和被追者v 相等是能否追上、两者间的距离有极值、能否避免碰撞的临界条件。 讨论: 1.匀减速运动物体追匀速直线运动物体。 ①两者v 相等时,S 追V 被追则还有一次被追上的机会,其间速度相等时,两者距离有一个极大值 2.初速为零匀加速直线运动物体追同向匀速直线运动物体 ①两者速度相等时有最大的间距 ②位移相等时即被追上 4.利用运动的对称性解题 5.逆向思维法解题 6.应用运动学图象解题 7.用比例法解题 8.巧用匀变速直线运动的推论解题 ①某段时间内的平均速度 = 这段时间中时刻的即时速度 ②连续相等时间间隔内的位移差为一个恒量 ③位移=平均速度?时间 解题常规方法:公式法(包括数学推导)、图象法、比例法、极值法、逆向转变法 3.竖直上抛运动:(速度和时间的对称) 分过程:上升过程匀减速直线运动,下落过程初速为0的匀加速直线运动. 全过程:是初速度为V 0加速度为-g 的匀减速直线运动。 (1)上升最大高度:H = (2)上升的时间:t= (3)上升、下落经过同一位置时的加速度相同,而速度等值反向 (4)上升、下落经过同一段位移的时间相等。 (5)从抛出到落回原位置的时间:t =2 g V o (6)适用全过程S = V o t -g t 2 ; V t = V o -g t ; V t 2-V o 2 = -2gS (S 、V t 的正、负号

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理所有物理学史资料的汇总

高中物理所有物理学史资料的汇总 1、胡克:英国物理学家;发现了胡克定律(F弹=kx 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。

高中物理学习方法总结

高中物理学习方法总结 学习物理重要,掌握学习物理的方法更重要。学好物理的“法宝”包括预习、听课、整理、应用(作业)、复习总结等。大量事实表明:做好课前预习是学好物理的前提;主动高效地听课是学好物理的关键;及时整理好学习笔记、做好练习是巩固、深化、活化物理概念的理解,将知识转化为解决实际问题的能力,从而形成技能技巧的重要途径;善于复习、归纳和总结,能使所学知识触类旁通;适当阅读科普读物和参加科技活动,是学好物理的有益补充;树立远大的目标,做好充分的思想准备,保持良好的学习心态,是学好物理的动力和保证。注意学习方法,提高学习能力,同学们可从以下几点做起。 一、课前认真预习预习是在课前,独立地阅读教材,自己去获取新知识的一个重要环节。课前预习未讲授的新课,首先把新课的内容都要仔细地阅读一遍,通过阅读、分析、思考,了解教材的知识体系,重点、难点、范围和要求。对于物理概念和规律则要抓住其核心,以及与其它物理概念和规律的区别与联系,把教材中自己不懂的疑难问题记录下来。对已学过的知识,如果忘了,课前预习时可及时补上,这样,上课时就不会感到困难重重了。然后再纵观新课的内容,找出各知识点间的联系,掌握知识的脉络,绘出知识结构简图。同时还要阅读有关典型的例题并尝试解答,把解答书后习题作为阅读效果的检查,并从中总结出解题的一般思路和步骤。有能力的同学还可以适当阅读相关内容的课外书籍。 二、主动提高效率的听课带着预习的问题听课,可以提高听课

的效率,能使听课的重点更加突出。课堂上,当老师讲到自己预习时的不懂之处时,就非常主动、格外注意听,力求当堂弄懂。同时可以对比老师的讲解以检查自己对教材理解的深度和广度,学习教师对疑难问题的分析过程和思维方法,也可以作进一步的质疑、析疑、提出自己的见解。这样听完课,不仅能掌握知识的重点,突破难点,抓住关键,而且能更好地掌握老师分析问题、解决问题的思路和方法,进一步提高自己的学习能力。 三、定期整理学习笔记在学习过程中,通过对所学知识的回顾、对照预习笔记、听课笔记、作业、达标检测、教科书和参考书等材料加以补充、归纳,使所学的知识达到系统、完整和高度概括的水平。学习笔记要简明、易看、一目了然,符合自己的特点。做到定期按知识本身的体系加以归类,整理出总结性的学习笔记,以求知识系统化。把这些思考的成果及时保存下来,以后再复习时,就能迅速地回到自己曾经达到的高度。在学习时如果轻信自己的记忆力,不做笔记,则往往会在该使用时却想不起来了,很可惜的! 四、及时做作业作业是学好物理知识必不可少的环节,是掌握知识熟练技能的基本方法。在平时的预习中,用书上的习题检查自己的预习效果,课后作业时多进行一题多解及分析最优解法练习。在章节复习中精选课外习题自我测验,及时反馈信息。因此,认真做好作业,可以加深对所学知识的理解,发现自己知识中的薄弱环节而去有意识地加强它,逐步培养自己的分析、解决问题的能力,逐步树立解决实际问题的信心。要做好作业,首先要仔细审题,弄清题中叙

