空间向量的直角坐标及其运算

空间向量的直角坐标及其运算
空间向量的直角坐标及其运算

课 题:9 6

空间向量的直角坐标及其运算 (一)

教学目的:

⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律;

3.会根据向量的坐标,判断两个向量共线或垂直;

4.会用中点坐标公式解决有关问题

教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:空间向量的坐标的确定及运算 内容分析:

本节有两个知识点:向量和点的直角坐标及向量的坐标运算、夹角和距离公式这一小节,我们在直角坐标系下,使向量运算完全坐标化去掉基底,使空间一个向量对应一个三维数组,这样使向量运算更加方便在上一小节已学习向量运算的基础上,把向量运算完全坐标化,对学生已不会感到抽象和困难在第2个知识点中,我们给出空间解析几何两个最基本的公式:夹角和距离公式在这个知识点中,作为向量坐标计算的例题,还顺便证明了直线与平面垂直的“性质定理”通过解一些立体几何的应用题,就可为学生今后进一步学习空间解析几何、高维向量和矩阵打下基础

要求学生理解空间向量坐标的概念,掌握空间向量的坐标运算,掌握两点的距离公式垂直于平面的性质定理 教学过程:

一、复习引入:

平面向量的坐标表示

分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底任作一个向量a

,由平面向量基本

定理知,有且只有一对实数x 、y ,使得j y i x a

+=

把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =

其中x 叫做a 在x 轴上的坐标,y 叫做a

在y 轴上的坐

标, 特别地,)0,1(=i

,)1,0(=j ,0,0(0=

2.平面向量的坐标运算 若),(11y x a =

,),(22y x b = ,

则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,,(y x a λλλ=

若),(11y x A ,),(22y x B ,则()1212,y y x x --=

3.a ∥b (b

≠0)的充要条件是x 1y 2-x 2y 1=0

4平面两向量数量积的坐标表示

已知两个非零向量),(11y x a = ,),(22y x b = ,试用a 和b 的坐标表示b a

?

设i 是x 轴上的单位向量,j

是y 轴上的单位向量,那么

j y i x a

11+=,j y i x b 22+=

所以))((2211j y i x j y i x b a

++=?2211221221j y y j i y x j i y x i x x +?+?+=

又1=?i i ,1=?j j ,0=?=?i j j i

所以b a

?2121y y x x +=

这就是说:两个向量的数量积等于它们对应坐标的乘积的和 5.平面内两点间的距离公式

(1)设),(y x a = ,则222||y x a +=

或||a =

(2)如果表示向量a

的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么

221221)()(||y y x x a -+-=

(平面内两点间的距离公式)

6.向量垂直的判定

设),(11y x a =

,),(22y x b = ,则b a ⊥ ?02121=+y y x x

7.两向量夹角的余弦(πθ≤≤0)

cos <a ,b >= co s θ=||||b a b

a

??

8.空间向量的基本定理:若{,,}a b c 是空间的一个基底,p

是空间任意一向量,存在唯一的实数

组,,x y z 使p xa yb zc =++

. 二、讲解新课:

1 空间直角坐标系:

(1)若空间的一个基底的三个基向量互相垂直,且长为1,

这个基底叫单位正交基底,用{,,}i j k

表示;

A (2)在空间选定一点O 和一个单位正交基底{,,}i j k

,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、

z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系

O xyz -,点O 叫原点,向量 ,,i j k

都叫坐标向量.通过每两

个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,

zOx 平面;

(3)作空间直角坐标系O xyz -时,一般使135xOy ∠=

(或

45 ),90yOz ∠= ;

(4)在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系规定立几中建立标系

2.空间直角坐标系中的坐标:

如图给定空间直角坐标系和向量a ,设,,i j k

则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++

有序实数组123(,,)a a a 叫作向量a

在空间直角坐标系O xyz -

中的坐标,记作123(,,)a a a a =

在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一

的有序实数组(,,)x y z ,使OA xi yj zk =++

,有序实

数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.

3.空间向量的直角坐标运算律:

(1)若123(,,)a a a a = ,123(,,)b b b b =

, 则112233(,,)a b a b a b a b +=+++

, 112233(,,)a b a b a b a b -=---

, 123(,,)()a a a a R λλλλλ=∈

, 112233a b a b a b a b ?=++

112233//,,()a b a b a b a b R λλλλ?===∈

1122330a b a b a b a b ⊥?++=

(2)若111(,,)A x y z ,222(,,)B x y z ,

则212121(,,)AB x x y y z z =---

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标 三、讲解范例:

例1 已知(2,3,5)a =- ,(3,1,4)b =--

,求a b + ,a b - ,

||a

,8a ,a b ? .

解:(2,3,5)(3,1,

4)(1,2,1

)a b +=-+--=--

, (2,3,5)(3,1,4)(5,4,9)a b -=----=-

||a =

88(2,3,5)(16,24,40)a =-=-

, (2,3,5)(3,1,4)29a b ?=-?--=-

例2.求点(2,3,1)A --关于xOy 平面,zOx 平面及原点O 的对称点解:∵(2,3,1)A --在xOy 平面上的射影(2,3,0)C -,

在zOx 平面上的射影为(2,0,1)B -,

∴点(2,3,1)A --关于xOy 平面的对称点为(2,3,1)C '-,

关于zOx 平面及原点O 的对称点分别为(2,3,1)B '-,(2,3,1)A '-.

例3.在正方体1111ABCD A B C D -中,,E F 分别是1,BB CD 的中点,求证1D F ⊥平面ADE .

证明:不妨设已知正方体的棱长为1个单位长度,设DA i = ,DC j = ,1DD k =

分别以,,i j k

为坐标向量建立空间直角坐标系O xyz -,

则(1,0,0)AD =- ,11

(0,,1)2

D F =- ,

11

(1,0,0)(0,,1)02

AD D F ?=-?-= ,

∴1D F AD ⊥,

又1(0,1,)2AE = ,111

(0,1,)(0,,1)022

AE D F ?=?-= ,

∴1D F AE ⊥,AD AE A = , 所以,1D F ⊥平面ADE .

