什么是信噪比详解

什么是信噪比详解
什么是信噪比详解

信噪比详解

定义

信噪比,即SNR(Signal to Noise Ratio)又称为讯噪比,狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以上。

解析

信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率是噪音功率的10^8倍,输出信号标准差则是噪音标准差的10^4倍。信噪比数值越高,噪音越小。

“噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于M P3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(d B)。对于播放器来说,该值当然越大越好。

目前MP3播放器的信噪比有60dB、65dB、85dB、90dB、95dB等等,我们在选择MP3的时候,一般都选择60dB以上的,但即使这一参数达到了要求,也不一定表示机子好,毕竟它只是MP3性能参数中要考虑的参数之一。

指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。

国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB 以上,高档的更可达110dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买,而低音炮70dB的低音炮同样原因不建议购买。用途

另外,信噪比可以是车载功放;光端机;影碟机;数字语音室;家庭影院套装;网络摄像机;音箱……等等,这里所说明的是MP3播放器的信噪比。

以dB计算的信号最大保真输出与不可避免的电子噪音的比率。该值越大越好。低于75dB这个指标,噪音在寂静时有可能被发现。AWE64 Gold声卡的信噪比是80dB,较为合理。SBLIVE更是宣称超过120dB的顶级信噪比。总的说来,由于电脑里的高频干扰太大,所以声卡的信噪比往往不令人满意。

图像信噪比

图象的信噪比应该等于信号与噪声的功率谱之比,但通常功率谱难以计算,有一种方法可以近似估计图象信噪比,即信号与噪声的方差之比。首先计算图象所有象素的局部方差,将局部方差的最大值认为是信号方差,最小值是噪声方差,求出它们的比值,再转成dB数,最后用经验公式修正,具体参数请参看“反卷积与信号复原(邹谋炎)”。

音频信噪比

音频信噪比是指音响设备播放时,正常声音信号强度与噪声信号强度的比值。当信噪比低,小信号输入时噪音严重,在整个音域的声音明显变得浑浊不清,不知发的是什么音,严重影响音质。信噪比的大小是用有用信号功率(或电压)和噪声功率(或电压)比值的对数来表示的。这样计算出来的单位称为“贝尔”。实用中因为贝尔这个单位太大,所以用它的十分之一做计算单位,称为“分贝”。对于便携式DVD来说,信噪比至少应该在70dB(分贝)以上,才可以考虑。这样应该没错

信噪比与噪声

信噪比是音响界公认的衡量音响器材质量水准的一个重要指标,几乎所有的电声器材都会标注这个指标,没有这个指标的器材,要么是一些特制的专用器材设备,要么就是不正规的产品。信噪比、失真率、频率响应这三个指标是音响器材的“基础指标”或“基本特性”,我们在评价一件音响器材或者一个系统水准之前,必须先要考核这三项指标,这三项指标中的任何一项不合格,都说明该器材或者系统存在着比较重大的缺陷。信噪比作为设备、系统的基础指标之一,必须得到应有的高度重视。

信噪比,英文名称叫做SNR或S/N(SIGNAL-NOICE RATE),是指一个电子设备或者电子系统中信号与噪声的比例。这里面的信号指的是来自设备外部需要通过这台设备进行处理的电子信号,噪声是指经过该设备后产生的原信号中并不存在的无规则的额外信号(或信息),并且该种信号并不随原信号的变化而变化。同样是“原信号不存在”还有一种东西叫“失真”,失真和噪声实际上有一定关系,二者的不同是失真是有规律的,而噪声则是无规律的,这个以后再讲。

信噪比的计量单位是dB,其计算方法是10LOG(PS/PN),其中Ps和Pn分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20LOG(VS/VN),Vs和Vn分别代表信号和噪声电压的“有效值”。在音频放大器中,我们希望的是该放大器除了放大信号外,不应该添加任何其它额外的东西。因此,信噪比应该越高越好。

信噪比的测量及计算:

通过计算公式我们发现,信噪比不是一个固定的数值,它应该随着输入信号的变化而变化,如果噪声固定的话,显然输入信号的幅度越高信噪比就越高。显然,这种变化着的参数是不能用来作为一个衡量标准的,要想让它成为一种衡量标准,就必须使它成为一个定值。于是,作为器材设备的一个参数,信噪比被定义为了“在设备最大不失真输出功率下信号与噪声的比率”,这样,所有设备的信噪比指标的测量方式就被统一起来,大家可以在同一种测量条件下进行比较了。信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrm s或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出

端的噪声电压,记为Vn,再根据SNR=20LOG(Vn/Vs)就可以计算出信噪比了。Ps和Pn分别是信号和噪声的有效功率,根据SNR=10LOG(Ps/Pn)也可以计算出信号比。

这样的测量方式完全可以体现设备的性能了。但是,实践中发现,这种测量方式很多时候会出现误差,某些信噪比测量指标高的放大器,实际听起来噪声比指标低的放大器还要大。经过研究发现,这不是测量方法本身的错误,而是这种测量方法没有考虑到人的耳朵对于不同频率的声音敏感性是不同的,同样多的噪声,如果都是集中在几百到几千Hz,和集中在20KHz以上是完全不同的效果,后者我们可能根本就察觉不到。因此就引入了一个“权”的概念。这是一个统计学上的概念,它的核心思想是,在进行统计的时候,应该将有效的、有用的数据进行保留,而无效和无用的数据应该尽量排除,使得统计结果接近最准确,每个统计数据都由一个“权”,“权”越高越有用,“权”越低就越无用,毫无用处的数据的“权”为0。于是,经过一系列测试和研究,科学家们找到了一条“通用等响度曲线”,这个曲线代表的是人耳对于不同频率的声音的灵敏度的差异,将这个曲线引入信噪比计算方法后,先兆比指标就和人耳感受的结果更为接近了。噪声中对人耳影响最大的频段“权”最高,而人耳根本听不到的频段的“权”为0。这种计算方式被称为“A计权”,已经称为音响行业中普遍采用的计算方式。