高中物理基础知识点总结

2019高中物理基础知识点总结 2019高中物理基础知识点篇一 一、力学 a) 运动学 参照系质点运动的位移和路程、速度、加速度相对速度 向量和标量向量的合成和分解 匀速及匀变速直线运动及其图像运动的合成抛体运动圆周运动 刚体的平动和绕定轴的转动 质心质心运动定理 b)牛顿运动定律力学中常见的几种力 牛顿第一、二、三运动定律惯性系的概念 摩擦力 弹性力胡克定律 万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) 开普勒定律行星和人造卫星运动 惯性力的概念 c) 物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件重心

物体平衡的种类 d)动量 冲量动量动量定理动量守恒定律 反冲运动及火箭 e)冲量矩质点和质点组的角动量角动量守恒定律 f) 机械能 功和功率 动能和动能定理 重力势能引力势能质点及均匀球壳壳内与壳外的引力势能公式(不要求导出) 弹簧的弹性势能 功能原理机械能守恒定律 碰撞 g) 流体静力学 静止流体中的压强 浮力 h)振动 简谐振动振幅频率和周期相位振动的图像 参考圆振动的速度和加速度 由动力学方程确定简谐振动的频率 阻尼振动受迫振动和共振(定性了解) i) 波和声 横波和纵波波长、频率和波速的关系波的图像

波的干涉和衍射(定性) 驻波 声波声音的响度、音调和音品声音的共鸣乐音和噪声多普勒效应 2019高中物理基础知识点篇二 二、热学 a) 分子动理论 原子和分子的量级 分子的热运动布朗运动温度的微观意义 分子力 分子的动能和分子间的势能物体的内能 b)热力学第一定律 热力学第一定律 c) 热力学第二定律 热力学第二定律可逆过程与不可逆过程 d)气体的性质 热力学温标 理想气体状态方程普适气体恒量 理想气体状态方程的微观解释(定性) 理想气体的内能 理想气体的等容、等压、等温和绝热过程(不要求用微积分运算) e) 液体的性质

新课标高考高中物理学史归纳总结

新课标高考高中物理学史归纳总结 【新课标高考高中物理学史归纳总结(新人教版)】 必修部分:(必修 1、必修2) 一、力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先

高中物理学史高考必背

高考高中物理学史 必修部分: 一、力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 3、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 7、17世纪,德国天文学家开普勒提出开普勒三大定律; 、 8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同; 俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。 11、1957年10月,苏联发射第一颗人造地球卫星; 1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。 二、相对论: 12、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界); 13、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。 < 14、1905年,爱因斯坦提出了狭义相对论,有两条基本原理: ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。 15、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子; 16、激光——被誉为20世纪的“世纪之光”;

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

高中基础物理知识点总结

物理 一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。 三个大小相等的共面共点力平衡,力之间的夹角为1200。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则312123 sin sin sin F F F ααα==(拉密定理)。 5.物体沿斜面匀速下滑,则tan μα=。 6.两个一起运动的物体“刚好脱离”时: 貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 10. 轻杆一端连绞链,另一端受合力方向:沿杆方向。 二、运动学: 1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。 2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t 2221212+=+== 3.匀变速直线运动: 时间等分时, S S aT n n -=-12 , 位移中点的即时速度V V V S 212222=+, V V S t 22 > 纸带点痕求速度、加速度: T S S V t 221 2+= ,212T S S a -=,()a S S n T n =--12 1 4.匀变速直线运动,v 0 = 0时:

