解析几何综合题和答案

解析几何综合题和答案
解析几何综合题和答案

解析几何综合题

1.12F F 、是椭圆2

214

x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ?的最大值是 .1答案:4

简解: 12||||PF PF ?≤2

212||||()42

PF PF a +==

2.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________;以(m ,n )为点P

的坐标,过点P 的一条直线与椭圆72x +3

2

y =1的公共点有____________个. 2答案:0

简解:将直线mx +ny -3=0变形代入圆方程x 2+y 2=3,消去x ,得 (m 2+n 2)y 2-6ny +9-3m 2=0. 令Δ<0得m 2+n 2<3. 又m 、n 不同时为零, ∴0

由0

再由椭圆方程a =

7,b =3可知公共点有2个.

3.P 是抛物线y 2=x 上的动点,Q 是圆(x-3)2+y 2

=1的动点,则|PQ |的最小值为 . 3.答案:2

11

-1 简解:将问题转化为圆心到抛物线一上的动点的最小值 4.若圆012222

=-+-+a ax y x

与抛物线x y 2

1

2=

有两个公共点。则实数a 为 . 4.答案:8

17=a 或11<<-a

简解:将圆012222

=-+-+a ax y x 与抛物线 x y 2

1

2=

联立,消去y , 得 ).0(01)2

1

2(22

≥=-+--x a x a x

要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根。

????

???>->-=?.

01021202a a 或???<->?.0102

a 解之 5.

若曲线

y =与直线(2)y k x =-+3有两个不同的公共点,

则实数 k 的取值范围是 .5.答案:3

14

k -<≤ 简解:

将曲线

y =224x y -=时考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x =平行的直线与

双曲线的位置关系。

6.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________. 6.答案:(x -2)2+(y+3)2=5 5.

简解:∵圆C 与y 轴交于A (0,-4),B (0,-2),

∴由垂径定理得圆心在y=-3这条直线上. 又已知圆心在直线2x -y -7=0上,

y=-3,

2x -y -7=0.

∴联立

解得x =2,

∴圆心为(2,-3), 半径r=|AC|=

2

2)]4(3[2---+=

5.

∴所求圆C 的方程为(x -2)2

+(y+3)2=5.

7.经过两圆(x+3)2

+y 2

=13和x 2

+(y+3)2

=37的交点,且圆心在直线x -y -4=0上的圆的方程为____________.. 7.答案:(x +

21)2+(y +27)2= 2

89

简解:因为所求的圆经过两圆(x+3)2+y 2=13和x+2(y+3)2=37的交点, 所以设所求圆的方程为(x+3)2+y 2-13+λ[x 2+(y+3)2-37]=0.

展开、配方、整理,得(x+λ+13)2

+(y+λλ+13)2=λλ++1284+2

2)

1()1(9λλ++.

圆心为(-

λ+13,-λ

λ

+13),代入方程x -y -4=0,得λ=-7.

故所求圆的方程为(x+21)2+(y+27

)2= 2

89.

8.双曲线x2-y2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是___________.

8.答案:(-∞,0)∪(1,+∞)

简解:解析:数形结合法,与渐近线斜率比较.

9.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是___________.

9.答案:.y 2

-48

2

x =1(y ≤-1)

简解:由题意|AC |=13,|BC |=15,

|AB |=14,又|AF |+|AC |=|BF |+|BC |, ∴|AF |-|BF |=|BC |-|AC |=2.

故F 点的轨迹是以A 、B 为焦点,实轴长为2的双曲线下支.又c=7,a=1,b 2

=48,所以轨迹方程为y 2

-48

2

x =1(y ≤-1).

10.设P 1(2,2)、P 2(-2,-2),M 是双曲线y =x

1

上位于第一象限的点,对于命题①|MP 2|-|MP 1|=22;②以

线段MP 1为直径的圆与圆x 2+y 2=2相切;③存在常数b ,使得M 到直线y =-x +b 的距离等于2

2

|MP 1|.其中所有正确命题的序号是

____________. 10答案:①②③

简解:由双曲线定义可知①正确,②画图由题意可知正确,③由距离公式及|MP 1|可知正确. 11.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A.椭圆 B.AB 所在直线C.线段AB

D.无轨迹 11.答案:C

简解:数形结合易知动点的轨迹是线段AB :y =3

4

x ,其中0≤x ≤3. 12.若点(x ,y )在椭圆4x 2+y 2=4上,则

2-x y

的最小值为( )A.1 B.-1C.-

3

23 D.以上都不对 12.答案:C

简解:

2-x y

的几何意义是椭圆上的点与定点(2,0)连线的斜率.显然直线与椭圆相切时取得最值,设直线y =k (x -2)代入椭圆方程(4+k 2)x 2-4k 2x +4k 2-4=0. 令Δ=0,k =±

3

23.∴k min =-

3

23.