四、课堂练习:

1.已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E 、F 分别是BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出图中各点的坐标

分析:要求点E 的坐标,过点E 与x 轴、y 轴垂直的平面已存在,

只要过E 作平面垂直于z 轴交E ‘

点,此时|x|=||,DA |y|=||,DC

|z|

='

||DE ,当DA 的方向与x 轴正向相同时,x >0,反之x <0,

同理确定y 、z 的符号,这样可求得点E 的坐标

解:D(0,0,0),A(2,0,0),B(0,2,0),C(0,0,2),A 1(2,0,2),B 1(2,2,2),C 1(0,2,2),,D 1(0,0,2),E(2,2,1),F(0,1,0)

2.已知a =(2,-3,5),b =(-3,1,-4),求a +b ,a -b ,8a ,a ?b

解:a +b

=(2,-3,5)+(-3,1,-4)=(-1,-2,1), a -b

=(2,-3,5)-(-3,1,-4)=(5,-4,9), 8a

=8(2,-3,5)=(16,-24,40), a ?b

=(2,-3,5)?

(-3,1,-4)=-6+(-3)+(-20)=-29 3. 在正方体要ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CD 的中点, 求证:D 1F ⊥平面ADE

证明:不妨设已知正方体的棱长为2,

建立如图所示的空间直角坐标系D -xyz ,则

111(2,0,0),(0,1,2),(2,0,0)(0,1,2)0AD D F AD D F D F AD =-=-?=-?-=∴⊥

又(0,2,1),AE =

11(0,2,1)(0,1,2)220

,

AE D F D F AE ?=?-=-=∴⊥

∴D 1F ⊥AE ,又AD ∩AE =A ,∴D 1F ⊥平面ADE

①本例中坐标系的选取具有一般性,在今后会常用到,这样选取可以使正方体各顶点的坐标均为非负,且易确定

②原点的坐标为(0,0,0),x 轴上的坐标为(x,0,0),y 轴上的坐标为(0,y,0),z 轴上的坐标为(0,0,z).

③要使一向量a =(x,y,z)与z 轴垂直,只要z =0即可要使向量a 与哪一个坐标轴垂直,只要向量a 的相应坐标为0巩固练习 P 39 练习 1-6 五、小结 :

⒈ 空间右手直角坐标系的概念,会确定一些简单几何体的顶点坐标; ⒉ 掌握空间向量坐标运算的规律;

3. 会根据向量的坐标,判断两个向量共线或垂直;

4. 会用中点坐标公式解决有关问题5.用向量坐标法证明或计算几何问题的基本步骤:建系设坐标→向量点的坐标化→向量的直角坐标运算

六、课后作业: 七、板书设计(略)

八、课后记:

教学以单位正交基底建立直角坐标系时,根据前面向量分解定理,引导学生体会从一般到特殊的思想方法在解数学问题中的重要性;

.点的坐标与向量的坐标一般不同,只有表示向量的有向线段的起点是坐标原点时.有向线段终点的坐标与向量的坐标相同.这一点务必向学生讲清楚.;

明确用向量坐标法证明或计算几何问题的基本步骤:建系设坐标→向量点的坐标化→向量的直角坐标运算

课 题:6

空间向量的直角坐标及其运算 (二)

教学目的:

1.掌握空间向量的模长公式、夹角公式、两点间的距离公式,会用这些公式解决有关问题;

2.会根据向量的坐标判断两个向量共线或垂直 教学重点:夹角公式、距离公式

教学难点:模长公式、夹角公式、两点间的距离公式及其运用 教学过程:

一、复习引入: 1 空间直角坐标系:

(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k

表示; (2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k

的方向为正方

向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,

点O 叫原点,向量 ,,i j k

都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平

面,yOz 平面,zOx 平面; 2.空间直角坐标系中的坐标:

在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的

有序实数组(,,)x y z ,使O A x i y j z k =++

有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 3.空间向量的直角坐标运算律:

(1)若123(,,)a a a a = ,123(,,)b b b b =

则112233(,,)a b a b a b a b +=+++ ,112233(,,)a b a b a b a b -=---

123(,,)()a a a a R λλλλλ=∈ ,112233a b a b a b a b ?=++

, 112233//,,()a b a b a b a b R λλλλ?===∈

, 1122330a b a b a b a b ⊥?++=

(2)若111(

,,)A x

y z ,222(,,)B x y z ,

则212121(,,)

AB x x y y z

z =---

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标 二、讲解新课: 1 模长公式:

若123(,,)a a a a

= ,123(,,)b b b b =

则||a == ||b == .

2

.夹角公式:cos ||||a b

a b a b

??==?

3.两点间的距离公式: 若111(,,)A x y z ,222(,,)B x y z ,

则||AB == ,

或,A B d =

三、讲解范例:

例1 已知(3,3,1)A ,(1,0,5)B ,

求:(1)线段AB 的中点坐标和长度;

(2)到,A B 两点的距离相等的点(,,)P x y z 的坐标,,x y z 满足的条件

解:(1)设M 是线段AB 的中点,则13

()(2,,3)22

OM OA OB =+= .

∴AB 的中点坐标是3(2,,3)2

,,A B d ==

(2)∵ 点(,,)P x y z 到,A B 两点的距离相等,

=化简得:46870x y z +-+=,

所以,到,A B 两点的距离相等的点(,,)P x y z 的坐标,,x y z 满足的条件是46870x y z +-+=. 点评:到,A B 两点的距离相等的点(,,)P x y z 构成的集合就是线段AB 的中垂面,若将点P 的坐标

,,x y z 满足的条件46870x y z +-+=的系数构成一个向量(4,68)a =-

,发现与

(2,3,4)AB =--

共线

例2.如图正方体1111

ABCD A B C D -中,1111111

4

B E D F A B ==,求1BE 与1DF 所成角的余弦 解:不妨设正方体棱长为1,建立空间直角坐标系O xyz -,

则(1,1,0)B ,13(1,,1)4E ,(0,0,0)D , 11

(0,,1)4

F ,

∴11(0,,1)4BE =- ,11

(0,,1)4

DF = ,

∴11BE DF == ,

11111500()114416BE DF ?=?+-?+?= .

1115

15cos ,1744

BE DF == .

例3.已知三角形的顶点是(1,1,1)A -,(2,1,1)B -,(1,1,2)C ---,试求这个三角形的面积

分析:可用公式1||||sin 2

S AB AC A =??