高中常考物理学史总结

高中常考物理学史总结 一、力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

高一物理学习方法总结

高一物理学习方法总结:从实验入手深化理解动量定理 动量定理是高中物理课程的重要基础知识,对学生扩展牛顿定律的认识、学习动量守恒定律、研究有关碰撞和打击等问题,起着十分重要的作用。教学实践表明,学生不是很容易掌握这个问题,尤其是对冲量和冲力的认识,往往模糊不清。 因此,如何使学生真正理解这两个概念,就成为动量定理教学中的关键。 我给学生做过一道简单习题:体重60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来。已知弹性缓冲时间是12s,安全带长5m, 求安全带所受的平均冲力。在解题中不少学生暴露出来对动量定理的模糊认识,计算结果是安全带所受的平均冲力小于工人体重。错在哪里?为了引导学生去发现问题、分析原因,可让学生自己做一些简单的实验,在教师提出几个有针对性问题的启发下,自己边实验,边观察,边分析,边总结。 [实验]:用很轻的细线吊着一个物体。 [启发性问题]: ①在平衡状态下,物体受哪些力的作用?细线所受的拉力是多大?(物体受细线的拉力和 重力的作用。细线所受的拉力在数值上等于物体的重量,方向向下。) ②托起物体,让物体自由落下,在冲拉一瞬间,细线断了。问:在这一瞬间,物体受哪几个力的作用?细线所受的拉力有何变化?(这一瞬间细线断了,表明细线所受的拉力增大了。)这里教师应该指出,细线和物体所受的这个瞬时拉力就是冲力。 ③上题中,安全带所受的平均冲力会小于工人的体重吗?(这时学生知道:不会。)这个简单实验,定性地否定了上题中的计算结果。为了让学生进一步理解动量定理,可把实验略加改动:换一条较韧的细线,不让它断,线的上端挂在弹簧秤钩上。利用弹簧秤的读数,可以半定量地说明问题(由于弹簧秤的弹力而产生的微小振动,不宜在这里分析)。通过教师的启发,让学生得出结论。 除此之外,也可以让学生站在磅秤上不动,然后又让他跳上磅秤(跳的高度任意),这时磅秤的瞬时读数比人的体重大等等。这些实验虽然都很简单也远非完善,却能给学生一些感性认识,对形成正确概念是很有帮助的。 同时,为了使学生真正掌握动量定理,灵活运用于分析问题和解决问题,在此需要反复讲 清动量和冲量、冲力等几个重要概念,讲清动量定理数学公式的物理意义、适用的条件和范围。①动量定理表示:物体所受的合力F的冲量等于物体在这段时间里的动量的改变。 ②冲力f是作用时间很短而平均值很大的变力。这种力常见于碰撞或打击现象中,有时又称为冲击力或打击力。但是,冲力f和合力F是不能混为一谈的。如果物体只受某一冲力f 作用而动量发生改变,则f就是F。如果物体除受冲力f外还受其他力(如重力)的作用,则f就不等于F;只有其他的力比冲力小很多而忽略不计外,才可以认为f等于F。我们在解题过程

高考物理学史总结(按人物)

高考物理学史总结 ☆伽利略(意大利物理学家) 物理学的贡献: ①发现摆的等时性 ②物体下落过程中的运动情况与物体的质量无关 ③伽利略的理想斜面实验:得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)。 经典题目: 1.伽利略根据实验证实了力是使物体运动的原因(错)。 2.伽利略认为力是维持物体运动的原因(错)。 3.伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)。 4.伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度, 将保持这个速度继续运动下去(对)。 ☆爱因斯坦(德国) 贡献:①用光子说解释了光电效应规律 ②提出狭义相对论(经典力学不适用于微观粒子和高速运动物体),总结出质能方程:E =mc2 经典题目: 1.爱因斯坦提出了量子理论,普朗克提出了光子说(错)。 2.爱因斯坦用光子说很好地解释了光电效应(对)。 3.是爱因斯坦发现了光电效应现象,普朗克为了解释光电效应的规律,提出了光子说(错)。 4.爱因斯坦创立了举世瞩目的相对论,为人类利用核能奠定了理论基础;普朗克提出了光子说,深刻地揭示了微观世界的不连续现象(错)。 ☆胡克(英国物理学家) 物理学的贡献:胡克定律 经典题目: 1.胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)。 ☆牛顿(英国物理学家) 物理学的贡献: ①总结三大运动定律、发现万有引力定律。建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学。其最有影响的著作是《自然哲学的数学原理》。 ②发现了光的色散原理;创立了微积分、发明了二项式定理;发明了反射式望远镜。 经典题目: 1.牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对)。 2.牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)。 3.牛顿提出的万有引力定律奠定了天体力学的基础(对)。 ☆卡文迪许 物理学的贡献:测量了万有引力常量。G=6.67×11-11N〃m2/kg2 典型题目: 1.牛顿第一次通过实验测出了万有引力常量(错)。 2.卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对)。