噪声的种类、来源及电磁兼容

在一个音响系统中,由于信号是串联的,因此一件设备的噪声会进入下面的设备中被放大,所以系统最后的噪声是系统中所有设备噪声的累加。但是,当我们了解了系统中每一件器材的信噪比指标后,是否就可以确定整个系统的信噪比指标了呢?不,远远不能。这就要从噪声的来源和种类说起了。

我们把噪声的来源分为内部和外部两种,由于实验室的测试条件通常都十分优越,所以在这种条件下测试的信噪比指标实际是设备内部噪声的反应,内部噪声主要是由于电路设计、制造工艺等因素,由设备自身产生的,而外部噪声是由设备所在的电子环境和物理化学环境(自然环境)所造成的,外部噪声是不可能反映在信噪比指标中的。这一点通常会被很多人所忽略,经常听到有人说:这唱机的信噪比指标不是挺高的吗?怎么听起来噪音这么大,骗人的吧……。这就是没有搞清楚信噪比指标含义所造成的误解。

外部噪声通常被称为“干扰”,这种干扰可能是电磁干扰,也可能是机械振动干扰,也可能来自温度变化的干扰……总之,都不是器材自身产生的。于是此时另一个不太起眼的指标凸现出了它的意义-电磁兼容性。

电磁兼容性有两个层次的含义,一是设备在运行时不会对其它设备产生干扰,二是耐受干扰的能力强,在一定的外界干扰下仍能正常工作。第一层意思容易理解,而第二层意思对于音响设备来说,还有更进一步的含义,那就是如何定义“正常工作状态”。这个正常工作不应该仅仅是“出声就好”,还应该是保证一定的性能指标,这其中就包括有信噪比。也就是所,一个电磁兼容性能优良的设备器材,在一定的外界干扰条件下,其信噪比指标不应该有明显的劣化。

实际上,很多音响产品在电路设计中都有“电磁兼容”的影子,比如在电源输入端设计滤波器、压敏电阻,外壳采用金属材料,内部信号线采用屏蔽线等等,实践证明,这些措施对于抑制干扰有很大的作用。

噪声的来源很复杂,我们可以把它们大致归结为三种,一种是元器件产生的固有噪声,电路中几乎所有的元器件在工作时都会产生一定的噪声,晶体管、电阻、电容,这种噪声是连续的,基本上是固定不变的,并且频谱分布很广泛,这种噪声除了改进元器件的材料和生产工艺外,几乎没有任何办法消除,也就是说,这种噪声几乎可以不用实验,在图纸上进行计算就可以推算出来。好在现在很多优质元器件

的固有噪声都很小,在设计电路时选择优质元器件就可以把这种噪声压制到非常小的水平,小到我们根本不会听见。

第二种噪声来源于电路本身的设计失误或者安装工艺上的缺陷,电路设计失误往往会导致电路的轻微自激(一种自由振荡状态),这种自激一般在我们可以听到的声音范围之外,但是在某些特定条件下它们会对声音的中高频产生断续的影响,从而产生噪声。安装工艺失误就稍微复杂一些,比如接插件接触不良,接触表面形成二极管效应或者接触电阻随温度、振动等影响发生变化而导致信号传输特性变化,产生噪声。还有元器件排布上的失误,将高热的元器件排布在对温度敏感的元器件旁边,或者将一些有轻微振动的元器件放在对振动敏感的元器件旁边,或者没有足够的避震措施……等等这些,都会产生一定的噪声。这些噪声可以说都是人为造成的,对于经验丰富的电子设计师来说,这些噪声都是可以避免或者大大减轻的。

第三种噪声则是非常广泛的,也是经常被提起的干扰噪声。这种噪声来源很复杂,主要包括几个方面:

空间辐射干扰噪声:任何导体通过交变电流的时候都会引起周围电场强度的变化,这种变化就是电场辐射,同样,像变压器这样的磁体也会引起周围磁场强度的交替变化。我们知道,交变电场和磁场中的闭合导体会产生和电场磁场变化频率相同的交变电流,也叫感应电流。音响设备中所有的元器件、导线、电路板上的铜箔都是电导体,因此不可避免地会产生感应电流。这种感应电流叠加在信号中就会产生噪声。

线路串扰噪声:某些电气设备会产生干扰信号,这些干扰信号通过电源、信号线等线路直接窜入音响设备中。

传输噪声:这种噪声是信号在传输过程中由于传输介质的问题产生的,比如接插件的接触不良、信号线材质不佳、地电流串扰等等。其中,地电流串扰是经常容易被忽视的问题。由于民用音响器材大多采用非平衡传输方式,信号线的外屏蔽层实际上也参与的信号的传输,通常屏蔽层与音响器材的“地”连接,大多数音响器材的地是和设备的外壳相连的,并且和住宅供电线路提供的“大地”相连接。在正常情况下,住宅供电的大地是非常理想的,它使得所有连接线路的“地”都是平等的。但是,一旦这个接地出现故障,甚至某些不负责任的电力公司将这个地与市电的“零线”连接,就会出现问题了。此时消耗功率大的器材的“地”电压比别的器材要“高一点”,比且这个高低的差别还会随着消耗功率的大小发生变化,我们知道,一般的音频信号线中传输的信号是很微弱的,这变化则足以使得信号线中传输的信号产生很大的变化。这变化除了产生失真外,也包含了一定的噪声。并且,由于接地不良,空间辐射对于信号传输的影响也会加剧。

噪声的表现

前面我们对噪声有了一些了解,那么我们如何来分辨这么多种类的噪声呢?当然是靠听了。我这里总结一下我们经常听到的噪声以及它们的来源:

稳定的咝咝声或沙沙声:这是放大器电路元器件产生的固有噪声,一般非常轻微而且稳定,不会随着音量调节而变化。除了改变放大器的电路设计,这种噪声无法消除。

嗡声:这是通常所说的“交流声”,来源非常复杂,器材工艺设计的不合理、连接线缆的屏蔽能力等都会产生这样的声音。有时,供电电压过低导致内部电路工作不正常也会产生交流声。

噼啪声:所谓的放电声,器材内部积累灰尘过多是产生这种声音的主要原因。有时元器件超过使用寿命而失效也会产生这种声音。遇上这种情况应该立即修理检查,否则有可能产生更大的问题。

流水声:这是一种高频自激的现象,是电路设计不良造成的,属于质量问题。

啸叫声、汽船声:典型的高频、低频自激,应该马上关闭你的系统电源,检查器材之间的连接是否有误。

偶尔的滋滋声:交流供电线路的串扰。当交流电的供电质量非常糟糕的时候,也会产生这种现象。

噗噗声:内部元器件出现故障的现象。

广播声:电路设计不良,放大器的开环频响很差,非线性失真严重,并且没有进行适当的处理就会产生这种现象。这种现象往往是设计者片面追逐过宽的闭环频响,而放大器电路本身开环性能不良产生矛盾造成的。这种情况很多时候会引发高频自激,严重时会导致喇叭或者耳机烧毁。

噪声对音质的影响

噪声对于音质的影响,尤其是对于主观音质评价的影响是非常大的,有时会起到决定性的作用。音响行业从模拟音频向数字音频进化的一个主要目的就是提高信噪比,减少噪声。盒式磁带录音机的信噪比指标约为-20~40dB,采用杜比降噪技术后最大可达到-67dB,LP唱片约为-30~50dB,开盘式磁带录音机约为-50~60dB,一般的CD唱机则可以达到-90~110dB,而最新的DVD-A和SACD

可以达到-120dB以上,从这个进步上看,音响行业对于信噪比指标式十分看重的。

噪声对于音质的表现主要有几个方面:

一是过大的噪声会严重干扰听音者对音乐本身的关注,这是对于那些幅度很大的噪声信号而言的,这情形就像听音乐会时你了邻座不断大声聊天、手机乱响、磕瓜子劈劈啪啪,在这种环境下听音乐,听者不会有好心情的。

二是噪声会影响音乐细节的再现。我们知道,人耳的听觉具有“遮蔽效应”,在遮蔽效应中,除了强音对于弱音具有“屏蔽作用”外,还包括另一个现象,就是当两个声音的响度相差不大的时候,往往我们会把这两种声音混淆在一起,或者会感到出现时间比较长的那个声音的存在,出现时间短的声音就会弱化。正常情况下,噪声电平通常都不高,而音乐中的某些细节和噪声电平相当,这样,这些细节就会被“淹没在噪声的海洋中”,使得我们无法感受到它们。而这些细节(也称为弱信号)在声音重播环节中往往起到非常微妙的作用,我们所谓的“临场感”“空气感”“堂音”“泛音”等等主观音质中的元素就靠它们来实现,没有了它们“高保真”的效果就会大打折扣。

三是某些类型的噪声时系统故障的先兆或者诱因,如果不及时解决和避免,可能对系统的安全造成隐患,这一点前面前面已经有所说明了,这里不再赘述。

此外,很多时候,噪声并不是孤立的,信噪比指标的不好有可能暗示着器材设计上的失误,这一点对于设计者来说很重要。

噪声的消除措施

对于一般的消费者来说,是不可能消除器材本身的固有噪声的,遇上这种情况除了更换器材没有其它方法。但是,对于外部干扰,我们是可以用一些办法解决的:

电磁屏蔽:对于空间辐射干扰,我们可以选择金属质地的机柜来承载我们的系统,并且将金属机柜有效接地,就可以抵挡很多空间辐射。此外,对信号线、电源线也采取特殊的屏蔽处理,可以有效消除电子辐射干扰。对于那些漏磁比较严重的器材,我们可以将其放到距离其它器材较远的地方,或者加一个铁制机柜包起来,也可以大大消除磁场辐射。

净化电源:对于从供电线路中窜入的干扰信号,采用交流净化电源是个非常有效的方法,这种电源分为有源和无源两种形式,前者兼具交流稳压作用,除了可以滤除干扰外,还可以稳定供电电压,保证器材的正常工作状态。后者仅仅起到滤除干扰的作用,通常是以电源插座的形式出现,如果家中供电电压比较稳定,这样的电源净化器也有不错的效果。某些交流净化电源除了稳压滤波作用外,还有功率因数补偿、波形校正的功能,这种净化电源是最理想的电源净化设备,可惜价格不菲,一般人难以接受。

