杨氏模量实验报告模版

杨氏模量实验报告模版
杨氏模量实验报告模版

南昌大学物理实验报告

课程名称:大学物理实验

实验名称:金属丝杨氏模量的测定

学院:理学院专业班级:应用物理164班

学生姓名:王逸群学号:5521016100

实验地点:基础实验大楼B610 座位号:041

实验时间:第三周星期一下午一点开始

杨氏模量实验报告

实验十拉伸法测金属杨氏模量 【实验简介】 杨氏模量是工程材料的重要参数,它是描述材料刚性特征的物理量,杨氏模量越大,材料越不易发生变形,杨氏模量可以用动态法来测量,也可以用静态法来测量。本实验采用静态法。对于静态法来说,既可以用金属丝的伸长与外力的关系来测出杨氏模量,也可以用梁的弯曲与外力的关系来测量。静态法的关键是要准确测出试件 的微小变形量。杨氏模量是重要的物理量,它是选定构件材料的 依据之一,是工程技术常用参数,在工程实际中有着重要意义。 托马斯.杨生平简介、 托马斯.杨生(Thomas Young ,1773-1829)是英国物理学家,考古学家, 医生。光的波动说的奠基人之一。1773年6月13日生于米尔费顿,曾在伦 敦大学、爱丁堡大学和格丁根大学学习,伦敦皇家学会会员,巴黎科学院院 士。1829年5月10日去世。早期提出和证明了声波和光波的干涉现象(著名杨氏双缝干涉实验),并用光的干涉原理解释了牛顿环现象等。1807年提出了表征弹性体的量——杨氏模量。 【实验目的】 1、学会测量杨氏模量的一种方法(静态法); 2、掌握用光杠杆法测量微小长度变化的原理(放大法); 3、学习用逐差法处理实验数据。图10-1 托马斯.杨 【实验仪器及装置】 杨氏模量测定仪、光杠杆、望远镜标尺组、螺旋测 微器(25mm、0.01mm)、游标卡尺(125mm、0.02mm) 及钢卷尺(2m、1mm)等 图10-2 望远镜标尺图10-3 杨氏模量测定仪图10-4 实验装置放置图

【实验原理】 1、静态法测杨氏模量 一根均匀的金属丝或棒,设其长度为L ,截面积为S,在受到沿长度方向的外力F 的作用下伸长L ?。根据胡克定律可知,在材料弹性范围内,其相对伸长量 L L /?(应变)与外力造成的单位 面积上受力F/S(应力)成正比,两者的比值 L L S F Y //?= (10-1) 称为该金属丝的弹性模量,也称杨氏模量,它的单位为2/N m (牛顿/平方米)。 实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量。设金属丝的直径为d ,则24 1 d S π=,杨氏模量可表示为: 2 4FL Y d L π= ? (10-2) 式(2)表明:在长度L 、直径d 和外力F 相同的情况下,杨氏模量大的金属丝的伸长量较小,而一般金属材料的杨氏模量均达到211/10m N 的数量级,所以当FL/2d 的比值不太大时,绝对伸长量L ?就很小,用通常的测量仪(游标卡尺、螺旋测微器等)就难以测量。实验中可采用光学放大法将微小长度转换成其他量测量,用一种专门设计的测量装置—— 光杠杆来进行测量。光杠杆及测量装置如图10-5、图10-6所示。 图10-5 光杠杆图 前足 后足 镜面M M M L

传统的杨氏弹性模量实验报告

杨氏弹性模量的测定 实验人: 杨氏弹性模量是材料弹性性质的一个主要特征量.本实验通过对钢丝杨氏弹性模量的测量,学习一种测量长度微小变化的方法:光杠杆镜尺法. [目的] 1.测定金属丝的杨氏弹性模量. 2.掌握光杠杆镜尺法测定长度微小变化的原理,学会具体的测量方法. 3.学习处理实验数据的两种方法:图解法和逐差法. [原理] 1.金属丝受外拉力作用,会有伸长,且遵从虎克定律,有L L S mg Y ?= 其中,Y:杨氏弹性模量 mg:外力 S:金属丝横截面积 L:金属丝长度 △L:金属丝伸长量 2.光杠杆镜尺法测微原理 如图1,该系统利用镜子放大微小变化,从而达到测微效果.结合虎克定律及光杠杆镜尺法,可得杨氏弹性模量为 图1. 拉伸法测量杨氏弹性模量原理图 标尺 l m sk LDg Y ??= 2