高中物理学习方法总结

高中物理学习方法总结 高中物理学习方法总结有很多同学会问学习物理有没有捷径呢答案应该是没有,学习是一件实实在在的事情,我们来不得半分含糊。 虽然没有捷径,但科学的学习方法确是有的。 物理老师给大家介绍6+2 学习法,所谓6+2 学习法即在学习过程中严格贯彻预习T上课T复习T作业T质疑T小结六个环节,另外对于每一章或一单元进行学习前后还应该有计划和系统两个环节。 下面我们来看具体的分析。 1.预习学习的第一个环节是预习。在每次上课前,抽出一段时间将知识预 先浏览一下,一则可以帮 助我们熟悉课上所要学习的知识;二则可以使我们明确课堂的重点,找出自己理解上的难点,从而做到有的放矢地去听课。 我们应该逐渐养成预习的良好习惯。 2.上课上课是我们学习的中心环节。对此我准备强调三个问题:(1)主动 听课。有人将听课分成了三种类型:即主动型、自觉型和强制型。主动型就是能够根据老师讲课的程序主动自觉地思考,在理解基 础知识的基础上,对难点和重点进行推理性的思维和接受;自觉型则是能对老师讲课的程序进行思考,能基本接受讲解的内容和基础知识,对难点和重点一般不能进行自觉推理思维,要在老师的指导下才能完成这一过程;而强制型则是指在课堂学习中,思维迟缓,推理滞留,必须在老师的不断指导启发下才能完成学习任务。

那么,你属于哪一种类型呢?我说,如果你属于强制型,那你要试着改变自己,由强制型变为自觉型;如果你是自觉型,那么你就要加强主动意识,努力变成主动型,毕竟我们是学习的主人!总之,我们应该以主动的态度去听讲,积极地进行思考,努力参与到老师的课堂教学中去。 (2)注意课堂要点。要听好课,我们应善于抓课堂的要点,这主要是指重点和难点两个方面。 上课时,我们应有意识地去注意老师讲课的重点内容。有经验的老师,总是将主要精力放在突出重点上,进行到重要的地方,或放慢速度,重点强调;或板书纲目,理清头绪;或条分缕析,仔细讲解等,我们应培养自己善于去抓住这些。 对于难点,则可能因人而异,这就需要我们在预习时做到心中有数,到时候注意专心专意,仔细听讲。 高中物理学习方法总之,我们要做到会听,能听出门道。高中物理学习方法(3)处理好听课和记笔记的关系我们应认识清楚听课和记笔记的关系:听课是主要的方面,记笔记是辅助的学习手段。 那么,我们应该如何记笔记呢?我认为,我们不应该将记笔记变成老师的课堂语录,也不应该将记笔记变成板书复印。 笔记中我们要记的内容应该有:记课堂重点、记课堂难点、记课堂疑点、记补充结论或例题等课本上没有的内容、记课堂灵感等等。 总之,我们应该有摘要、有重点地记。 3.复习有的同学课后总是急着去完成作业,结果是一边做作业,边翻课