13..已知F 1(-3,0)、F 2(3,0)是椭圆m x 2+n y 2=1的两个焦点,P 是椭圆上的点,当∠F 1PF 2=3

π

2时,△F 1PF 2的面积最

大,则有( )

A.m =12,n =3

B.m =24,n =6

C.m =6,n =

2

3

D.m =12,n =6 13.答案:A

简解:由条件求出椭圆方程即得m =12,n =3.

14.P 为双曲线C 上一点,F 1、F 2是双曲线C 的两个焦点,过双曲线C 的一个焦点F 1作∠F 1PF 2的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( ) 12.A.直线

B.圆

C.椭圆

D.双曲线 14.答案:B

简解:延长F 1Q 与PF 2相交点R ,根据双曲线的定义,R 在以F 2为圆心的圆上,

利用代入法得

15.(满分10分)如下图,过抛物线y 2=2px (p >0)上一定点P (x 0,y 0)(y 0>0),作两条直线分别交抛物线于A (x 1,y 1)、B (x 2,y 2).

(1)求该抛物线上纵坐标为

2

p

的点到其焦点F 的距离;

(2)当P A 与PB 的斜率存在且倾斜角互补时,求

2

1y y y +的值,并证明直线AB 的斜率是非零常数. 解:(1)当y =

2p 时,x =8

p

. 又抛物线y 2=2px 的准线方程为x =-2

p

, 由抛物线定义得 所求距离为

8p -(-2

p )=85p .

(2)设直线P A 的斜率为k P A ,直线PB 的斜率为k PB . 由y 12=2px 1,y 02=2px 0,

相减得(y 1-y 0)(y 1+y 0)=2p (x 1-x 0), 故k P A =

0101x x y y --=0

12y y p

+(x 1≠x 0).

同理可得k PB =

22y y p

+(x 2≠x 0).

由P A 、PB 倾斜角互补知k P A =-k PB , 即

12y y p +=-022y y p

+,所以y 1+y 2=-2y 0,

2

1y y y +=-2. 设直线AB 的斜率为k AB . 由y 22=2px 2,y 12=2px 1,

相减得(y 2-y 1)(y 2+y 1)=2p (x 2-x 1), 所以k AB =

1212x x y y --=2

12y y p

+(x 1≠x 2).

将y 1+y 2=-2y 0(y 0>0)代入得

k AB =

212y y p +=-0

y p

,所以k AB 是非零常数.

16.(满分10分)如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b (a >0,b ≠0),且交抛物线y 2=2px (p >0)于M (x 1,y 1),N (x 2,y 2)两点.

(1)证明:

11y +21y =b

1

; (2)当a =2p 时,求∠MON 的大小.

16证明:(1)直线l 的截距式方程为a x +b

y

=1.①,由①及y 2=2px 消去x 可得by 2+2pay -2pab =0. ②解: 点M 、N 的纵坐标y 1、y 2为②的两个根,故y 1+y 2=

b pa

2-,y 1y 2=-2pa . 所以11y +21y =2121y y y y +=pa b pa

22--=b

1. (2)解:设直线OM 、ON 的斜率分别为k 1、k 2, 则k 1=

1

1x y ,k 2=22

x y .

当a =2p 时,由(2)知,y 1y 2=-2pa =-4p 2, 由y 12=2px 1,y 22=2px 2,相乘得(y 1y 2)2=4p 2x 1x 2, x 1x 2=

22214)(p y y =2224)4(p

p =4p 2,

因此k 1k 2=2121x x y y =2

2

44p

p -=-1.

所以OM ⊥ON ,即∠MON =90°.