其中,L:金属丝原长 D:镜面到标尺的垂直距离 S:金属丝截面积 K:光杠杆前足到两后足连线的垂直距离m ?:单个砝码质量 l ?:加/减单个砝码时,标尺读数变化量 LDgSK 均为常量,l m ??/由图解法和逐差法求出 [仪器] 杨氏模量测定仪(如图M-4-3),调节方法如下: 1.调节光杠杆与望远镜在同一高度,光杠杆镜面尽可能铅直. 2.在望远镜外侧寻找光杠杆镜面上标尺的象(如看不到,应调节镜面方位和移动测定仪的位置) 3.移动望远镜,使其缺口与准星大致对准标尺的像. 4.调节望远镜目镜,使观察到的十字叉丝清晰. 5.调节望远镜调焦手轮,先观察到镜子,再观察到标尺,使观察到的标尺读数与十字叉丝均清晰而无视差. [实验步骤] 1.调节测定仪,使支架铅直. 2.在金属丝下端先挂一负载(如2千克),使金属丝完全拉直,此负载为初始负载,不计入作用力内. 3.用带有卡具的米尺量出金属丝长度L. 4.在不同位置,用螺旋测微计测10次金属丝直径d,取平均值. 5.安装光杠杆,调节望远镜,记录望远镜读数x 0,逐渐增加砝码到9×0.500kg,每次增加0.500kg,记录望远镜读数x i ’,再逐渐减少砝码,记录望远镜读数,则x i =0.5(x i ’+ x i ’’) 6.用钢皮尺测量光杠杆镜面到标尺的距离D 7.用游标卡尺测量光杠杆前足到后两足连线的垂直长度K. [注意事项] 1.调节望远镜时,注意消除视差,即要求标尺读数相对十字叉丝无相对位移.

拉伸法测弹性模量 实验报告0204192300

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。 成 绩 教师签字

实验中测定E , 只需测得F 、S 、l 和即可, 前三者可以用常用方法测得, 而的数量级l ?l ?很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖 直状态, 此时标尺读数为n 0。 当金属丝被拉长以l ?后, 带动平面镜旋转一角度α, 到图中所示M’位置; 此时读得标尺读数为n 1, 得到刻度变化为 。 Δn 与呈正比关系, 且根据小量 01n n n -=?l ?忽略及图中的相似几何关系, 可以得到 (b 称为光杠杆常数) n B b l ??= ?2将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 02 8n F bE D lB n i i +?= π可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 P.S. 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 , 又在仪器关系上, 有x=2B , 则 , () 。 N p f x ?= N p f B ??=21100=p f 由上可以得到平面镜到标尺的距离B 。

杨氏模量实验报告记录

杨氏模量实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:金属丝杨氏模量的测定 学院:食品学院专业班级:食品科学与工程152班学生姓名:彭超学号: 5603115045 实验地点:基础实验大楼B106 座位号: 实验时间:第四周星期二下午十六点开始

一、实验目的:1.学会测量杨氏模量的一种方法,掌握“光杠杆镜”测量微小长度变化的原理 2.学会用“对称测量”消除系统误差 3.学习如何依实际情况对各个测量进行误差估算 4.练习用逐差法、作图法处理数据 二、实验原理: 在外力作用下,固体材料所发生的形状变化称之为形变。形变分为弹性形变和范性形变。如果加在物体上的外力停止作用后,物体能完全恢复原状的形变称之为弹性形变;如果加在物体上的外力停止作用后,物体不能完全恢复原状的形变称之为范性形变。 在许多种不同的形变中,伸长(或缩短)形变是最简单、最普遍的形变之一。本实验是针对连续、均匀、各向同性的材料做成的丝,进行拉伸试验。设细丝的原长为L ,横截面积为S ,两端受拉力(或 压力)F 后,物体伸长(或缩短)L ?。而单位长度的伸长量L L ?称为应变,单位横截面积所承受的力S F 称 为应力。根据胡克定律,在弹性限度内,应力与应变成正比关系,即 L L E S F ?= 式中比例系数E 称为杨氏弹性模量,简称杨氏模量。实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,而只决定于物体的材料。杨氏模量是表征固体材料性质的一个重要物理量,是选定机械构件材料的依据之一。 由上式得 L S FL E ?=0 在国际单位制(SI)中,E 的单位为2-m ?N 实验证明,杨氏模量与外力F 、物体长度L 和横截面积S 的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量 设金属丝的直径为d ,则 2d 41 π=S L FL E ?=2d 4π 而L ?是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的L ?约为0.3mm)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量L ?的间接测量。

杨氏模量实验报告.doc

杨氏模量实验报告 开展实验自然要写实验报告,杨氏模量实验报告怎样写呢?那么,下面是我给大家整理收集的杨氏模量实验报告相关范文,仅供参考。 杨氏模量实验报告1 【实验目的】 1.1.掌握螺旋测微器的使用方法。 2.学会用光杠杆测量微小伸长量。 3.学会用拉伸法金属丝的杨氏模量的方法。 【实验仪器】 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。 1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。这圆形夹头可以在支架的下梁的圆孔内自由移动。支架下方有三个可调支脚。这圆形的气泡水准。使用时应调节支脚。由气泡水准判断支架是否处于垂直状态。这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。 2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时