来求面积

解:∵(1,2,2)AB =- ,(2,0,3)AC =--

∴||3AB ==

,||AC ==

(1,2,2)(2,0,3)264AB AC ?=-?--=-+=

∴cos cos ,||||AB AC A AB AC AB AC ?=<>===

?

∴13sin sin ,39

A A

B A

C =<>== ,

所以,1||||sin 22

ABC

S AB AC A ?=??=

. 点评:三角形的内角可看成由该角的顶点出发的两边所在向量的夹角四、课堂练习:

1 若(3cos ,3sin ,1)A θθ,(2cos ,2sin ,1)B θθ,求||AB

的取值范围;

2.已知(,2,0)a x = ,2

(3,2,)b x x =- ,且a 与b 的夹角为钝角,求x 的取值范围;

3.若(cos ,sin ,2sin )P ααα,(2cos ,2sin ,1)Q ββ,求||PQ

的最大值和最小值

4.求证:如果两条直线同垂直于一个平面,则这两条直线平行. 已知:直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足. 求证:OA //BD .

证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系O -xyz ,i ,j ,k

为沿x 轴,y

轴,z 轴的坐标向量,且设BD

=),,(z y x .

∵BD ⊥α,

∴BD ⊥i ,BD ⊥j

∴BD ·i

=),,(z y x ·(1,0,0)=x =0, BD ·j

=),,(z y x ·(0,1,0)=y =0, ∴BD

=(0,0,z ).

∴BD =z k

.即BD //k .

由已知O 、B 为两个不同的点,∴OA //BD .

说明:⑴请注意此例建立空间直角坐标系的方法,这是今后解题时常用的方法;

⑵如果表示一个向量的有向线段所在直线垂直于平面α,则表示该向量所有的有向线段所在直线都垂直于α.

如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a

⊥α.

如果a ⊥α,那么向量a

叫做平面α的法向量. 五、小结 :

1.空间向量的模长公式、两点间的距离公式的形式与平面向量中相关内容一致,因此可类比记忆;

2.在计算异面直线所成角时,仍然用向量数量积的知识,建立空间直角坐标系后能方便的求出向量的坐标,则通常考虑用坐标运算来求角

3.对于一些较特殊的几何体或平面图形中有关夹角,距离,垂直,平行的问题,都可以通过建立坐标系将其转化为向量间的夹角,模,垂直,平行的问题,从而利用向量的坐标运算求解,并可以使解法简单化.值得注意的是——坐标系的选取要合理、适当. 六、课后作业:

七、板书设计(略)

八、课后记: 课 题:9 6

空间向量的直角坐标及其运算 (三)

教学目的:

1.进一步掌握空间向量的夹角、距离等概念,并能熟练运用;

2.能综合运用向量的数量积知识解决有关立体几何问题;

3.了解平面法向量的概念

教学重点:向量的数量积的综合运用 教学难点:向量的数量积的综合运用 教学过程:

一、复习引入:

1 空间直角坐标系:

(1)若空间的一个基底的三个基向量互相垂直,且长为1底,用{,,}i j k

表示;

(2)在空间选定一点O 和一个单位正交基底{,,}i j k

,以点O 为原点,分别以,,i j k

的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标

轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k

都叫坐标向量.通过每

两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面; 2.空间直角坐标系中的坐标:

在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使

OA xi yj zk

=++

,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.

3.空间向量的直角坐标运算律:

(1)若123(,,)a a a a = ,123(,,)b b b b = ,则112233(,,)a b a b a b a b +=+++

, 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈

, 112233a b a b a b a b ?=++ , 112233//,,()a b a b a b a b R λλλλ?===∈

, 1122330a b a b a b a b ⊥?++=

(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标

4 模长公式:若123(,,)a a a a = ,123(,,

)b b b

b =

则||a ==

||b == .

5.夹角公式:cos ||||a b

a b a b ?

?==?

6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,

则||AB == ,

或,A B d =

二、讲解范例:

例1 求证:如果两条直线同垂直于一个平面,则这两条直线平行 已知:直线OA α⊥于O ,BD α⊥于B . 求证://OA BD .

证明:以O 为原点,射线OA 为非负z 轴,建立空间直角坐标系O xyz -,

,,i j k

分别为沿x 轴,y 轴,z 轴的坐标向量,

设(,,)BD x y z =

∵BD α⊥,∴BD i ⊥ ,BD j ⊥

(,,)(1,0,0)0BD i x y z x ?=?==

, (,,)(0,1,0)0BD j x y z y ?=?==

, ∴(0,0,)BD z =

,即BD zk = ,

又知O ,B 为两个不同的点,∴//BD OA .

点评:如果表示向量a 的有向线段所在直线垂直于平面α,记作a α⊥ ,此时向量a

叫做平面α的

法向量.

例2.在棱长为1的正方体1111ABCD A B C D -中,,E F 分别是1,DD DB 中点,G 在棱CD 上,

1

4

CG CD =

,H 是1C G 的中点, (1)求证:1EF B C ⊥;

(2)求EF 与1C G 所成的角的余弦; (3)求FH 的长

解:如图以D 为原点建立直角坐标系D xyz -,

则1(1,1,1)B ,(0,1,0)C ,1(0,0,)2E ,11

(,,0)22

F ,

3(0,,0)4G ,1(0,1,1)C ,71(0,,)82H ,

(1)111(,,)222

EF =- ,1(1,0,1)B C =-- ,

∴1111

(,,)(1,0,1)0222

EF B C ?=-?--= ,

∴1EF B C ⊥.

(2)∵11

(0,,1)4

C G =-- ,

∴111113(,,)(0,,1)22248

EF C

G ?=-?--

= ,

||

EF ==

,1||C G =

=

∴13cos(,)EF C

G =

=

, ∴EF 与1C G (3)∵131

(

,,)2

82

FH =- ,

∴||8

FH == .

例3.已知点P 是平行四边形ABCD 所在平面外一点,如果(2,1,4)AB =-- ,(4,2,0)AD =

,(1,2,AP =--

(1)求证:AP

是平面ABCD 的法向量;

(2)求平行四边形ABCD 的面积.