17.(满分10分) 已知椭圆C 的方程为22a x +22b y =1(a >b >0),双曲线22

a x -22b

y =1的两条渐近线为l 1、l 2,过椭圆C 的右焦点

F 作直线l ,使l ⊥l 1,又l 与l 2交于P 点,设l 与椭圆C 的两个交点由上至下依次为A 、B .(如下图)

(1)当l 1与l 2夹角为60°,双曲线的焦距为4时,求椭圆C 的方程;

(2)当=λ时,求λ的最大值.

17解:(1)∵双曲线的渐近线为y =±a

b

x ,两渐近线夹角为60°, 又

a

b

<1, ∴∠POx =30°,即a

b

=tan30°=33.

∴a =

3b .

又a 2+b 2=4, ∴a 2=3,b 2=1.

故椭圆C 的方程为3

2x +y 2

=1.

(2)由已知l :y =b a (x -c ),与y =a b x 解得P (c a 2,c

ab

),

由=λ得A (

λ

λ+?

+12

c a c ,

λλ+?1c ab ). 将A 点坐标代入椭圆方程得 (c 2+λa 2)2+λ2a 4=(1+λ)2a 2c 2. ∴(e 2+λ)2+λ2=e 2(1+λ)2. (令a

c

e

=

∴λ2

=2

22

4--e e e =-[(2-e 2)+2

22e -]+3≤3-22. ∴λ的最大值为

2-1.

18.(满分10分)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O的两不同动点A、B满足AO BO ⊥(如图4所

示).

(Ⅰ)求AOB ?得重心G(即三角形三条中线的交点)的轨迹方程;

(Ⅱ)AOB ?的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

18解:(I )设△AOB 的重心为G(x,y),A(x 1,y 1),B(x 2,y 2),则???

???

?

+=+=33

2121y y y x x x (1)

∵OA ⊥OB ∴1-=?OB OA

k k ,即12121-=+y y x x , (2)

又点A ,B 在抛物线上,有

2

2

2211,x y x y ==,代入(2)化简得121-=x x ∴

3

2332)3(31]2)[(31)(31322212212

22121+=+?=-+=+=+=

x x x x x x x x y y y 所以重心为G 的轨迹方程为3

2

32+

=x y (II )2221212222212221222221212

1))((21||||21y y y x y x x x y x y x OB OA S AOB

+++=++==

?

由(I )得

1

22

12)1(221222122166

2616261=?=+-=+?≥++=

?x x x x S AOB 当且仅当6

2

6

1

x x =即121-=-=x x 时,等号成立。 所以△AOB 的面积存在最小值,存在时求最小值1;

19.(满分12分)抛物线y 2=4px (p >0)的准线与x 轴交于M 点,过点M 作直线l 交抛物线于A 、B 两点.

(1)若线段AB 的垂直平分线交x 轴于N (x 0,0),求证:x 0>3p ;

(2)若直线l 的斜率依次为p ,p 2,p 3,…,线段AB 的垂直平分线与x 轴的交点依次为N 1,N 2,N 3,…,当0

||121N N +|

|132N N +…+||1

1110N N 的值.

19证明:设直线l 方程为y =k (x +p ),代入y 2=4px .

得k 2x 2+(2k 2p -4p )x +k 2p 2=0. Δ=4(k 2p -2p )2-4k 22k 2p 2>0, 得0

令A (x 1,y 1)、B (x 2,y 2),则x 1+x 2=-2242k p p k -,y 1+y 2=k (x 1+x 2

+2p )=k p

4, AB 中点坐标为(2

22k p k p -,k p

2).

AB 垂直平分线为y -k p 2=-k 1

(x -2

22k p k p -). 令y =0,得x 0=2

22k p

p k +=p +22k p .

由上可知0p +2p =3p . ∴x 0>3p .

(2)解:∵l 的斜率依次为p ,p 2,p 3,…时,AB 中垂线与x 轴交点依次为N 1,N 2,N 3,…(0

1

22-n p ,0).

|N n N n +1|=|(p +

1

22-n p )-(p +

1

22+n p )|=1

22)

1(2+-n p p ,

||1

1+n n N N =)

1(22

12p p n -+, 所求的值为)1(212p -[p 3+p 4+…+p 21

]=)

1()1(2)1(2

193p p p p +-- 20.(满分12分)设A 、B 是椭圆λ=+22

3y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交

于C 、D 两点.