平面镜以两前支脚为轴旋转。 图1 图2 图3 3、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。这是表明标尺通过物镜成像在分划板平面上。由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。标尺是一般的米尺,但中间刻度为0。 【实验原理】 1、胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为塑性形变。 应力:单位面积上所受到的力(F/S)。 应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。 用公式表达为: (1) 2、光杠杆镜尺法测量微小长度的变化 在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。用一般的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。 初始时,平面镜处于垂直状态。标尺通过平面镜反射后,

低碳钢弹性模量e的测定实验报告doc

低碳钢弹性模量e的测定实验报告 篇一:低碳钢弹性模量E的测定 低碳钢弹性模量E的测定 一、实验目的 1.在比例极限内测定低碳钢的弹性模量E 2.验证虎克定律 二、实验设备 1. WE-300型液压式万能试验机。 2.蝶式引伸仪、游标卡尺、米尺。 三、实验原理 低碳钢弹性模量E的测定,是在比例极限以内的拉伸试验中进行的。低碳钢在比例极限内服从胡克定律,即PL0 ?L?EA0 式中,P为轴向拉力,L0是引伸仪标距长度(亦即试件的标距),A0为试件原始截面面积。 为了验证胡克定律和消除测量中可能产生的误差,我们采用“增量法”测量低碳钢的弹性模量。就是对试件逐级增加同样大小的拉力?P,相应地由引伸仪测得在引伸仪标距范围内的轴向伸长量?li。如果每一级拉力?P增量所引起的轴向伸长量?li基本相等,这就验证了胡克定律。根据测得的各级轴向伸长量增量的平均值?l平均,可用下式算出弹性模量

E??PL0 A0?l平均 利用“增量法”进行测量时,还能判断实验有无错误(本文来自:小草范文网:低碳钢弹性模量e的测定实验报告),因为若发现各次的应变增量不按一定规律变化,就说明实验工作有问题,应进行检查。实验时,为了消除试验机夹具与试件的间隙,以及引伸仪机构内的间隙,需要加初载荷P0 四、实验步骤 1.用游标尺测量试件直径。 2.开动万能机,使上夹头抬高3厘米,将试件上部装入试验机上夹头内, 移动下夹头到适当位置,再夹紧试件下部。 3.把蝶式引伸仪加在试件上,如图1-3所示。 4.拟定加载方案:从载荷P=4KN开始读数,以后载荷每增加2KN读一次引伸仪数据。选好测力盘,调整试验机测力指针,使其对准零点,将引伸仪上左右两只千分表上大指针,也调到零点. 5.关闭回油阀、送油阀,启动电源,缓慢打开送油阀开始加载。取P0 =4KN作为初载荷,记下引伸仪初读数.以后每增加相同载荷△P=2KN记录一次引伸仪读数,一直加到低于比例极限的某一值(如14KN)为止。 6.停机。检查引伸仪读数差值是否大致相等,如果数值相差太大,须重新测量。

杨氏模量实验报告汇总

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:金属丝杨氏模量的测定 学院:食品学院专业班级:食品科学与工程152班 学生姓名:彭超学号: 5603115045 实验地点:基础实验大楼B106 座位号: 实验时间:第四周星期二下午十六点开始

)调节测定仪支架螺丝,使支架竖直,使夹头刚好穿过平台上的圆孔而不会与平台发生摩擦(1 )将杠杆后尖脚置于夹头上,两尖脚置于平台凹槽上(2 )调节光杠杆与望远镜、米尺中部在同一高度上(3)调节望远镜的位置或光杠杆镜面仰角,直至眼睛在望远镜目镜附近能直接(不通过望远镜筒)从4(光杠杆镜面中观察到标尺中部的像)细微调节望远镜方位和仰角调节螺丝,直至望远镜上缺口与准星连线粗略对准光杠杆镜面(5 (6)调节望远镜目镜调焦旋钮,直至在望远镜中能看清叉丝。)调节望远镜的物镜调焦旋钮直至在望远镜中能看清整个镜面。(如果只能看到部分镜面,应调节7(望远镜仰角调节螺丝,直至看到整个镜面)。 8)继续调节望远镜的物镜调焦旋钮,直至在望远镜中能看清标尺中部读数。()如果只有部分标尺清楚,说明只有部分标尺聚焦,应调节望远镜仰角调节螺丝直至视野中标尺读(9 数完全清楚。 四、实验内容和步骤:个底脚螺丝,同时观察砝码挂在钢丝下端钢丝拉直,调节杨氏模量仪底盘下面的32kg(1)用放在平台上的水准尺,直至中间平台处于水平状态为止。 )调节光杠杆镜位置。将光杆镜放在平台上,两前脚放在平台横槽内,后脚放在固定钢丝下(2端圆柱形套管上(注意一定要放在金属套管的边上,不能放在缺口的位置),并使光杠杆镜镜面基本所示。垂直或稍有俯角,如图6-1左右处,松开望远镜固定螺钉,上下移动使得望远2m(3)望远镜调节。将望远镜置于距光杆镜移动望远镜固定架位置,从望远镜筒上方沿镜筒轴线瞄准光杠杆镜面,镜和光杠杆镜的镜面基本等高。直至可以看到光杠杆镜中标尺的像。然后再从目镜观察,先调节目镜使十字叉丝清晰,最后缓缓旋转调焦手轮,使物镜在镜筒内伸缩,直至从望远镜里可以看到清晰的标尺刻度为止。n砝,然后每加上1kg砝码时的读数作为开始拉伸的基数(4)观测伸长变化。以钢丝下挂 2kg0n,n,n,n,n,n,n,n这是钢丝拉伸过程中的读数变, 这样依次可以得到码,读取一次数据, 76543210''''''''nnnnnnnn砝码,读取一次数据,依次得到1kg化。紧接着再每次撤掉,这是钢丝收缩过程中50671342的读数变化。注意:加、减砝码时,应轻放轻拿,避免钢丝产生较大幅度振动。加(或减)砝码后,钢丝会有