高考物理基础知识总结

高考物理基础知识总结 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度s v= t (定义式) 2.有用推论2022t v -v =as 3.中间时刻速度 02t t/2v +v v =v= 4.末速度v t =v o +at 5.中间位置速度s/2v 6.位移02122t/s=vt=v t+at =v t 7.加速度0t v -v a=t 以v o 为正方向,a 与v o 同向(加速)a >0;反向则a <0 8.实验用推论Δs=aT 2 Δs 为相邻连续相等时间(T )内位移之差 9.主要物理量及单位:初速(v o ):m/s 加速度(a ):m/s 2 末速度(v t ):m/s 时间(t ):秒(s) 位移(s ):米(m ) 路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3) 0t v -v a=t 只是量度式,不是决定式; (4)其它相关内容:质点/位移和路程/s--t 图/v--t 图/速度与速率/。 2) 自由落体 1.初速度v o =0 2.末速度v t =gt 3.下落高度12 2h=gt (从v o 位置向下计算) 4.推论v t 2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律; (2)a=g =9.8≈10m/s 2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移012 2s=v t-gt 2.末速度v t = v o - gt (g =9.8≈10m/s 2 ) 3.有用推论v t 2 -v o 2=-2gS 4.上升最大高度H m =v o 2/2g (抛出点算起) 5.往返时间02v t=g (从抛出落回原位置的时间)

高中物理学史总结

高中物理学史总结 1、胡克:英国物理学家;发现了胡克定律(F弹=kx) 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S 正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体不会比轻物体下落得快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。通过理想斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。注:伽利略对自由落体的研究,开创了研究自然规律的一种科学方法。(回忆理想斜面实验) 3、牛顿:英国物理学家; 动力学的奠基人,他总结和发展了前人的发现,于1687年,在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。于1687年正式发表万有引力定律;奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。

高考物理物理学史知识点知识点训练含答案

高考物理物理学史知识点知识点训练含答案 一、选择题 1.下列叙述中正确的是 A.牛顿提出了万有引力定律,并通过实验测出了万有引力常量 B.奥斯特发现了电流的磁效应,总结出了电磁感应定律 C.美国科学家密立根通过油滴实验,测定出电子的荷质比 D.卢瑟福发现了质子,查德威克发现了中子,质子和中子统称为核子 2.在伽利略的斜面实验中,小球从斜面A上离斜面底端为h高处滚下斜面,通过最低点后继续滚上另一个斜面B,小球最后会在斜面B上某点速度变为零,这点距斜面底端的竖直高度仍为h.在小球运动过程中,下面的叙述正确的是( ) ①小球在A斜面上运动时,离斜面底端的竖直高度越来越小,小球的运动速度越来越大 ②小球在A斜面上运动时,动能越来越小,势能越来越大 ③小球在B斜面上运动时,速度越来越大,离斜面底端的高度越来越小 ④小球在B斜面上运动时,动能越来越小,势能越来越大 A.①② B.②③ C.①④ D.③④ 3.下列说法正确的是 A.伽利略的理想斜面实验说明了“力是维持物体运动的原因” B.采用比值定义法定义的物理量有:电场强度 F E q =,电容Q C U =,加速度 F a m = C.库仑通过实验得出了库仑定律,并用扭秤实验最早测量出了元电荷e的数值 D.放射性元素发生一次β衰变,新核原子序数比原来原子核序数增加1 4.在物理学发展过程中, 很多科学家做出了巨大的贡献,下列说法中符合史实的是()A.伽利略通过观测、分析计算发现了行星的运动规律 B.卡文迪许用扭秤实验测出了万有引力常量 C.牛顿运用万有引力定律预测并发现了海王星和冥王星 D.开普勒利用他精湛的数学经过长期计算分析,最后终于发现了万有引力定律 5.在物理学发展的历程中,许多物理学家的科学研究推动了人类文明的进程。以下对几位物理学家所作科学贡献的叙述中,正确的是 A.牛顿运用理想实验法得出“力不是维持物体运动的原因” B.安培总结出了真空中两个静止点电荷之间的作用规律 C.爱因斯坦创立相对论,提出了一种崭新的时空观 D.第谷通过大量的观测数据,归纳得到了行星的运行规律 6.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步,关于科学家和他们的贡献,下列说法正确的是() A.古希腊学者亚里士多德认为物体下落的快慢由它们的重量决定,伽利略在他的《两种新科学的对话》中利用逻辑推断,使亚里士多德的理论陷入了困境 B.德国天文学家开普勒对他导师第谷观测的行星数据进行了多年研究,得出了万有引力定律