(Ⅰ)确定λ的取值范围,并求直线AB 的方程;

(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. 20解法1:依题意,可设直线AB 的方程为

λ=++-=223,3)1(y x x k y 代入,整理得

.0)3()3(2)3(222=--+--+λk x k k x k ①

是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,

0])3(3)3([422>--+=?∴k k λ ②

)3,1(.3

)

3(22

21N k k k x x 由且+-=

+是线段AB 的中点,得 .3)3(,12

22

1+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为

.04),1(3=-+--=-y x x y 即

解法2:设则有),,(),,(2211y x B y x A

.0))(())((33,

3212121212

2222121=+-++-??????=+=+y y y y x x x x y x y x λ

λ 依题意,.)

(3,2

12121y y x x k x x AB ++-

=∴≠

.

04),1(3).

,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+?>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ

(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分

代入椭圆方程,整理得

.04442=-++λx x ③

是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,

).

2

3,21(,2

32,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得

).3(2||)1

(1||432-=-?-+=λx x k

CD ④

将直线AB 的方程代入椭圆方程得,04=-+

y x

.016842=-+-λx x ⑤ 同理可得

.)12(2||1||212-=-?+=λx x k AB ⑥

.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当

假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为

.2232

|

42321|2|4|00=-+-=-+=y x d ⑦

于是,由④、⑥、⑦式和勾股定理可得

.|2

|2321229|2|

||||2

2222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2|

|CD 为半径的圆上.

(注:上述解法中最后一步可按如下解法获得:

A 、

B 、

C 、

D 共圆?△ACD 为直角三角形,A 为直角即|,|||||

2DN CN AN ?=?

).2

|

|)(2||()2||(

2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=

.212

-λ 由④和⑦知,⑧式右边=)2

2

32)3(2)(2232)3(2(

--+-λλ

,2

12

292

3

-=-

-=

λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆 解法2:由(II )解法1及12>λ

.

,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得

.04442=-++λx x ③

将直线AB 的方程,04=-+

y x 代入椭圆方程,整理得

.016842=-+-λx x

解③和⑤式可得

.2

3

1,2122,4,321-±-=-±-

λλx x

不妨设)2

33,2

31(),2

33,2

31(),122

13,122

11(-+-+---------+λλλλλλD C A

∴)2

1233,23123(

---+-+-+=λλλλ

)2

12

33,23123(

-------+=λλλλDA

计算可得0=?DA CA ,∴A 在以CD 为直径的圆上. 又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )

解析几何专题训练理科用

解析几何专项训练 班级 学号 成绩 (一)填空题 1、若直线m my x m y mx 21=++=+与平行,则m =_-1____. 2、若直线2+=kx y 与抛物线x y 42 =仅有一个公共点,则实数=k 1 ,02 3、若直线l 的一个法向量为()2,1n =,则直线l 的倾斜角为 arctan2π- (用反三角函数值表示) 4、已知抛物线2 0x my +=上的点到定点(0,4)和到定直线4y =-的距离相等,则 m = -16 5、已知圆C 过双曲线 116 92 2=-y x 的一个顶点和一个焦点,且圆心C 在此双曲线上,则圆心C 到双曲线中心的距离是 16 3 6、已知直线1l :210x y +-=,另一条直线的一个方向向量为(1,3)d =,则直线1l 与2l 的夹角是 4 π 7、已知直线:0l ax by c ++=与圆1:2 2 =+y x O 相交于A 、B 两点,3||=AB , 则OA ·OB = 12 - 8、若直线m 被两平行线1:10l x y -+=与2:30l x y -+=所截得线段的长为22,则 直线m 的倾斜角是 0015,75 . 9、若经过点(0,2)P 且以()1,d a =为方向向量的直线l 与双曲线132 2 =-y x 相交于 不同两点A 、B ,则实数a 的取值围是 2215,3a a <≠ . 10、(理科)设曲线C 定义为到点)1,1(--和)1,1(距离之和为4的动点的轨迹.若将曲线