弹性模量的测量实验报告

弹性模量的测量实验报告 一、拉伸法测量弹性模量 1、实验目的 (1) 学习用拉伸法测量弹性模量的方法; (2) 掌握螺旋测微计和读数显微镜的使用; (3) 学习用逐差法处理数据。 2、实验原理 (1)、杨氏模量及其测量方法 本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸长的形变(称拉伸形变)。设有一长度为L ,截面积为S 的均匀金属丝,沿长度方向受一外力后金属丝伸长δL 。单位横截面积上的垂直作用力F /S 成为正应力,金属丝的相对伸长δL /L 称为线应变。实验结果指出,在弹性形变范围内,正应力与线应变成正比,即 L L E S F δ= 这个规律称为胡克定律,其中L L S F E //δ= 称为材料的弹性模量。它表征材料本身的性质,E 越大的材料,要使他发生一定的相对形变所需的单位横截面积上的作用力也越大,E 的单位为Pa(1Pa = 1N/m 2; 1GPa = 109Pa)。 本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D ,则可以进一步把E 写成: L D FL E δπ2 4= 测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量δL ,即可求出E 。钢丝长度L 用钢尺测量,钢丝直径D 用螺旋测微计测量,力F 由砝码的重力F = mg 求出。实验的主要问题是测准δL 。δL 一般很小,约10?1mm 数量级,在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量)。为了使测量的δL 更准确些,采用测量多个δL 的方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记录伸长位置。通过数据处理求出δL 。

动态法测杨氏模量实验报告

动态法测量杨氏模量 一、 实验目的 1. 理解动态法测量杨氏模量的基本原理。 2. 掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3. 了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。学会用示波器观察判断样品共振的方法。 4. 培养综合运用知识和使用常用实验仪器的能力。 二、 实验原理: 在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。 根据杆的横振动方程式 02 244=??+??t y EJ S x y ρ (1) 式中ρ为杆的密度,S 为杆的截面积,?= s dS y J 2 称为惯量矩(取决于截面的形状),E 即为杨氏模量。 如图1所示,长度L 远远大于直径d (L >>d )的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为 02244=??+??t EJ y S x y ρ (1) 棒的轴线沿x 方向,式中y 为棒上距左端x 处截面的y 方向位 移,E 为杨氏模量,单位为Pa 或N/m 2;ρ为材料密度;S 为 截面积;J 为某一截面的转动惯量,??=s ds y J 2。 横振动方程的边界条件为:棒的两端(x =0、L )是自由端,端点既不受正应力也不受切向力。用分离变量法求解方程(1),令)()(),(t T x X t x y =,则有 2 24411dt T d T EJ S dx X d X ?-=ρ (2) 由于等式两边分别是两个变量x 和t 的函数,所以只有当等式两边都等于同一个常数时等式才成立。假设此常数为K 4,则可得到下列两个方程 044 4=-X K dx X d (3) 0422=+T S EJ K dt T d ρ (4) 如果棒中每点都作简谐振动,则上述两方程的通解分别为 图1 细长棒的弯曲振动