(1)证明:∵(1,2,1)(2,1,4)0AP AB ?=--?--=

(1,2,1)(4,2,0)0AP AD ?=--?=

∴AP AB ⊥,AP AD ⊥,又AB AD A = ,AP

⊥平面ABCD ,

∴AP

是平面ABCD 的法向量.

(2)|

|

AB == ||AD =

∴(2,1,4)(4,2,0)6AB AD ?=-

-?=

, ∴cos(,)105

AB AD =

=

, ∴sin BAD ∠=

∴||||sin ABCD S AB AD BAD =?∠=

例4 在长方体ABCD -A 1B 1C 1D 1中,AB =a ,BC =b ,AA 1=c ,求异面直线BD 1和B 1C 所成角的余弦值

分析一:利用11BD BA BC BB =++ 1

1BC BC BB =- ,以及数量积的定义,可求出cos <11,BD B C

>,从而得到异面直线BD 1和B 1C 所成角的余弦值 分析二:建立空间直角坐标系,利用向量,且将向量的 运算转化为实数(坐标)的运算,以达到证明的目的

解:建立如图所示空间直角坐标系,使D 为坐标原点, 则B(b,a,0),D 1(0,0,c),B 1(b,a,c),C(0,a,0)

11

(,,),(,0,)BD b a c BC b c ∴=--=-- 22211)(0)()(c b c c a b C

B BD -=-

?+?-+-=?∴

1122

111111|||cos ,||||BD B C BD B C BD B C BD B C ==?==

设异面直线BD 1和B 1C 所成角为θ,则

cos 2

2=θ三、课堂练习:

设231(,,)a a a a = ,231(,,)b b b b = ,且a b ≠ ,记||a b m -=

求a b -

与x 轴正方向的夹角的余弦值

解:取x 轴正方向的任一向量(,0,0)c x =

,设所求夹角为α,

∵22331111()(,,)(,0,0)()a b c a b a b a b x a b x -?=---?=-

∴1111()()cos ||||

a b c a b x a b

mx m a b c α-?--===-? ,即为所求

2. 在ΔABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =___

解: (2,4,0),(1,3,0),BA

BC =--

=-

cos ,2||||BA BC BA BC BA BC ?∴===-

∴∠ABC =45°

3.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)

⑴求以向量,AB AC

为一组邻边的平行四边形的面积S ;

⑵若向量a 分别与向量,AB AC 垂直,且|a |=3,求向量a

的坐标

分析:⑴1

(2,1,3),(1,3,2),cos 2

||||AB AC AB AC BAC AB AC ?=--=-

∴∠==

∴∠BAC =60°,||||sin60S AB AC ∴==

⑵设

a =(x,y,z),则230,a AB x y z ⊥?--+=

222320,||3a AC x y z a x y z ⊥?-+==++=

解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a

=(-1,-1,-1).

四、小结 :在计算和证明立体几何问题时,如果能够在原图中建立适当的空间直角坐标系,将图形中有关量用坐标来表示,利用空间向量的坐标运算来处理,则往往可以在很大程度上降低对空间相象的要求;求向量坐标的常用方法是先设出向量坐标,再待定系数 五、课后作业:

六、板书设计(略)

七、课后记:

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

空间直角坐标系整理

2.3.1 空间直角坐标系 一、教材知识解析 1、空间直角坐标系的定义:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz ,点O 叫做坐标原点,x 轴、y 轴和z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy 平面、yOz 平面和xOz 平面。 2、右手直角坐标系及其画法: (1)定义:在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方 向,若中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系。教材上所指的都是右手直角坐标系。 (2)画法: 将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135°,而z 轴垂直于y 轴,y 轴和z 轴的长度单位相同,x 轴上的单位长度为y 轴(或z 轴)的长度的一半,这样,三条轴上的单位长度在直观上大体相等。 3、空间中点的坐标表示:点在对应数轴上的坐标依次为x 、y 、z ,我们把有序实数组(x , y ,z )叫做点A 的坐标,记为A (x ,y ,z )。 二、题型解析: 题型1、在空间直角坐标系下作点。 例1、在空间直角坐标系中,作出M(4,2,5). 解:法一:依据平移的方法,为了作出M(4,2,5), 可以按如下步骤进行:(1)在x 轴上取横坐 标为4的点1M ;(2)将1M 在xoy 平面内沿与y 轴平行的方向向右移动2个单位,得到 点2M ;(3)将2M 沿与z 轴平行的方向向上 移动5个单位,就可以得到点M (如图)。 法二:以O 为一个顶点,构造三条棱长分别为4,2,5的长方体,使此长方体在点O 处的三 条棱分别在x 轴的正半轴、y 轴的正半轴、z 轴的正半轴上,则长方体与顶点O 相对的顶点即为所求的点M 。 法三:在x 轴上找到横坐标为4的点,过此点作与x 垂直的平面α;在y 轴上找到纵坐标为2 的点,过此点作与y 垂直的平面β;在z 轴上找到竖坐标为5的点,过此点作与z 垂直的平面γ;则平面αβγ,,交于一点,此交点即为所求的点M 的位置。 【技巧总结】:(1)若要作出点M 000(,,)x y z 的坐标有两个为0,则此点是坐标轴上的点,可 直接在坐标轴上作出此点; (2)若要作出点M 000(,,)x y z 的坐标有且只有一个为0,则此点不在坐标轴上,但在某一坐 标平面内,可以按照类似于平面直角坐标系中作点的方法作出此点。 (3)若要作出点M 000(,,)x y z 的坐标都不为0,则需要按照一定的步骤作出该点,一般有三 种方法:①在x 轴上取横坐标为0x 的点1M ;再将1M 在xoy 平面内沿与y 轴平行的方向向左(00y <)或向右(00y >)平移0||y 个单位,得到点2M ;再将2M 沿与z 轴平