C 绕坐标原点逆时针旋转 45,则此时曲线C 的方程为__22 142 y x +=___________. 11、等腰ABC ?中,顶点为,A 且一腰上的中线长为3,则 三角形ABC 的面积的最大值 2 12、如图,已知OAP ?的面积为S ,1OA AP ?=. 设||(2)OA c c =≥,3 4 S c =,并且以O 为中心、A 为焦点的椭 圆经过点P .当||OP 取得最小值时,则此椭圆的方程为 22 1106 x y += . (二)选择题 13、“2a =”是“直线210x ay +-=与直线220ax y +-=平行”的( B )条件 (A )充要;(B )充分不必要;(C )必要不充分;(D )既不充分也不必要 14、如果i +2是关于x 的实系数方程02 =++n mx x 的一个根,则圆锥曲线 12 2=+n y m x 的焦点坐标是( D )(A))0,1(±; (B))1,0(±; (C))0,3(± ;(D))3, 0(± 15、已知:圆C 的方程为0),(=y x f ,点),(00y x P 不在圆C 上,也不在圆C 的圆心上, 方程0),(),(:'00=-y x f y x f C ,则下面判断正确的是……( B ) (A) 方程'C 表示的曲线不存在; (B) 方程'C 表示与C 同心且半径不同的圆; (C) 方程'C 表示与C 相交的圆; (D) 当点P 在圆C 外时,方程'C 表示与C 相离的圆。 16、若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线22 2222222 :1(0,0)x y C a b a b -=>>的 焦点相同,且12a a >给出下列四个结论:①2222 1221a a b b -=-; ②1221 a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2121b b a a +>+;其中所有正确的结论 序号是( B )A. ①② B, ①③ C. ②③ D. ①④ y P x o A

平面解析几何 经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角α的范围0 0180α≤< (2 )经过两点 的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ?=。特别地,当直线 12,l l 的斜率都不存在时,12l l 与的关系为平行。 (2)两条直线垂直 如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥?=- 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。 二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件 局限性 点斜式 为直线上一定点,k 为斜率 不包括垂直于x 轴的直线 斜截式 k 为斜率,b 是直线在y 轴上的截距 不包括垂直于x 轴的直线 两点式 是直线上两定点 不包括垂直于x 轴和y 轴的直线 截距式 a 是直线在x 轴上的非零截距, b 是直线在y 轴上的非零截距 不包括垂直于x 轴和y 轴或过原点的直线

一般式 A , B , C 为系数 无限制,可表示任何位置的直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是 ,两条直线的 交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解 就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。 2.几种距离 (1)两点间的距离平面上的两点 间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线 间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 注:斜率变化分成两段,0 90是分界线,遇到斜率要谨记,存在与否需讨论。 直线的参数方程 〖例1〗已知直线的斜率k=-cos α (α∈R ).求直线的倾斜角β的取值范围。 思路解析:cos α的范围→斜率k 的范围→tan β的范围→倾斜角β的取值范围。

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

空间解析几何练习题

习题一 空间解析几何 一、填空题 1、过两点(3,-2)和点(-1,0)的直线的参数方程为 。 2、直线2100x y --=方向向量为 。 3、直角坐标系XY 下点在极坐标系中表示为 。 4、平行与()6,3,6a =-的单位向量为 。 5、过点(3,-2,1)和点(-1,0,2)的直线方程为 。 6、过点(2,3)与直线2100x y +-=垂直的直线方程为 。 7、向量(3,-2)和向量(1,-5)的夹角为 。 8、直角坐标系XY 下区域01y x ≤≤≤≤在极坐标系中表示为 。 9、设 (1,2,3),(5,2,1)=-=-a b , 则(3)?a b = 。 10、点(1,2,1)到平面2100x y z -+-=的距离为 。 二、解答题 1、求过点(3,1,1)且与平面375120x y z -+-=平行的平面方程。 2、求过点(4,2,3) 且平行与直线 31215 x y z --==的直线方程。 3、求过点(2,0,-3) 且与直线247035210x y z x y z -+-=??+-+=? 垂直的平面方程。 4、一动点与两定点(2,3,2)和(4,5,6)等距离, 求这动点的方程。

5、求222,01z x y z =+≤≤在XOZ 平面上的投影域。 6、求222 19416 x y z ++=在XOY 平面上的投影域。 7、求2z z =≤≤在XOZ 平面上的投影域。 8、求曲线222251x y z x z ?++=?+=? 在XOY 平面上的投影曲线。 9、求曲线 22249361x y z x z ?++=?-=? 在XOY 平面上的投影曲线。 10、求由曲面22z x y =+与曲面2222x y z ++=所围成的区域在柱面坐标系下的表示。