杨氏模量实验报告

钢丝的杨氏模量 【预习重点】 (1)杨氏模量的定义。 (2)利用光杠杆测量微小长度变化的原理和方法。 (3)用逐差法和作图法处理实验数据的方法。 【仪器】 杨氏模量仪(包括砝码组、光杠杆及望远镜-标尺装置)、螺旋测微器、钢卷尺。 【原理】 1)杨氏模量 物体受力产生的形变,去掉外力后能立刻恢复原状的称为弹性形变;因受力过大或受力时间过长,去掉外力后不能恢复原状的称为塑性形变。物体受单方向的拉力或压力,产生纵向的伸长和缩短是最简单也是最基本的形变。设一物体长为L,横截面积为S,沿长度方向施力F后,物体伸长(或缩短)了δL。F/S是单位面积上的作用力,称为应力,δL/L是相对变形量,称为应变。在弹性形变范围内,按照胡克(HookeRobert1635—1703)定律,物体内部的应力正比于应变,其比值 (5—1) 称为杨氏模量。 实验证明,E与试样的长度L、横截面积S以及施加的外力F的大小无关,而只取决于试样的材料。从微观结构考虑,杨氏模量是一个表征原子间结合力大小的物理参量。 2)用静态拉伸法测金属丝的杨氏模量 杨氏模量测量有静态法和动态法之分。动态法是基于振动的方法,静态法是对试样直接加力,测量形变。动态法测量速度快,精度高,适用范围广,是国家标准规定的方法。静态法原理直观,设备简单。 用静态拉伸法测金属丝的杨氏模量,是使用如图5—1所示杨氏模量仪。在三角底座上装两根支柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个支架受力后变形极小,可以忽略。待测样品是一根粗细均匀的钢丝。钢丝上端用卡头A夹紧并固定在上横梁上,钢丝下端也用一个圆柱形卡头B夹紧并穿过平台C的中心孔,使钢丝自由悬挂。通过调节三角底座螺丝,使整个支架铅直。下卡头在平台C的中心孔内,其周围缝隙均匀而不与孔边摩擦。圆柱形卡头下方的挂钩上挂一个砝码盘,当盘上逐次加上一定质量的砝码后,钢丝就被拉伸。下卡头的上端面相对平台C的下降量,即是钢丝的伸长量δL。钢丝的总长度就是从上卡头的下端面至下卡头的上端面之间的长度。钢丝的伸长量δL是很微小的,本实验采用光杠杆法测量。 3)光杠杆

传统的杨氏弹性模量实验报告

氏弹性模量的测定 实验人: 氏弹性模量是材料弹性性质的一个主要特征量.本实验通过对钢丝氏弹性模量的测量,学习一种测量长度微小变化的方法:光杠杆镜尺法. [目的] 1. 测定金属丝的氏弹性模量. 2. 掌握光杠杆镜尺法测定长度微小变化的原理,学会具体的测量方法. 3. 学习处理实验数据的两种方法:图解法和逐差法. [原理] 1. 金属丝受外拉力作用,会有伸长,且遵从虎克定律,有L L S mg Y ?= 其中,Y:氏弹性模量 mg:外力 S:金属丝横截面积 L:金属丝长度 △L:金属丝伸长量 2. 光杠杆镜尺法测微原理 如图1,该系统利用镜子放大微小变化,从而达到测微效果.结合虎克定律及光杠杆镜尺法,可得氏弹性模量为 图1. 拉伸法测量杨氏弹性模量原理图 标尺 l m sk LDg Y ??= 2

其中,L:金属丝原长 D:镜面到标尺的垂直距离 S:金属丝截面积 K:光杠杆前足到两后足连线的垂直距离 m ?:单个砝码质量 l ?:加/减单个砝码时,标尺读数变化量 LDgSK 均为常量,l m ??/由图解法和逐差法求出 [仪器] 氏模量测定仪(如图M-4-3),调节方法如下: 1. 调节光杠杆与望远镜在同一高度,光杠杆镜面尽可能铅直. 2. 在望远镜外侧寻找光杠杆镜面上标尺的象(如看不到,应调节镜面方位和移动测定仪的位置) 3. 移动望远镜,使其缺口与准星大致对准标尺的像. 4. 调节望远镜目镜,使观察到的十字叉丝清晰. 5. 调节望远镜调焦手轮,先观察到镜子,再观察到标尺,使观察到的标尺读数与十字叉丝均清晰而无视差. [实验步骤] 1. 调节测定仪,使支架铅直. 2. 在金属丝下端先挂一负载(如2千克),使金属丝完全拉直,此负载为初始负载,不计入作用力. 3. 用带有卡具的米尺量出金属丝长度L. 4. 在不同位置,用螺旋测微计测10次金属丝直径d,取平均值. 5. 安装光杠杆,调节望远镜,记录望远镜读数x 0,逐渐增加砝码到9×0.500kg,每次增加0.500kg,记录望远镜读数x i ’,再逐渐减少砝码,记录望远镜读数,则x i =0.5(x i ’+ x i ’’) 6. 用钢皮尺测量光杠杆镜面到标尺的距离D 7. 用游标卡尺测量光杠杆前足到后两足连线的垂直长度K. [注意事项] 1. 调节望远镜时,注意消除视差,即要求标尺读数相对十字叉丝无相对位移.