空间向量的坐标运算练习

空间向量的坐标运算练 习 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

空间向量的坐标运算——1 1、已知向量b ,a 分别平行于x 、y 轴,则它们的坐标各有什么特点 答:a 的__________________________; b 的________________________________ 2、如果的横坐标为0,其它坐标都不为0,则与哪个坐标平面平行答:_________ 4、点P(2,-3,4)在xoy 面上的射影坐标是___________;在xoz 面上的射影坐标是 ___________; 在yoz 面上的射影坐标是___________ 5、点Q (-3,2,5)关于原点对称的点的坐 标是___________;关于xoz 面对称的点的坐标是__________________ 6、已知A (3,4,5),B (0,2,1),若 AB 5 2OC =,则C 点的坐标是______________ 7、写出与原点距离等于3的点所满足的条件________________________________ 8、已知A(2,0,0),B(6,2,2),C(4,0, 2) A :2 D 3C 4B 6ππππ ::: 9、如图,ABC-A 1B 1C 1是正三棱柱(即底面是正三角形,沿着垂直于底面的向量平移所得到的轨迹),若AB =2,AA 1=4,R 是BB 1的中点,取AB 的中点为原点建立坐标系如图,写出下列向量的坐标: ______________= ______________=______________=A A'

《空间向量运算的坐标表示》说课稿

《空间向量运算的坐标表示》——说课稿 各位评委、老师:大家好! 今天我说课的内容是《空间向量运算的坐标表示》的第一课时,我将从教材分析、教学目标、学生情况、教法学法分析、教学过程、教学效果及反思六个方面来介绍: 一、教材分析 (一)地位和作用 本节课内容选自人教数学选修2-1第三章,这节课是在学生学习了空间向量几何形式及其运算、空间向量基本定理的基础上进一步学习的知识内容,是在学生已经学过的二维的平面直角坐标系的基础上的推广,是《空间向量运算的坐标表示》的第一课时,是以后学习“立体几何中的向量方法”等内容的基础。它将数与形紧密地结合起来。这节课学完后,如把几何体放入空间直角坐标系中来研究,几何体上的点就有了坐标表示,一些题目如两点间距离、异面直线成的角等就可借助于空间向量来解答,所以,这节课对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。 (二)目标的确定及分析 根据新课标和我对教材的理解,结合学生实际水平,从知识与技能;过程和方法;情感态度价值观三个层面出发,我将本课的目标定位以下三个:(1)知识与技能:通过与平面向量类比学习并掌握空间向量加法、减法、数乘、数量积运算的坐标表示以及向量的长度、夹角公式的坐标表示,并能初步应用这些知识解决简单的立体几何问题。(2)过程与方法:①通过将空间向量运算与熟悉的平面向量的运算进行类比,使学生掌握空间向量运算的坐标表示,渗透类比的数学方法;②会用空间向量运算的坐标表示解决简单的立体几何问题,体会向量方法在研究空间图形中的作用,培养学生的空间想象能力和几何直观能力。(3)情感态度价值观:通过提问、讨论、合作、探究等主动参与教学的活动,培养学生主人翁意识、集体主义精神。 (三)重难点的确定及分析 本节课的重点是:空间向量运算的坐标表示,应用向量法求两条异面直线所

知识讲解空间直角坐标系基础

空间直角坐标系 【学习目标】 通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式. 【要点梳理】 要点一、空间直角坐标系 1.空间直角坐标系 从空间某一定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy 平面、yOz 平面、zOx 平面. 2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 3.空间点的坐标 空间一点A 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点A 的坐标,记作A(x ,y ,z),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标. 要点二、空间直角坐标系中点的坐标 1.空间直角坐标系中点的坐标的求法 通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标. 特殊点的坐标:原点()0,0,0;,,x y z 轴上的点的坐标分别为()()(),0,0,0,,0,0,0,x y z ;坐标平面,,xOy yOz xOz 上的点的坐标分别为()()(),,0,0,,,,0,x y y z x z .

2.空间直角坐标系中对称点的坐标 在空间直角坐标系中,点(),,P x y z ,则有 点P 关于原点的对称点是()1,,P x y z ---; 点P 关于横轴(x 轴)的对称点是()2,,P x y z --; 点P 关于纵轴(y 轴)的对称点是()3,,P x y z --; 点P 关于竖轴(z 轴)的对称点是()4,,P x y z --; 点P 关于坐标平面xOy 的对称点是()5,,P x y z -; 点P 关于坐标平面yOz 的对称点是()6,,P x y z -; 点P 关于坐标平面xOz 的对称点是()7,,P x y z -. 要点三、空间两点间距离公式 1.空间两点间距离公式 空间中有两点()()111222,,,,,A x y z B x y z ,则此两点间的距离 ||d AB == 特别地,点(),,A x y z 与原点间的距离公式为OA = 2.空间线段中点坐标 空间中有两点()()111222,,,,,A x y z B x y z ,则线段AB 的中点C 的坐标为121212,,222x x y y z z +++?? ???. 【典型例题】 类型一:空间坐标系 例1.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,棱长为1,建立空间直角坐标系,求点E 、F 的坐标。 【答案】11,0,2E ? ? ???,11,,122F ?? ??? 【解析】 法一:如图,以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空

空间向量的坐标运算(人教A版)(含答案)

空间向量的坐标运算(人教A版) 一、单选题(共10道,每道10分) 1.已知点的坐标分别为与,则向量的相反向量的坐标是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 2.已知空间直角坐标系中且,则点的坐标为( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:空间向量运算的坐标表示 3.若向量,,则向量的坐标是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 4.已知向量,,则=( ) A. B. C. D. 答案:C

解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 5.已知向量是空间的一组单位正交基底,若向量在基底下的坐标为,那么向量在基底下的坐标为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:空间向量的基本定理及其意义 6.已知为空间的一组单位正交基底,而是空间的另一组

基底,若向量在基底下的坐标为,则向量在基底下的坐标为( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的基本定理及其意义 7.已知三点不共线,点为平面外的一点,则下列条件中,能使得平面成立的是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:共线向量与共面向量 8.已知,,,若,,三向量共面,则实数=( ) A. B.