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系中,M N分别是椭圆的顶点,过坐标原点的直线交 椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA! PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN故直线PA过线段MN的中点,又直线PA过坐标 原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 ( 3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二:设. 设直线PB, AB的斜率分别为因为C在直线AB上,所以从而 因此 28. (北京理19) 已知椭圆?过点(m,0)作圆的切线I交椭圆G于A, B两点. (I )求椭圆G的焦点坐标和离心率; (II )将表示为m的函数,并求的最大值? (19)(共14 分) 解:(I)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (n)由题意知,? 当时,切线l 的方程,点A、 B 的坐标分别为 此时 当m=- 1 时,同理可得当时,设切线l 的方程为由 设A、B 两点的坐标分别为,则

又由l 与圆 所以 由于当时, 所以. 因为且当时,|AB|=2 ,所以|AB| 的最大值为 2. 32. (湖南理21) 如图7椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (I)求C1, C2的方程; (H)设C2与y轴的焦点为M过坐标原点o的直线与C2相交于点A,B,直线MA,MB分别与C1 相交与 D,E. (i )证明:MDL ME; (ii )记厶MAB,A MDE勺面积分别是.问:是否存在直线I,使得?请说明理由。 解:(I)由题意知 故C1, C2的方程分别为 (H) (i )由题意知,直线I的斜率存在,设为k,则直线I的方程为. 由得 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MAL MB 即MDL ME. (ii )设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为. 又直线MB的斜率为,同理可得点 B 的坐标为于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为于是. 因此 由题意知, 又由点A、 B 的坐标可知,故满足条件的直线l 存在,且有两条,其方程分别为 34. (全国大纲理21) 已知0为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B 两点,点P 满足 (I)证明:点P在C上; (n)设点P关于点O的对称点为Q证明:A、P、B、Q四点在同一圆上.

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

解析几何初步试题及答案

《解析几何初步》检测试题 命题人 周宗让 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12- C 、13 D 、13 - 3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( ) A .2 1 B .2 1- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y x B .032=--y x C .210x y ++= D .210x y +-= 6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( ) A .()0,4 B .()0,2 C .()2,4- D .()4,2- 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距

为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242 x y -++=的切线,则此切线段的长度为( ) A . 2 B .32 C .12 D . 2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点, 则弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 12.直线3y kx =+与圆()()2 2 324x y -+-=相交于M,N 两点, 若MN ≥则k 的取值范围是( ) A. 304?? -??? ?, B. []304??-∞-+∞????U ,, C. ???? D. 203?? -????, 二填空题:(本大题共4小题,每小题4分,共16分.) 13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

解析几何专题训练理科用

解析几何专项训练 姓名 班级 学号 成绩 (一)填空题 1、若直线m my x m y mx 21=++=+与平行,则m =_-1____. 2、若直线2+=kx y 与抛物线x y 42 =仅有一个公共点,则实数=k 1,02 3、若直线l 的一个法向量为()2,1n =,则直线l 的倾斜角为 arctan2π- (用反三角函数值表示) 4、已知抛物线2 0x my +=上的点到定点(0,4)和到定直线4y =-的距离相等,则 m = -16 5、已知圆C 过双曲线 116 92 2=-y x 的一个顶点和一个焦点,且圆心C 在此双曲线上,则圆心C 到双曲线中心的距离是 16 3 6、已知直线1l :210x y +-=,另一条直线的一个方向向量为(1,3)d =,则直线1l 与2l 的夹角是 4 π 7、已知直线:0l ax by c ++=与圆1:2 2 =+y x O 相交于A 、B 两点,3||=AB , 则OA ·OB = 12 - 8、若直线m 被两平行线1:10l x y -+=与2:30l x y -+=所截得线段的长为22则 直线m 的倾斜角是 0015,75 . 9、若经过点(0,2)P 且以()1,d a =为方向向量的直线l 与双曲线132 2 =-y x 相交于 不同两点A 、B ,则实数a 的取值范围是 2215,3a a <≠ .