牢靠连接:采用高质量的接插件,保证信号线接头部位接触良好。

保养维护:爱惜你的器材,不要让它们长期工作在恶劣的环境下。总之,你去看看使用说明书,厂家的提示一般都说得非常清楚了

低信噪比检测总结

低信噪比检测技术算法总结 微弱信号检测技术是运用电子学、信息论、计算机和物理学等方法,研究被测信号和噪声的统计特性及其差别;采用一系列信号处理方法,从噪声中检测出有用的微弱信号,从而满足现代科学研究和技术应用需要的检测技术。 微弱信号检测特点是第一,在较低的信噪比中检测微弱信号。造成信噪比低的原因,一方面是由于特征信号本身十分微弱;另一方面是由于强噪声干扰使得信噪比降低。如在机械设备处在故障早期阶段时,故障对应的各类特征信号往往以某种方式与其它信源信号混合,使得特征信号相当微弱;同时设备在工作时,又有强噪声干扰。因此,特征信号多为低信噪比的微弱信号。第二,要求检测具有一定的快速性和实时性。工程实际中所采集的数据长度或持续时间往往会受到限制,这种在较短数据长度下的微弱信号检测在诸如通讯、雷达、声纳、地震、工业测量、机械系统实时监控等领域有着广泛的需求[3-5]。微弱特征信号检测方法日新月异,从传统的频谱分析、相关检测、取样积分和时域平均方法到新近发展起来的小波分析理论、神经网络、混沌振子、高阶统计量,随机共振等方法,在微弱特征信号检测中均有广泛的应用。 1 时域检测法 1.1 相关检测(可以再找找相关的论文补充一下) 相关检测是上世纪60年代发展起来的一门技术,最早的实用相关检测系统是1953年贝尔实验室的Bennett 等利用磁带记录仪技术实现,1961年,Weinreb 的文章描述了利用自相关法从随机噪声中提取周期信号。此后,人们进行了大量的工作,这项技术已经得到广泛的应用。 相关检测主要是对信号和噪声进行相关性分析,相关函数R(τ)是相关性分析的主要物理量。确定性信号的不同时刻取值一般都有较强的相关性;而对干扰噪声,因为其随机性较强,不同时刻取值的相关性一般较差。利用这一差异,把确定性信号和干扰噪声区分开来。 相关检测包括自相关法和互相关法,自相关法通过自相关函数度量同一个随机过程前后的相关性;而互相关法用互相关函数来度量两个随机过程间的相关性。相比自相关法,互相关法提取信号能力越强,对噪声抑制得较彻底[9]。通常,互相关是根据接收信号的重复周期或已知频率,在接收端发出与待测信号频率相同的参考信号,将参考信号与混有噪声的输入信号进行相关。互相关函数表达式为: 00()lim ()(t )T xy T R x y dt τττ→=-? 设待测信号为(t)S(t)n(t)x =+,其中S(t)为特征信号,n(t)为噪声。(t)y 为参考信号,()xy R τ为(t)x 和(t)y 信号的互相关函数,则互相关函数为: ()(t)y(t )(t)y(t )(t)y(t )()()xy Sy ny R E x E S E n R R ττττττ=-=-+-=+ 若(t)n 与(t)y 不相关,则0ny R =。 因此,()()xy ny R R ττ=,式中()Sy R τ为(t)S 信号和(t)y 参考信号的互相关函数。 在众多的信号检测方法中,相关检测室比较常用和有效的方法之一。利用相关检测技术对系统进行辨识的境地将首积分时间和信号带宽的影响。信号带宽越宽,积分时间越长,则精度越高。

几类信号信噪比的计算_百度上传

1,确知信号的信噪比计算 这里的“确知信号”仅指信号的确知,噪声可以是随机的。某些随机信号,例如幅度和相位随机的正弦波,如果能够准确估计出它的相位和幅度等参数也可以认为是“确知信号”。 接收到的确知信号通过减去确知信号的方法得到噪声电压或电流,高斯噪声的数学期望为0,方差除以或乘上电阻得到噪声功率。确知信号的大小的平方的积分除以或乘上电阻得到信号功率。信噪比等于这两个功率相除,因此可以不用考虑电阻的大小。 clear all; clc; SIMU_OPTION = 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1, deterministic signal snr calc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (SIMU_OPTION==1) SAM_LEN = 1e6; PERIOD = 1e3; SNR_DB = 30 signal = sin((1:SAM_LEN)*2*pi/PERIOD); signal_wgn = awgn(signal,SNR_DB,'measured'); wgn = signal_wgn - signal; snr_db_calc = 10*log10(var(signal)/var(wgn)) end

2,随机信号的信噪比计算 2.1,窄带信号加宽带噪声的信噪比计算 可以使用周期图FFT方法,即得到信号加噪声的功率谱,利用信号和噪声的频率特性,通过积分的方法将信号和噪声的功率计算出来,这样就得到信噪比。窄带信号是相对整个信号频率带而言。 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2, sin signal + white gauss noise %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (SIMU_OPTION==2) SAM_LEN = 1e6; PERIOD = 1e3; SNR_DB = 30 signal = sin((1:SAM_LEN)*2*pi/PERIOD); signal_wgn = awgn(signal,SNR_DB,'measured'); signal_wgn_fft = fft(signal_wgn); signal_wgn_psd = (abs(signal_wgn_fft)).^2 / SAM_LEN; signal_wgn_psd_db = 10*log10(signal_wgn_psd); signal_wgn_psd = signal_wgn_psd(1:SAM_LEN/2); snr_db_calc = 10*log10(max(signal_wgn_psd)/(sum(signal_wgn_psd)-max(signal_wgn_psd) )) end