高中物理思想方法总结

高中物理思想方法总结 引导语:物理是一门很多学生都掌握不好的学科,其实学好物理是非常需要方法的,接下来是为你带来收集的高中物理思想方法总结,欢迎阅读! 1.微元法与极限法 它本是高等数学中的知识领域问题,但在高中物理中只是思想方法领域的问题。在高中也根本不可能把具体知识体系教给学生,但作为思想方法,它的地位反而更高。虽然对问题的分析都是定性的,却反应了思维的质量和深度。在处理匀变速直线运动的位移、瞬时速度,曲线运动速度方向、万有引力由“质点”向“大的物体”过渡、变力做功,等等,要大力向学生渲染这种思想方法。 2.隔离法 除前面提到的对物体系统进行隔离的例子,还有对问题的过程或问题性质进行隔离的思想方法问题。例如我们把电源隔离成无阻理想电源和电阻串联的两部分;把碰撞问题分隔成纯粹碰撞阶段和纯粹运动阶段──很多教师说“碰撞瞬间完成,还没来得及运动,忽略其位移”,其实这话不严密:不是没位移,而是把位移成分(哪怕很微小的位移)在运动阶段中体现了。再如,在讨论卫星运行中的变轨问题时,往往分隔成变速、变轨,再变速、稳定在另一轨道等等几个理想段,实际中这些过程并不是界限分明分阶段进行的,而是交融在一起、伴随在一起的。

隔离法的运用,不是忽略了什么,也不是允许了什么误差,而是思维的一种方法与技巧。运用这种方法,研究的结果是精确的。 3.忽略次要因素思想 很多学生在讨论问题时,有两个误区:一是看问题不全面,类似的如电路中的功率等于电压与电流二者的积,电压增大为原来二倍时,有的学生就说功率就变为原来二倍;二是不知道多个因素影响中,需要忽略无穷小的和次要的因素。例如随温度的增加导体的电阻究竟增加还是减小?再如在研究光学的成像时不用考虑色散、在研究干涉问题时不考虑衍射影响、在研究声速时不考虑温度影响等。 对此,应该让学生归纳出理性化的思绪:第一,精确度方面。例如,研究铁球的自由落体运动,不做精确测量时,不考虑空气阻力。但要进行精确研究,即便下落的是铁球,也要考虑空气阻力。第二,在关注点方面。例如还是铁球下落,看你关注的是什么。如果你关注的是空气阻力影响,就不能忽略空气阻力。再如一个物体既有平动又有转动,当关注平动时就忽略转动,当关注转动时就忽略平动。第三,为了思维推演的简化,认可一定的误差存在。例如在研究理想气体时,忽略分子体积。 4.单位制中的思想方法 单位制的统一,也存在思想方法问题。例如,教师可以大讲特讲以前的单位制多么的混乱、讲讲各个国家及各个地区用的单位的不同有多麻烦、说说我们国家以前的教材“力”和“质量”单位都用“千克”给学生的学习带来多大的困惑,讲一下美国1999年发射的火星

高中物理基础知识总结大全

高中物理公式总结 物理定理、定律、公式表 一、质点的运动(1)------直线运动 1)匀变速直线运动 1、平均速度V平=s/t(定义式) 2、有用推论Vt2-Vo2=2as 3、中间时刻速度Vt/2=V平=(Vt+Vo)/2 4、末速度Vt=Vo+at 5、中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6、位移s=V平t=Vot+at2/2=Vt/2t 7、加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8、实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9、主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3、6km/h。 注: (1)平均速度就是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只就是量度式,不就是决定式; (4)其它相关内容:质点、位移与路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1、初速度Vo=0 2、末速度Vt=gt 3、下落高度h=gt2/2(从Vo位置向下计算) 4、推论Vt2=2gh 注: (1)自由落体运动就是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9、8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1、位移s=Vot-gt2/2 2、末速度Vt=Vo-gt (g=9、8m/s2≈10m/s2) 3、有用推论Vt2-Vo2=-2gs 4、上升最大高度Hm=Vo2/2g(抛出点算起) 5、往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:就是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1、水平方向速度:Vx=Vo 2、竖直方向速度:Vy=gt 3、水平方向位移:x=Vot 4、竖直方向位移:y=gt2/2 5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

相关文档
最新文档