C. D. 答案:D 解题思路: 试题难度:三颗星知识点:共线向量与共面向量 9.已知空间三点的坐标为,,,若三点共线,则=( ) A. B. C. D. 答案:D 解题思路:

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

建立空间直角坐标系的几个常见思路

建立空间直角坐标系的几种常见思路 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-, ,. 设1BC 与CD 所成的角为θ, 则11317cos BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ??- ? ??? ,,、133022C ?? ? ?? ?,,. 设302E a ?? ? ??? ,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =, 即3322022a a ????---- ? ? ? ???? ,,,,

空间向量的坐标运算

空间向量的坐标运算 第一课时空间直角坐标系 教学目标: ㈠知识目标: ⒈空间直角坐标系; ⒉空间向量的坐标表示; ⒊空间向量的坐标运算; ⒋平行向量、垂直向量坐标之间的关系; 5.中点公式。 ㈡能力目标: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:向量坐标的确定 教学方法:讨论法. 教具准备:多媒体投影. 教学过程: 复习回顾 空间向量基本定理 探索研究 1、空间右手直角坐标系的概念 ⑴单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{i,j,k}表示。 ⑵空间直角坐标系O-xyz 在空间选定一点O和一个单位正交基底{i,j,k},以点O 为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们说建立了一个直角坐标系O-xyz,点O叫做原点,向量i,j,k叫做坐标向 量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面,yOz平面,zOx平面。 ⑶空间直角坐标系的画法作空间直角坐标系O-xyz 时,一般使∠xOy=135°(或45°),∠yOz=90°。 注:在空间直角坐标系O-xyz中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中指能指向z轴的正 方向,则称这个坐标系为右手直角坐标系。 ⑷空间向量的坐标表示给定一空间直角坐标系和向

向量的直角坐标运算设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3),则a+b=(a 1+b 1,a 2+b 2,a 3+b 3) a -b=(a 1- b 1,a 2-b 2,a 3-b 3)λa=(λa 1,λa 2,λa 3) a ?b=a 1 b 1+a 2b 2+a 2b 2 a//b a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R)a ⊥b a 1b 1+a 2b 2+a 3b 3=0设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则 AB =OB -OA =(x 2-x 1,y 2-y 1,z 2-z 1)  量a ,且设i,j,k 为坐标向量(如图),由空间向量基本定理,存在唯一的有序实数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,可简记作a =(a 1,a 2,a 3)。 在空间直角坐标系O -xyz 中,对于空间任一点A ,对应一个向量OA ,若 ,k z j y i x OA ++=则有序数组(x,y,z)叫做点A 在 此空间直角坐标系中的坐标,记为A(x,y,z),其中x 叫做A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标,写点的坐标时,三个坐标间的顺序不能变。 ⑸空间任一点P 的坐标的确定 过P 分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A 、B 、C 三点,|x|=|OA|,|y|=|OB|,|z|=|OC|,当OA 与i 方向相同时,x >0,反之x <0,同理可确定y 、z (如图) 例1已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E 、F 分别是BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出图中各点的坐标。 分析:要求点E 的坐标,过点E 与x 轴、y 轴垂直的平面已存在,只要过E 作平面垂直于z 轴交E ‘ 点,此时|x|=|,|DA |y|=|,|DC |z|=||'DE ,当DA 的方向与x 轴正向相同时,x >0,反之x <0,同理确定y 、z 的符号,这样可求得点E 的坐标。 解:D(0,0,0),A(2,0,0),B(0,2,0),C(0,0,2), A 1(2,0,2), B 1(2,2,2), C 1(0,2,2),, D 1(0,0,2),E(2,2,1),F(0,1,0) 2、向量的直角坐标运算 注:3 32 21 1i 321321b a b a b a b //a 1,2,3),0(i b ),b ,b ,(b b ),a ,a ,(a a = = ? =≠==则若

空间直角坐标系(人教A版)

空间直角坐标系(人教A版) 一、单选题(共10道,每道10分) 1.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则点Q的坐标为( ) A. B. C. D. 2.在空间直角坐标系中,点A(1,-1,1)与点B(-1,-1,-1)关于( )对称. A.x轴 B.y轴 C.z轴 D.原点 3.如图,在空间直角坐标系中,正方体的棱长为1,,则点E的坐标为( ) A. B. C. D. 4.设点P(a,b,c)关于原点的对称点为,则=( ) A. B.

C. D. 5.设点P在x轴上,它到的距离为到点的距离的2倍,则点P的坐标为( ) A.(0,1,0)或(0,0,1) B.(0,-1,0)或(0,0,1) C.(1,0,0)或(0,-1,0) D.(1,0,0)或(-1,0,0) 6.已知A(x,5-x,2x-1),B(1,x+2,2-x),当|AB|取最小值时,x的值为( ) A.19 B. C. D. 7.如图所示,在空间直角坐标系中,有一棱长为a的正方体,的中点E与AB的中点F的距离为( ) A. B. C.a D. 8.如图,△PAB是正三角形,四边形ABCD是正方形,|AB|=4,O是AB的中点,平面PAB⊥平面ABCD,以直线AB为x轴、以过点O且平行于AD的直线为y轴、以直线OP为z轴建立如图所示的空间直角坐标系Oxyz,E为线段PD的中点,则点E的坐标是( )

A. B. C. D. 9.点P(x,y,z)满足,则点P在( ) A.以点(1,1,-1)为圆心,以2为半径的圆上 B.以点(1,1,-1)为中心,以2为棱长的正方体上 C.以点(1,1,-1)为球心,以2为半径的球面上 D.无法确定 10.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( ) A. B. C. D.

高考试题分类考点空间直角坐标系空间向量及其运算

高考试题分类考点空间直角坐标系空间向量及其运算

————————————————————————————————作者:————————————————————————————————日期:

考点37 空间直角坐标系、空间向量及其运算 一、解答题 1.(2012·北京高考理科·T16)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD,如图 2. (1) 求证:A 1C ⊥平面BCDE ; (2) 若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小; (3) 线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 【解题指南】(1)利用线面垂直的判定定理证明;(2)(3)找出三个垂直关系, 建系,利用向量法求解. 【解析】(1)//,,DE BC AC BC DE AC ⊥∴⊥Q ,1,DE A D DE CD ∴⊥⊥, 111 ,,A D CD D DE ACD DE AC =∴⊥∴⊥Q I 面 又11,,AC CD CD DE D AC BCDE ⊥=∴⊥Q I 面. (2)由(1)可知,1,,CB CD AC 两两互相垂直,分别以它们为x 轴、y 轴、z 轴 建立空间直角坐标系,则1(0,0,23)A ,(0,1,3),(0,1,3),(1,2,0),M CM BE ==-u u u u r u u u r 1(3,0,23)A B =-u u u r ,设平面1A BE 的法向量为1111(,,)n x y z =u r , 由 1111111203230n BE x y n A B x z ??=-+=???=-=??u r u u u r u r u u u r ,令11x =,得113(1,,)22 n =u r , A B C D E C B E D A M 图图