提高地震资料高频段信噪比及拓展有效频宽方法研究

提高地震资料高频段信噪比及拓展有效频宽方法研究 在进行了波形一致性处理和规则干扰衰减滤波技术之后,它使得子波统一、时间对齐;并且消除了较强的规则干扰波,使得整个记录面貌无论是信噪比、分辨率和保真度上均有了明显改进。为了达到高分辨率地震勘探的目的,在提高信噪比的基础上,我们还要进一步提高分辨率。众所周知, 分辨率不仅与信噪比有关,更主要的是与频带宽度有关,即有效波的频带宽度越宽,则分辨率越高。频带宽度,应该是指具有相同能量级别的有效波频率成分的集合;其分辨率是视觉分辨率,只有有效波的频谱成分具有一定的能量时,才能进入有效频带, 才能在剖面上看到它的存在。 关于地震记录的信噪比,通常是指有效波的纯度,从宏观上看记录的信噪比, 可对记录进行分频扫描,通过分析各频段上的有效信号,从而确定不同频段上的信噪比,获得一个信噪比谱。 在有效的频率范围内不同频带的信号和噪音的特点及所占的分量是不同的,即可以根据不同频带内信号和噪音的特点, 进行有针对性的处理加工,进而达到提高地震记录信噪比和分辨率的目的。 由于地震资料在低频段15Hz 以下,高频段60Hz 以上的信噪比较低。在低频段主要是面波、折射波干扰,而高频段主要是高频随机干扰。因此扩展优势信噪比的有效频带宽度,就是要解决高低频段的信噪比。采用前面的方法,将规则干扰波有效地分离出去,保留了低频有效信息,扩展了低频段的优势信噪比的有效信息频带宽度。 高频段的信噪比如何解决,至今还没有针对高频随机干扰去噪的有效方法,只能采用分频去噪方法,提高高频段的信噪比。有时从剖面上可以看出地震记录的分辨率很高,然而剖面上的信噪比确很低。对剖面进行频率扫描, 在低频段剖面的信噪比较高,影响剖面的信噪比主要是60Hz 以上的高频段。如何提高60Hz 以上频率段的信噪比,扩展高频段优势信噪比的有效频带的宽度,提高地震记录分辨率。通常在常规处理中,只是在整个频带上进行去噪的,我们知道几乎所有去噪的原理都是以能量相关性为依据的,这样在整个频带上去噪只能提高信噪比高的频率段的信噪比,而对信噪比低的频率段的信噪比没有提高多少,甚至损失了高频有效信息。所以,可以根据不同频段的信噪比适当地选择不同去噪方法及其参数,提高不同频率段的信噪比,特别是高频段的信噪比。 主要技术指标: 在有效的频率范围内不同频带的信号和噪音的特点及所占的分量是不同的,即可以根据不同频带内信号和噪音的特点, 进行有针对性的处理加工,进而达到提高地震记录信噪比和分辨率的目的。 根据不同频段的信噪比适当地选择不同去噪方法及其参数,提高不同频率段的信噪比,特别是高频段的信噪比。 创新点 (1)提高分辨率处理方法 把地震数据分解为若干个频带的数据,在15Hz 以下低频端的主要干扰为面波、折射波等规则干扰,它可以应用最佳规则干扰剔除的方法来解决低信噪比的问题;而大于60Hz 高频端的主要干扰是随机干扰波,它可以通过最佳信号拟合滤波的方法来解决它的低信噪比问题;对于中间较高信噪比部分,可通过其它较简单快速的方法或不做加工,然后对各个频带处理后的数据再合并起来。 (2)提高信噪比处理方法 不同频率成分有不同的信噪比,为达到尽可能提高分辨率的目的,对不同频率成分需要分别对待。最大分辨能力滤波所能达到的分辨率与每个频率成分的信噪比有关,任何频率成分的信噪比的改进,都对提高分辨率有好处。但不同的信噪比的频率成分对分辨率的贡献不同,并且不同信噪比的频率成分的信噪比改进对提高分辨率的作用也不同。 信噪比很高的频率成分, 对分辨率有很大贡献。但这种频率成分的信噪比改善并不会对提高分辨率有多大帮助。信噪比很低的频率成分,对分辨率的贡献很小。这种频率成分的信噪比改善, 可使其对分辨率的贡献成比例地增加,但由于它的贡献基数很小,即使有成倍增加,还是作用不大。而信噪比在1 附近的频率成分,信噪比改善对分辨率益处较大,是改善信噪比的重点。 效果评述

信噪比

信噪比 来自维基 信噪比(通常简写为SNR 或S/N )是科学和工程中常用的衡量信号受噪声干扰程度大小的物理量,定义为信号功率和噪声功率的比值。如果该比值大于1:1,说明信号比噪声强。信噪比不仅经常被用来衡量电信号,而且可以被用来衡量任何形式的信号(例如冰核间的同位素水平和细胞间的同位素信号)。 在非专业领域,信噪比比较了有用信号水平(例如音乐)和背景噪声水平。比值越高,背景噪声越平缓。 信噪比有时还用于表示通信或信息交流中有用信息和错误的或不相关信息的比值。例如,在线论坛或其他在线社区中,偏离话题的邮件和垃圾邮件就被当作是扰乱正常讨论信号的噪声。 1. 定义 信噪比定义为信号(有用信息)和背景噪声(不希望的信号)的功率比: signal noise P SNR P = 这里P 是平均功率。信号和噪声功率必须在系统相同的或等效的点上衡量,并且要在相同的系统带宽之内。如果信号和噪声的阻抗相同,那么信噪比可以通过计算幅度平方的比值来获得: 2 signal signal noise noise P A SNR P A ??== ??? 这里A 是均方根(RMS )幅度(例如,均方根电压)。由于很多信号的动态范围很宽,信噪比经常用对数分贝值表示。信噪比的分贝值定义为 10,,10log signal dB signal dB noise dB noise P SNR P P P ??==- ??? 也可以用幅度比等效地写作 2101010log 20log signal signal dB noise noise A A SNR A A ????== ? ????? 信噪比的概念和动态范围紧密相关。动态范围衡量了信道中的最大不失真信号和最小可检测信号的比值,该比值大部分是用来衡量噪声水平的。信噪比衡量了任意的信号水平(不必是大部分可能的强信号)和噪声的比值。衡量信噪比需要选

为什么牺牲带宽可以提高信噪比

仙农信息论中的仙农定理描述了信道容量C,信号带宽W,持续时间T,与信 噪比S N之间的关系: 2 log(1) S C WT N =+ (7-1) 它表明了一个信道无误差地传输信息的能力与信道中的信噪比以及用于传输信息的信道带宽之间的关系。 决定信道容量的C的参数有三个:信号带宽W,持续时间T,以及信噪比S N。 这三个参数组成一个很形象的具有可塑性的三维立方体,见图7-1。 f ) 1( log 2N S + log 2 W T t 图7-1 信道容量与信号带宽、持续时间以及信噪比之间的关系由信号带宽W,持续时间T,与信噪比 S N组成的立方体的体积就是信道容量C。这个信道容量所决定的三维信号体积最大的特点就是具有可塑性。即在总体积不变的条件下,三轴上的自变量间可以互换,可以互相取长补短。 用频带换取信噪比,就是现代扩频通信的基本原理,其目的是为了提高通信系统的可靠性。如果通信中信噪比为主要矛盾(比如无线通信),而信号带宽有富裕,往往就可以采用这种用带宽换取信噪比的方法提高通信可靠性,即使带宽没有富裕,但是为了保证可靠性也要采用牺牲带宽,确保信噪比。 那么,是否可以一味地牺牲带宽来换取信噪比上性能的提高呢? 根据仙农公式2 log(1) S C WT N =+ ,将其转换为以e为底的对数,那么单位时间内(T=1)信道容量为:

1.44ln(1)S C W N =?+ (7-2) 对于干扰环境的典型情况,1S N <<,那么公式可以简化为 1.44S C W N ≈? (7-3) 一般而言,信号功率总是受限的,这里假定S 不变,同时有: 0N N W = (7-4) 其中N 为噪声功率,0N 为噪声功率谱,W 为信道带宽。 则可得: 001.44 1.44S S C W N W N =?= (7-5) 这就是由仙农公式得出的,用频带换取信噪比的极限容量。

什么是信噪比详解

信噪比详解 定义 信噪比,即SNR(Signal to Noise Ratio)又称为讯噪比,狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以上。 解析 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率是噪音功率的10^8倍,输出信号标准差则是噪音标准差的10^4倍。信噪比数值越高,噪音越小。 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于M P3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(d B)。对于播放器来说,该值当然越大越好。 目前MP3播放器的信噪比有60dB、65dB、85dB、90dB、95dB等等,我们在选择MP3的时候,一般都选择60dB以上的,但即使这一参数达到了要求,也不一定表示机子好,毕竟它只是MP3性能参数中要考虑的参数之一。 指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB 以上,高档的更可达110dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买,而低音炮70dB的低音炮同样原因不建议购买。用途 另外,信噪比可以是车载功放;光端机;影碟机;数字语音室;家庭影院套装;网络摄像机;音箱……等等,这里所说明的是MP3播放器的信噪比。 以dB计算的信号最大保真输出与不可避免的电子噪音的比率。该值越大越好。低于75dB这个指标,噪音在寂静时有可能被发现。AWE64 Gold声卡的信噪比是80dB,较为合理。SBLIVE更是宣称超过120dB的顶级信噪比。总的说来,由于电脑里的高频干扰太大,所以声卡的信噪比往往不令人满意。

7第七章 信噪比的计算

计算信噪比 计算信噪比 “浏览项目”中选择欲浏览数据所在的项目,然后单击“确定”,进入该项目。在“通道”选项卡中选择欲处理的数据,单击(查看)打开。“查看”键 “通道”选项卡,找到需要处理的通道数据,然后按照以下步骤进行处理: 1.进入查看窗口,通过“文件-打开-处理方法”打开相应的处理方法。 2.按处理方法图标 进入处理方法窗口。在处理方法窗口里选择“适应性”选项卡。钩选计算适应性结果。

3.在“空体积时间”栏内填入适当的空体积时间,如果不确定,并且不需要计算相对保留时间或与孔体积时间无关的系统适应性参数,可尝试填入1 或者0.1。 4.在s/n噪音值下拉菜单中选取相应的噪音类型。以基线噪音为例。 5.在下部的“基线噪音和漂移测量”区域内,以及“基线开始时间”与“基线结束时间”。 1)用于平均的运行时间百分比指在运行时间内平均数据点的百分比。Empower 软件利用此数值来计算平均时间,其中“取用于平均的运行时间百分比”与“总运行时间”的积等于“平均时间”。软件将“平均时间”与“基线开始时间”相加,然后用“基线结束时间”减去所得结果数值,从而确定两个平均区域。平均计算只在平均区域进行。可以从0.1 到 50.0。默认值为5。 当“用于平均的运行时间百分比”与“总运行时间”的积,也就是“平均时间”大于30秒,也就是说总运行时间*用于平均的运行时间百分比≧50(0.5 分钟)时,则将噪音报告由结果,否则为空白。

2)基线开始时间(分)漂移和噪音计算的开始时间。计算漂移时,系统在“基线结束时间”获取毫伏读数,然后用此读数减去“基线开始时间”读数,得出漂移值。计算噪音时,系统计算由“基线开始时间”和“基线结束时间”以及“取用于平均的运行时间百分比”参数指定的基线区域的噪音。注意要使噪音计算有效,基线间隔内必须没有任何峰。 3)基线结束时间(分) 漂移和噪音计算的结束时间。计算漂移时,系统在“基线结束时间”获取毫伏读数,然后用此读数减去“基线开始时间”读数,得出漂移值。计算噪音时,系统计算由“取用于平均的运行时间百分比”参数以及“基线开始时间”和“基线结束时间”指定的基线区域的噪音。 6.回到主窗口,重新积分,校正,等到结果。