拉伸法测弹性模量实验报告.doc

大连理工大学 大学物理实验报告 院(系) 材料学院 专业 材料物理 班级 0705 成 绩 姓 名 童凌炜 学号 5 实验台号 实验时间 2008 年 11 月 11 日,第 12 周,星期 二 第 5-6 节 教师签字 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置) , 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为 l , 截面积为 S , 一端固定后竖直悬挂, 下端挂以质量为 m 的 砝码; 则金属丝在外力 的作用下伸长 l 。 单位截面积上所受的作用力 F/S 称为应力, 单 F=mg 位长度的伸长量l/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力 F/S 和 l/l 应变成正比, 即 F E l Sl 其中的比例系数 F / S E l / l 称为该材料的弹性模量。 性质: 弹性模量 E 与外力 F 、物体的长度 l 以及截面积 S 无关, 只决定于金属丝的材料。

实验中测定E,只需测得F、S、l 和l 即可,前三者可以用常用方法测得,而l 的数量级很小,故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下:初始状态下,平面镜为竖直状态,此时标尺读数为 n0。当金属丝被拉长 l 以后,带动平面镜旋转一角度α,到图中所示 M’位置;此时读得标尺读数为n1,得到刻度变化为n n1 n0。n与l 呈正比关系,且根据小量忽略及图中的相似几何关系,可以得到 b n ( b 称为光杠杆常数) l 2B 将以上关系,和金属丝截面积计算公式代入弹性模量的计算公式,可以得到 E 8FlB D 2b n (式中 B 既可以用米尺测量,也可以用望远镜的视距丝和标尺间接测量;后者的原理见附录。)根据上式转换,当金属丝受力 F i时,对应标尺读数为n i,则有 8lB n i D 2bE F i n0 可见 F 和 n 成线性关系,测量多组数据后,线性回归得到其斜率,即可计算出弹性模量E。 . 用望远镜和标尺测量间距B: 已知量:分划板视距丝间距p,望远镜焦距 f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2,读数差为N。在几何关系上忽略数量级差别大的量后, 可以得到 x f N ,又在仪器关系上,有 x=2B,则 B 1 f N ,( f 100 )。p 2p p 由上可以得到平面镜到标尺的距离B。

大学物理实验 报告实验21 用拉伸法测杨氏模量

实验21 用拉伸法测杨氏模量 林一仙 1 实验目的 1)掌握拉伸法测定金属杨氏模量的方法; 2)学习用光杠杆放大测量微小长度变化量的方法; 3)学习用作图法处理数据。 2 实验原理 相关仪器: 杨氏模量仪、光杠杆、尺读望远镜、卡尺、千分尺、砝码。 2.1杨氏模量 任何固体在外力使用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。本实验研究的是棒状物体弹性形变中的伸长形变。 设金属丝的长度为L ,截面积为S ,一端固定, 一端在延长度方向上受力为F ,并伸长△L ,如图 21-1,比值: L L ?是物体的相对伸长,叫应变。 S F 是物体单位面积上的作用力,叫应力。 根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即 L L Y S F ?= 则有 L S FL Y ?= (1) (1)式中的比例系数Y 称为杨氏弹性模量(简称杨氏模量)。 实验证明:杨氏模量Y 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。 根据(1)式,测出等号右边各量,杨氏模量便可求得。(1)式中的F 、S 、L 三个量都可用一般方法测得。唯有L ?是一个微小的变化量,用一般量具难以测准。本实验采用光杠杆法进行间接测量(具体方法如右图所示)。 2.2光杠杆的放大原理 如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改变后的镜面和改变前的镜面必然成有一个角度差,用θ来表示这个角度差。从下图我们可以看出:

h L tg ?= θ (2) 这时望远镜中看到的刻度为1N ,而且θ201=ON N ∠,所以就有: D N N tg 0 12-= θ(3) 采用近似法原理不难得出: L h D N N N ?= -=?201(4) 这就是光杠杆的放大原理了。 将(4)式代入(1)式,并且S=πd 2 ,即可得下式: N h d F LD Y ??=π2 8 这就是本实验所依据的公式。 2.3 实验步骤 1)将待测金属丝下端砝码钩上加1.000kg 砝码使它伸直。调节仪器底部三脚螺丝,使G 平台水平。 2)将光杠杆的两前足置于平台的槽内,后足置于C 上,调整镜面与平台垂直。 3)调整标尺与望远镜支架于合适位置使标尺与望远镜以光杠杆镜面中心为对称,并使镜面与标尺距离D 约为1.5米左右。 4)用千分尺测量金属丝上、中、下直径,用卷尺量出金属丝的长度L 。 5)调整望远镜使其与光杠杆镜面在同一高度,先在望远镜外面附近找到光杠杆镜面中标尺的象(如找不到,应左右或上下移动标尺的位置或微调光杠杆镜面的垂直度)。再把望远镜移到眼睛所在处,结合调整望远镜的角度,在望远镜中便可看到光杠杆镜面中标尺的反射象(不一定很清晰)。 6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,而且无视差。若有视差,应继续细心调节目镜,直到无视差为止。检查视差的办法是使眼睛上下移动,看叉丝与标尺的象是否相对移动;若有相对移动,说明有视差,就应再调目镜直到叉丝与标尺象无相对运动(即无视差)为止。记下水平叉丝(或叉丝交点)所对准的标尺的初读数N 0,N 0一般应调在标尺0刻线附近,若差得很远,应上下移动标尺或检查光杠杆反射镜面是否竖直。 7)每次将1.000kg 砝码轻轻地加于砝码钩上,并分别记下读数N '1、N '2、…、N i ',共做5次。 8)每次减少1.000kg 砝码,并依次记下记读数N i ''-1,N i ''-2,…、N ''0。 9)当砝码加到最大时(如6.000kg )时,再测一次金属丝上、中、下的直径d ,并与挂1.000kg 砝码时对应的直径求平均值,作为金属丝的直径d 值。 10)用卡尺测出光杠杆后足尖与前两足尖的距离h ,用尺读望远镜的测距功能测出D (长短叉丝的刻度差乘100倍)。