建立空间直角坐标系的几种方法

建立空间直角坐标系的几种方法 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =-- , ,,(010)CD =- ,,. 设1BC 与CD 所成的角为θ, 则11cos 17BC CD BC CD θ== . 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1 .已知AB =BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB ,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0, )、B 1(0,2,0) 、102c ?-???? ,、1302C ???? ?,,. 设0E a ????? ,且1322a -<<, 由EA ⊥EB 1,得10EA EB = ,

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

最新空间向量运算的坐标表示练习题

课时作业(十七) [学业水平层次] 一、选择题 1.已知a =(1,-2,1),a -b =(-1,2,-1),则b =( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3) 【解析】 b =a -(-1,2,-1)=(1,-2,1)-(-1,2,-1)=(2,-4,2). 【答案】 A 2.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |的值为( ) A.534 B.532 C.532 D.132 【解析】 ∵AB 的中点M ? ? ???2,32,3,∴CM →=? ????2,12,3,故|CM | =|CM → |= 22+? ?? ??122+32=532. 【答案】 C 3.(2014·德州高二检测)已知向量a =(2,3),b =(k,1),若a +2b 与a -b 平行,则k 的值是( ) A .-6 B .-23 C.2 3 D .14 【解析】 由题意得a +2b =(2+2k,5),且a -b =(2-k,2),又因为a +2b 和a -b 平行,则2(2+2k )-5(2-k )=0,解得k =2 3.

【答案】 C 4. (2014·河南省开封高中月考)如图3-1-32,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是面A 1B 1C 1D 1、面BCC 1B 1的中心,则E ,F 两点间的距离为( ) 图3-1-32 A .1 B.52 C.62 D.32 【解析】 以点A 为原点,建立如图所示的空间直角坐标系,则 E (1,1,2), F ? ???? 2,1,22,所以|EF |= (1-2)2 +(1-1)2 +? ??? ?2-222 =6 2,故选C. 【答案】 C 二、填空题 5.(2014·青岛高二检测)已知点A (1,2,3),B (2,1,2),P (1,1,2),O (0,0,0),点Q 在直线OP 上运动,当QA →·QB →取得最小值时,点Q 的坐标为________. 【解析】 设OQ →=λOP →=(λ,λ,2λ),故Q (λ,λ,2λ),故QA → =

3.1.4空间向量的直角坐标运算 自制 2014年

3.1.4空间向量的直角坐标运算(课前预习案) 班级:___ 姓名:______ 一、新知导学 1、空间向量的直角坐标运算律: (1)若123(,,)a a a a =,(,,)123b b b b =,则 a b += , a b -= , a λ= , a b ?= , //a b ? a b ⊥? . (2)若(,,)111A x y z ,222(,,)B x y z ,则AB = . 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的______的坐标减去_________的坐标 2、模长公式: 若123(,,)a a a a =,123(,,)b b b b =, 则||a a a = ?= ,||b b b =?= . 3、夹角公式:2cos ||||a b a b a b a ??== ?+ 4、两点间的距离公式: 若111(,,)A x y z ,222(,,)B x y z ,则2 ||(AB AB x ==, 或,A B d =

;,,i j k ??,求下列向量的坐标:)346a i j k =+- ()2 323 b i j k =--+ 若(2,1,3),(5,3,2)a b =-=-,则a +b =____________,32a b -=___________, a b ?=_____,(2)(3)a b a b +?-=______________1)(0,0,4),(0,0,7) (2)((3,4,0),(0,0,6) (2)(-2,1,,-5,7) 已知(1,1,1),(1,0,1)a b =--=-,则______,a =,a b <>=____________3.1.4 空间向量的直角坐标运算(课堂探究案)一、空间向量的直角坐标 向量(,,a a a a =二、向量的坐标运算 已知(1,1,0),(0,1,1),(1,0,1)a b c ===,,2p a b q a b c =-=+-,求: ,p q ,p q ?。

空间直角坐标系与大地坐标系转换程序

空间直角坐标系与大地坐标系转换程序 #include #include #include using namespace std; #define PI (2.0*asin(1.0)) void main() { double a,b,c,d1,d2,f1,f2,m1,m2,B,L,H,X,Y,Z,W,N,e; //cout<<"请分别输入椭球的长半轴、短半轴(国际单位)"<>a>>b; a=6378137; //以WGS84为例 b=6356752.3142; e=sqrt(a*a-b*b)/a; c=a*a/b; int x; cout<<"请输入0或1,0:大地坐标系到空间直角坐标系;1:空间直角坐标系到大地坐标系"<>x; switch(x) { case 0: { cout<<"请分别输入该点大地纬度、经度、大地高(国际单位,纬度经度请按度分秒,分别输入)"<>d1>>f1>>m1>>d2>>f2>>m2>>H; B=PI*(d1+f1/60+m1/3600)/180; L=PI*(d2+f2/60+m2/3600)/180; W=sqrt(1-e*e*sin(B)*sin(B)); N=a/W; X=(N+H)*cos(B)*cos(L); Y=(N+H)*cos(B)*sin(L); Z=(N*(1-e*e)+H)*sin(B); cout<<"空间直角坐标系中X,Y,Z,坐标值(国际单位)分别为"<>X>>Y>>Z; double t,m,n, P,k,B0; m=Z/sqrt(X*X+Y*Y); //t0 B0=atan(m); //初值 n=Z/sqrt(X*X+Y*Y);