有关信噪比计算方法

计算方法 软件根据最新的美国、欧洲和日本药典计算信噪比,公式如下 s/n = 2h/hn 其中 h = 与组分对应的峰高 hn = 在等于半高处峰宽的至少五倍 (USP) 或 20 倍(EP 和 JP)的距离内,观测到 的最大与最小噪音值之间的差值,并且,此段距离以空白进样的目标峰区域为中心。 可以指定是否使用处理方法的“适应性”选项卡中的“计算 USP、 EP 和 JP s/n”(以前为“计算 EP s/n”)复选框计算 USP、 EP 和 JP s/n。 也可以指定是否使用由空白进样中的峰区域计算的噪音值计算 USP s/n、EP s/n 和 JP s/n。每个峰的噪音区是唯一的。通过在各个峰的保留时间处将噪音区居中的相应空白进样来确定噪音区。指定半高处乘子参数,从而定义噪音区。 USP s/n 新的适应性峰字段 USP s/n 使用“美国药典”中的信噪比 (s/n) 公式计算。 USP s/n 计算 公式如下 2 峰高/ (噪音/缩放) 其中: 峰高 = 峰高的绝对值 噪音 = 峰的噪音值(峰到峰噪音) 缩放 = “缩放到微伏”值 缺省情况下,软件将 USP s/n 值报告为 6 位精度,不采用科学计数法也没有单位。 用于计算 USP s/n 的噪音值将根据“使用空白进样中位于峰区域内的噪音”选项的状态来确定: ?选中该选项时,软件用空白进样中所确定的峰到峰噪音计算每个峰的噪音值。该值针 对单个空白进样的相同通道中的区域进行计算。此区域以峰保留时间为中心,宽度等 于半高处峰宽乘以 USP 噪音区的半高处乘子值。软件在结果中将此噪音值报告为 USP 噪音。缺省情况下,软件将该值报告为 6 位精度,不采用科学计数法,单位为 “图单位”。 ?清除该选项后,软件将使用结果的峰到峰噪音值;不使用空白进样计算噪音。在处理 方法的“噪音和漂移”选项卡中,指定此区域的开始和结束时间。 在处理方法的“适应性”选项卡上,“USP s/n 噪音区的半高处乘子”字段的范围在 1 到99 之间,缺省为 5。当清除“使用空白进样中位于峰区域内的噪音”选项,并且药典选择为 JP 或 EP 时,该字段禁用。 EP s/n EP s/n 适应性峰字段使用“欧洲药典”中的信噪比 (s/n) 公式进行计算。 EP s/n 计算公式 如下 2 . (峰高 - (0.5 . 噪音/缩放))/(噪音/缩放) 其中: 峰高 = 峰高的绝对值 噪音 = 峰的噪音值(峰到峰噪音) 缩放 = “缩放到微伏”值 缺省情况下,软件将 EP s/n 值报告为 6 位精度,不采用科学计数法也没有单位。

UPLC如何计算信噪比

Q:怎样计算信噪比? A:已经建立好信噪比的自定义字段后,即可进行计算,具体步骤如下: 1)单击鼠标左键进入“浏览项目”。 2)选择欲浏览数据所在的项目,然后单击“确定”,进入该项目。 3)在“通道”选项卡中选择欲处理的数据,单击(查 看)打开。 “查看”键“通道”选项卡 4)进入查看窗口,通过“文件-打开-处理方法”打开相应的处理方法。

5)按处理方法图标进入处理方法窗口。 6)在处理方法窗口里选择“适应性”选项卡。 钩选计算适应性结果。 在“空体积时间”栏内填入适当的空体积时间,如果不确定,并且不需要计算相对保留时间,可尝试填入1或者0.1。 在下部的“基线噪音和漂移测量”区域内,填入“运行时间百分比”以及“基线开始时间”与“基线结束时间”。 取用于平均的运行时间百分比 运行时间(在这段时间内平均数据点)的百分比。Empower 软件利用此数值来计算平均时间,其中“取用于平均的运行时间百分比”与“总运行时间”的积等于“平均时间”。软件将“平均时间”与“基线开始时间”相加,然后用“基线结束时间”减去所得结果数值,从而确定两个平均区域。平均计算只在平均区域进行。输入:0.1 到 50.0%。缺省值:5%。当“取用于平均的运行时间百分比”与“总运行时间”的积,也就是“平均时间”小于30秒(0.5分钟)时,则将噪音报告为空白。

基线开始时间(分) 漂移和噪音计算的开始时间。计算漂移时,系统在“基线结束时间”获取毫伏读数,然后用此读数减去“基线开始时间”读数,得出漂移值。计算噪音时,系统计算由“基线开始时间”和“基线结束时间”以及“取用于平均的运行时间百分比”参数指定的基线区域的噪音。缺省值:空白 - 软件以 0.00 分钟作为“基线开始”时间。 注:要使噪音计算有效,基线间隔内必须没有任何峰。 基线结束时间(分) 漂移和噪音计算的结束时间。计算漂移时,系统在“基线结束时间”获取毫伏读数,然后用此读数减去“基线开始时间”读数,得出漂移值。计算噪音时,系统计算由“取用于平均的运行时间百分比”参数以及“基线开始时间”和“基线结束时间”指定的基线区域的噪音。缺省值:空白 - 软件用运行时间作为“基线结束”时间。 在本例中: 条件 设置 总运行时间 8 分钟 取平均的运行时间百分比 8% 平均时间 8×8%=0.64 分钟(>30秒) 基线开始 3.8 分钟 基线结束 4.8 分钟 7)设置参数后,保存处理方法,关闭处理方法对话框。 8)回到查看主窗口,单击积分快捷键进行积分,即可得到信噪比结果。 9)如需保存该结果,需在菜单中选择“文件-保存-结果”。该结果保存后即出现在“结 果”选项卡的列表中。

信噪比

信噪比 简介 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率是噪音功率的10^8倍,输出信号标准差则是噪音标准差的10^4倍,信噪比数值越高,噪音越小。 定义 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于MP3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音 信噪比 [1] 信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(dB)。对于播放器来说,该值当然越大越好。目前MP3播放器的信噪比有60dB、65dB、85dB、90dB、95dB等等,我们在选择MP3的时候,一般都选择60dB以上的,但即使这一参数达到了要求,也不一定表示机子好,毕竟它只是MP3性能参数中要考虑的参数之一。指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。