杨氏模量实验报告

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-054125 杨氏模量实验报告Young's modulus experiment report

杨氏模量实验报告 杨氏模量实验报告1 【实验目的】 1.1.掌握螺旋测微器的使用方法。 2.学会用光杠杆测量微小伸长量。 3.学会用拉伸法金属丝的杨氏模量的方法。 【实验仪器】 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。 1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。这圆形夹头可以在支架的下梁的圆孔内自由移动。支架下方有三个可调支脚。这圆形的气泡水准。使用时应调节支脚。由气泡水准判断支架是否处于垂直状态。这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。 2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。

图1 图2 图3 3、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。这是表明标尺通过物镜成像在分划板平面上。由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。标尺是一般的米尺,但中间刻度为0。 【实验原理】 1、胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为塑性形变。 应力:单位面积上所受到的力(F/S)。 应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。 用公式表达为:(1) 2、光杠杆镜尺法测量微小长度的变化 在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。用一般的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。 初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中呈像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为。当钢丝下降DL时,平面镜将转动q角。则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为处。由于平面镜转动q角,进入望远镜的光线旋转2q 角。从图中看出望远镜中标尺刻度的变化。

光杠杆法测定杨氏模量实验报告

杨氏弹性模量测定实验报告 一、摘要 弹性模量是描述材料形变与应力关系的重要特征量,是工程技术中常用的一个参数。在实验室施加的外力使材料产生的变形相当微小,难以用肉眼观察,同时过大的载荷又会使得材料发生塑形变形,所以要通过将微小变形放大的方法来测量。本实验通过光杠杆将外力产生的微小位移放大,从而测量出杨氏弹性模量,具有较高的可操作性。 二、实验仪器 弹性模量测定仪(包括:细钢丝、光杠杆、望远镜、标尺和拉力测量装置);钢卷尺、螺旋测微器、游标卡尺。 三、实验原理 (1)杨氏弹性模量定义式 任何固体在外力作用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。设金属丝的长度为L ,截面积为S ,一端固定,一端在伸长方向上受力为F ,伸长为△L 。 定义: 物体的相对伸长 L L ?=ε为应变, 物体单位面积上的作用力S F = σ为应力。 根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即 L L E S F ?= 则有: L S FL E ?= 式中的比例系数E 称为杨氏弹性模量(简称弹性模量)。 实验证明:弹性模量E 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。 对于直径为D 的圆柱形钢丝,其弹性模量为: L D FL E ?= 24π 根据上式,测出等号右边各量,杨氏模量便可求得。式中的F 、D 、L 三个量都可用一般方法测得。唯有L ?是一个微小的变化量,用一般量具难以测准。故而本实验采用光杠杆法进行间接测量。 (2)光杠杆放大原理 光杠杆测量系统由光杠杆反射镜、倾角调节架、标尺、望远镜和调节反射镜组成。实验时,将光杠杆两个前足尖放在弹性模量测定仪的固定平台上,后足尖放在待测金属丝的测量端面上。当金属丝受力后,产生微小伸长,后足尖便随着测量端面一起作微小移动,并使得光杠杆绕前足尖转动一个微小角度,从而带动光杠杆反射镜转动相应的微小角度,这样标尺的像在光杠杆反射镜和调节反射镜之间反射,便把这一微小角位移放大成较大的线位移。 如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改

钢丝杨氏模量实验报告及评分标准#精选.

钢丝杨氏模量实验 总分:100 组卷人:系统管理员 一、单选题共 5 小题共 20 分 1. (4 分)在拉伸法测杨氏模量实验中,采用加减砝码各测一次取平均的方法测量△x是为了 标准答案:C A. 增加测量次数 B. 扩大拉伸测量范围 C. 消除因摩擦和滞后带来的系统误差 D. 消除砝码的误差 2. (4 分)材料相同,粗细长度不同的两根钢丝,它们的杨氏模量是否相同: 标准答案:C A. 细金属丝的杨氏模量值较大 B. 粗金属丝的杨氏模量值较大 C. 相同 D. 不一定 3. (4 分)如果金属丝圆柱形活动夹和平台圆孔间有摩擦力存在,对实验结果将有何影响____ 标准答案:B A. 结果偏小 B. 结果偏大 C. 没有影响 D. 随机 4. (4 分)在量金属的氏模量实验中,常需预加负载,其作用是()。 测丝杨 标准答案:C A. 消除摩擦力 B. 没有作用 C. 拉直金属,避免当做伸 丝长过程测量 D. 消除零点差 误 5. (4 分) 于一定温度下的金属 对丝杨氏模量,说法正确的是()。 标准答案:D A. 只与材料的物理性有关与材料的大小和形状无关 质 B. 与材料的大小有关而与形状无关 C. 与材料的形状有关而与大小无关