10、(理科)设曲线C 定义为到点)1,1(--和)1,1(距离之和为4的动点的轨迹.若将曲线 C 绕坐标原点逆时针旋转 45,则此时曲线C 的方程为__22 142 y x +=___________. 11、等腰ABC ?中,顶点为,A 且一腰上的中线长为3,则 三角形ABC 的面积的最大值 2 12、如图,已知OAP ?的面积为S ,1OA AP ?=. 设||(2)OA c c =≥,3 4 S c =,并且以O 为中心、A 为焦点的椭 圆经过点P .当||OP 取得最小值时,则此椭圆的方程为 22 1106 x y += . (二)选择题 13、“2a =”是“直线210x ay +-=与直线220ax y +-=平行”的( B )条件 (A )充要;(B )充分不必要;(C )必要不充分;(D )既不充分也不必要 14、如果i +2是关于x 的实系数方程02 =++n mx x 的一个根,则圆锥曲线 12 2=+n y m x 的焦点坐标是( D )(A))0,1(±; (B))1,0(±; (C))0,3(± ;(D))3, 0(± 15、已知:圆C 的方程为0),(=y x f ,点),(00y x P 不在圆C 上,也不在圆C 的圆心上, 方程0),(),(:'00=-y x f y x f C ,则下面判断正确的是……( B ) (A) 方程'C 表示的曲线不存在; (B) 方程'C 表示与C 同心且半径不同的圆; (C) 方程'C 表示与C 相交的圆; (D) 当点P 在圆C 外时,方程'C 表示与C 相离的圆。 16、若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线22 2222222 :1(0,0)x y C a b a b -=>>的 焦点相同,且12a a >给出下列四个结论:①2222 1221a a b b -=-; ②1221 a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2121b b a a +>+;其中所有正确的结论 序号是( B )A. ①② B, ①③ C. ②③ D. ①④ y P x o A

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

高等数学 空间解析几何与向量代数练习题与答案

空间解析几何与矢量代数小练习 一 填空题 5’x9=45分 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模_________________, 方向余弦_________________和方向角_________________ 3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 4、方程0242222=++-++z y x z y x 表示______________曲面. 5、方程22x y z +=表示______________曲面. 6、222x y z +=表示______________曲面. 7、 在空间解析几何中2x y =表示______________图形. 二 计算题 11’x5=55分 1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程. 2、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 3、求过点(1,2,3)且平行于直线51 132-=-=z y x 的直线方程. 4、求过点(2,0,-3)且与直线???=+-+=-+-012530 742z y x z y x 垂直的平面方 5、已知:k i 3+=,k j 3+=,求OAB ?的面积。

参考答案 一 填空题 1、?????? -±116,117,116 2、21M M =2,21cos ,22 cos ,21 cos ==-=γβα,3 ,43,32π γπ βπ α=== 3、14)2()3()1(222=++-+-z y x 4、以(1,-2,-1)为球心,半径为6的球面 5、旋转抛物面 6、 圆锥面 7、 抛物柱面 二 计算题 1、04573=-+-z y x 2、029=--z y 3、53 1221-=-=-z y x 4、065111416=---z y x 5 219 ==?S

空间解析几何(练习题参考答案)

1. 过点Mo (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57(. 5.已知:→ →-AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A.4 B .1 C. 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A.平行于x 轴 B.平行于y 轴 C.平行于z 轴 D.过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D.重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A.平行 B.垂直 C .斜交 D.直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A.5 B . 6 1 C. 51 D.8 1 5.D 7.D 8.B 9.A 10.A. 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(prj c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的.

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

解析几何综合题和答案

解析几何综合题 1.12F F 、是椭圆2 214 x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ?的最大值是 .1答案:4 简解: 12||||PF PF ?≤2 212||||()42 PF PF a +== 2.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆72x +3 2 y =1的公共点有____________个. 2答案:0->-=?. 01021202a a 或???<->?.0102 a 解之 5. 若曲线 y =与直线(2)y k x =-+3有两个不同的公共点, 则实数 k 的取值范围是 .5.答案:3 14 k -<≤ 简解: 将曲线 y =224x y -=时考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x =平行的直线与 双曲线的位置关系。 6.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________. 6.答案:(x -2)2+(y+3)2=5 5. 简解:∵圆C 与y 轴交于A (0,-4),B (0,-2), ∴由垂径定理得圆心在y=-3这条直线上. 又已知圆心在直线2x -y -7=0上, y=-3, 2x -y -7=0. ∴联立 解得x =2,

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆221x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11PA 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗?证明你的结论.

3、已知抛物线2:C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?= ,求BDK ?的面积。. 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值.

相关文档
最新文档