空间向量的直角坐标及其运算

课 题:9 6 空间向量的直角坐标及其运算 (一) 教学目的: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:空间向量的坐标的确定及运算 内容分析: 本节有两个知识点:向量和点的直角坐标及向量的坐标运算、夹角和距离公式这一小节,我们在直角坐标系下,使向量运算完全坐标化去掉基底,使空间一个向量对应一个三维数组,这样使向量运算更加方便在上一小节已学习向量运算的基础上,把向量运算完全坐标化,对学生已不会感到抽象和困难在第2个知识点中,我们给出空间解析几何两个最基本的公式:夹角和距离公式在这个知识点中,作为向量坐标计算的例题,还顺便证明了直线与平面垂直的“性质定理”通过解一些立体几何的应用题,就可为学生今后进一步学习空间解析几何、高维向量和矩阵打下基础 要求学生理解空间向量坐标的概念,掌握空间向量的坐标运算,掌握两点的距离公式垂直于平面的性质定理 教学过程: 一、复习引入: 平面向量的坐标表示 分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底任作一个向量a ,由平面向量基本 定理知,有且只有一对实数x 、y ,使得j y i x a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐 标, 特别地,)0,1(=i ,)1,0(=j ,0,0(0= 2.平面向量的坐标运算 若),(11y x a = ,),(22y x b = , 则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,,(y x a λλλ= 若),(11y x A ,),(22y x B ,则()1212,y y x x --= 3.a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0 4平面两向量数量积的坐标表示 已知两个非零向量),(11y x a = ,),(22y x b = ,试用a 和b 的坐标表示b a ? 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么 j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=?2211221221j y y j i y x j i y x i x x +?+?+= 又1=?i i ,1=?j j ,0=?=?i j j i 所以b a ?2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和 5.平面内两点间的距离公式 (1)设),(y x a = ,则222||y x a += 或||a = (2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么 221221)()(||y y x x a -+-= (平面内两点间的距离公式) 6.向量垂直的判定 设),(11y x a = ,),(22y x b = ,则b a ⊥ ?02121=+y y x x 7.两向量夹角的余弦(πθ≤≤0) cos <a ,b >= co s θ=||||b a b a ?? 8.空间向量的基本定理:若{,,}a b c 是空间的一个基底,p 是空间任意一向量,存在唯一的实数 组,,x y z 使p xa yb zc =++ . 二、讲解新课: 1 空间直角坐标系: (1)若空间的一个基底的三个基向量互相垂直,且长为1, 这个基底叫单位正交基底,用{,,}i j k 表示;

知识要点-空间直角坐标系

空间直角坐标系 ★知识梳理★ 1.右手直角坐标系 ①右手直角坐标系的建立规则:轴、轴、轴互相垂直,分别指向右手的拇指、食指、中指; ②已知点的坐标作点的方法与步骤(路径法): 沿轴正方向(时)或负方向(时)移动个单位,再沿轴正方向(时)或负方向(时)移动个单位,最后沿轴正方向(时)或负方向(时)移动个单位,即可作出点 ③已知点的位置求坐标的方法: 过作三个平面分别与轴、轴、轴垂直于,点在轴、轴、轴的坐标分别是,则就是点的坐标 2、在轴上的点分别可以表示为, 在坐标平面,,内的点分别可以表示为; 3、点关于轴的对称点的坐标为 点关于轴的对称点的坐标为; 点关于轴的对称点的坐标为; 点关于坐标平面的对称点为; 点关于坐标平面的对称点为; 点关于坐标平面的对称点为; 点关于原点的对称点。 4. 已知空间两点,则线段的中点坐标为 5.空间两点间的距离公式 已知空间两点, 则两点的距离为, 特殊地,点到原点的距离为; 5.以为球心,为半径的球面方程为 特殊地,以原点为球心,为半径的球面方程为

★重难点突破★ 重点:了解空间直角坐标系,会用空间直角坐标系表示点的位置,会推导和使用空间两点间的距离公式 难点:借助空间想象和通过与平面直角坐标系的类比,认识空间点的对称及坐标间的关系 重难点: 在空间直角坐标系中,点的位置关系及空间两点间的距离公式的使用 1.借助空间几何模型进行想象,理解空间点的位置关系及坐标关系 问题1:点到轴的距离为 [解析]借助长方体来思考,以点为长方体对角线的两个顶点,点到轴的距离为长方体一条面对角线的长度,其值为 2.将平面直角坐标系类比到空间直角坐标系 问题2:对于任意实数,求的最小值 [解析]在空间直角坐标系中,表示空间点到点的距离与到点的距离之和,它的最小值就是点与点之间的线段长,所以的最小值为。 3.利用空间两点间的距离公式,可以解决的几类问题 (1)判断两条相交直线是否垂直 (2)判断空间三点是否共线 (3)得到一些简单的空间轨迹方程 ★热点考点题型探析★ 考点1: 空间直角坐标系 题型1:认识空间直角坐标系 [例1 ](1)在空间直角坐标系中,表示() A.轴上的点 B.过轴的平面 C.垂直于轴的平面 D.平行于轴的直线 (2)在空间直角坐标系中,方程表示 A.在坐标平面中,1,3象限的平分线 B.平行于轴的一条直线

圆的方程及空间直角坐标系(讲义)

圆的方程及空间直角坐标系(讲义) ? 知识点睛 一、圆的方程 1. 圆的标准方程:________________________, 圆心:_________,半径:________. 2. 圆的一般方程:_______________________( _____________,半径:_____________. 二、位置关系的判断 (1)点与圆 由两点间的距离公式计算点到圆心的距离d ,比较d ,r 大小. ①已知点P (x 0,y 0)与圆的标准方程(x -a )2+(y -b )2=r 2, 则计算2d =___________________,比较2d ,2r 大小. ②已知点P (x 0,y 0)与圆的一般方程220x y Dx Ey F ++++=, 则计算______________________,与0比较大小. (2)直线与圆 ①利用点到直线的距离公式求圆心到直线的距离d ,比较 d ,r 大小. ②联立直线与圆方程,得到一元二次方程,根据?判断: 000?? , 直线与圆相离, 直线与圆相切,直线与圆相交. (3)圆与圆 利用两点间的距离公式求圆心距d ,结合两圆半径和d 三、常见思考角度 1. 直线与圆位置关系常见考查角度 (1)过定点求圆的切线方程 ①判断该点与圆的位置关系(若点在圆内,则无切线). ②根据切线的性质求切线方程. 若点在圆上,则利用切线垂直于过切点的半径求切线方程; 若点在圆外,则分别讨论____________________,设点斜式利用求解. (2)直线与圆相交求弦长 结合垂径定理和勾股定理,半径长r ,圆心到直线的距离d ,弦长l 满足关系

相关文档
最新文档