D. 氏模量 志着金属材料抵抗 性 形的能力 弹 变 杨 标 二、操作题 共 1 小题 共 80 分 1. (80 分)拉伸法测金属丝的杨氏模量 考题内容: 初始状态: 考察关键点: 要测量的物理量: ★实验考察的隐藏变量 ◆ (6.67 分)底座水平调节 评分规则: 底座水平调节成功,得 6.67 分 底座水平调节失败,得 0.00 分 标准答案:底座水平调节成功 ◆ (6.67 分)平面镜与平台垂直 评分规则: 平面镜调节成功,得 6.67 分 平面镜调节失败,得 0.00 分 标准答案:平面镜调节成功 ◆ (3.33 分)望远镜的调节(十字叉丝线清晰) 评分规则: 望远镜调(十字叉丝线)节成功,得 3.33 分 望远镜(十字叉丝线)调节失败,得 0.00 分 标准答案:望远镜(十字叉丝线)调节成功 ◆ (3.33 分)望远镜的调节(标尺清晰) 评分规则: 望远镜(直尺)调节成功,得 3.33 分 望远镜(直尺)调节失败,得 0.00 分 标准答案:望远镜(直尺)调节成功

杨氏模量实验报告1

杨氏模量的测量 【实验目的】 1.1.掌握螺旋测微器的使用方法。 2.学会用光杠杆测量微小伸长量。 3.学会用拉伸法金属丝的杨氏模量的方法。 【实验仪器】 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。 1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。这圆形夹头可以在支架的下梁的圆孔内自由移动。支架下方有三个可调支脚。这圆形的气泡水准。使用时应调节支脚。由气泡水准判断支架是否处于垂直状态。这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。 2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。

图1 图2 图3 3、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。这是表明标尺通过物镜成像在分划板平面上。由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。标尺是一般的米尺,但中间刻度为0。 【实验原理】 1、胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为塑性形变。 应力:单位面积上所受到的力(F/S)。 应变:是指在外力作用下的相对形变(相对伸长L/L)它反映了物体形变

的大小。 用公式表达为:24F L FL Y S L d L π= ?= ?? (1) 2、光杠杆镜尺法测量微小长度的变化 在(1)式中,在外力的F 的拉伸下,钢丝的伸长量 L 是很小的量。用 一般的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。 初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中呈像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为0x 。当钢丝下降 L 时,平面镜将转动 角。则望远镜中标尺的像也发生 移动,十字线降落在标尺的刻度为i x 处。由于平面镜转动角,进入望远镜 的光线旋转2 角。从图中看出望远镜中标尺刻度的变化0n n n i -=?。 因为角很小,由上图几何关系得: b L ?= ≈θθtan R n ?=≈θθ2tan 2 则:n R b L ?=?2 (2) 由(1)(2)得:

杨氏模量测定实验报告

南昌大学物理实验报告 课程名称: 实验名称: 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:第8周星期六下午1点开始

一、实验目的: 1.掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。 2.学会如何用对称测量消除系统误差 3.掌握各种长度测量工具的选择和使用。 4.学习用逐差法和作图法处理实验数据

b L ?= ≈θθtg (3)D n D n n ?=-≈1 22tg θ(4) 将(3)式和(4)式联立后得: n D b L ?=?2(5) 式中12n n n -=?,相当于光杠杆镜的长臂端D 的位移。 其中的b D 2叫做光杠杆镜的放大倍数,由于D >>b ,所以n ?>>L ?,从而获得对微小量的线性放大,提高了L ?的测量精度。 这种测量方法被称为放大法。由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。 三、弹性滞后效应 考虑到金属丝受外力作用时存在着弹性滞后效应,也就是说钢丝受到拉伸力作用时,并不能立即伸长到应有的长度()i i i L L L L ?+=0,而只能伸长到i i L L δ-。同样,当钢丝受到的拉伸力一旦减小时,也不能马上缩短到应有的长度i L ,仅缩短到i i L L δ+。因此实验时测出的并不是金属丝应有的伸长或收缩的实际长度。为了消除弹性滞后效应引起的系统误差,测量中应包括增加拉伸力以及对应地减少拉伸力这一对称测量过程,实验中可以采用增加和减少砝码的办法实现。只要在增、减相应重量时,金属丝伸缩量取平均,就可以消除滞后量i L δ的影响。即 []()()[]i 0i i 0i i 0i 2 121L L L L L L L L L L L ?+=+?++-?+=+=δδ减增

相关文档
最新文档