国际电工委员会对信噪比的最低要求 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB以上,高档的更可达110dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买,而低音炮70dB 的低音炮同样原因不建议购买。 用途 另外,信噪比可以是车载功放;光端机;影碟机;数字语音室;家庭影院套 信噪比 装;网络摄像机;音箱……等等,这里所说明的是MP3播放器的信噪比。以dB计算的信号最大保真输出与不可避免的电子噪音的比率。该值越大越好。低于75dB这个指标,噪音在寂静时有可能被发现。AWE64 Gold声卡的信噪比是80dB,较为合理。SBLIVE更是宣称超过120dB的顶级信噪比。总的说来,由于电脑里的高频干扰太大,所以声卡的信噪比往往不令人满意。 编辑本段图像信噪比 简介 图像的信噪比应该等于信号与噪声的功率谱之比,但通常功率谱难以计算,

信噪比的定义

什么是启发式算法 引言: 解决实际的问题,要建模型,在求解。求解要选择算法,只有我们对各种算法的优缺点都很熟悉后才能根据实际问题选出有效的算法。但是对各种算法都了如指掌是不现实的,但多知道一些,会使你的选择集更大,找出最好算法的概率越大。现在研一,要开题了些点文献综述,愿与大家分享。 大自然是神奇的,它造就了很多巧妙的手段和运行机制。受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。现在的启发式算法也不是全部来自然的规律, 也有来自人类积累的工作经验。 启发式算法的发展: 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,取得了巨大的成就。 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规 模的问题仍然无能为力(收敛速度慢)。 启发式算法的不足和如何解决方法: (水平有限仅仅提出6点) 启发式算法目前缺乏统一、完整的理论体系。 很难解决!启发式算法的提出就是根据经验提出,没有什么坚实的理论基础。 由于NP理论,启发式算法就解得全局最优性无法保证。 等NP?=P有结果了再说吧,不知道这个世纪能不能行。 各种启发式算法都有个自优点如何,完美结合。 如果你没有实际经验,你就别去干这个,相结合就要做大量尝试,或许会有意外的收获。 启发式算法中的参数对算法的效果起着至关重要的作用,如何有效设置参数。 还是那句话,这是经验活但还要悟性,只有try again……….. 启发算法缺乏有效的迭代停止条件。 还是经验,迭代次数100不行,就200,还不行就1000………… 还不行估计就是算法有问题,或者你把它用错地方了……….. 启发式算法收敛速度的研究等。 你会发现,没有完美的东西,要快你就要付出代价,就是越快你得到的解也就远差。 其中(4)集中反映了超启发式算法的克服局部最优的能力。 虽然人们研究对启发式算法的研究将近50年,但它还有很多不足: 1.启发式算法目前缺乏统一、完整的理论体系。 2.由于NP理论,各种启发式算法都不可避免的遭遇到局部最优的问题,如何判断 3.各种启发式算法都有个自优点如何,完美结合。 4.启发式算法中的参数对算法的效果起着至关重要的作用,如何有效设置参数。 5.启发算法缺乏有效的迭代停止条件。

matlab 如何计算信噪比

Matlab信号上叠加噪声和信噪比的计算 在信号处理中经常需要把噪声叠加到信号上去,在叠加噪声时往往需要满足一定的信噪比,这样产生二个问题,其一噪声是否按指定的信噪比叠加,其二怎么样检验带噪信号中信噪比满足指定的信噪比。 在MATLAB中可以用randn产生均值为0方差为1的正态分布白噪声,但在任意长度下x=randn(1,N),x不一定是均值为0方差为1(有些小小的偏差),这样对后续的计算会产生影响。在这里提供3个函数用于按一定的信噪比把噪声叠加到信号上去,同时可检验带噪信号中信噪比。 1,把白噪声叠加到信号上去: function [Y,NOISE] = noisegen(X,SNR) % noisegen add white Gaussian noise to a signal. % [Y, NOISE] = NOISEGEN(X,SNR) adds white Gaussian NOISE to X. The SNR is in dB. NOISE=randn(size(X)); NOISE=NOISE-mean(NOISE); signal_power = 1/length(X)*sum(X.*X); noise_variance = signal_power / ( 10^(SNR/10) ); NOISE=sqrt(noise_variance)/std(NOISE)*NOISE; Y=X+NOISE; 其中X是纯信号,SNR是要求的信噪比,Y是带噪信号,NOISE是叠加在信号上的噪声。 2,把指定的噪声叠加到信号上去 有标准噪声库NOISEX-92,其中带有白噪声、办公室噪声、工厂噪声、汽车噪声、坦克噪声等等,在信号处理中往往需要把库中的噪声叠加到信号中去,而噪声的采样频率与纯信号的采样频率往往不一致,需要采样频率的校准。 function [Y,NOISE] = add_noisem(X,filepath_name,SNR,fs) % add_noisem add determinated noise to a signal. % X is signal, and its sample frequency is fs; % filepath_name is NOISE's path and name, and the SNR is signal to noise ratio in dB. [wavin,fs1,nbits]=wavread(filepath_name); if fs1~=fs wavin1=resample(wavin,fs,fs1); end nx=size(X,1); NOISE=wavin1(1:nx); NOISE=NOISE-mean(NOISE); signal_power = 1/nx*sum(X.*X); noise_variance = signal_power / ( 10^(SNR/10) ); NOISE=sqrt(noise_variance)/std(NOISE)*NOISE; Y=X+NOISE; 其中X是纯信号,filepath_name是指定噪声文件(.wav)的路径和文件名,SNR是要求的信噪比,fs是信号X的采样频率,Y是带噪信号,NOISE是叠加在信号上的噪声。 3,检验带噪信号的信噪比

信噪比

回复#1 yhc310 的帖子 eight大哥的文章我看过了,不过那个计算公式好像是原始信号和染噪信号的公式。我现在分析的都是实际的故障信号和降噪后信号的。eight以前也提过这个问题,这种情况可能只能做一个估计。上 面那个函数是我看段晨东文章里面得到的。 他的公式如下: function y=snr(x1,x2);%x1是原始信号,x2是降噪后信号 N=length(x1); y1=sum(x1.^2); y2=sum(x1-x2); y=10*log((y1/y2).^2); 但是由这个公式算出来的信噪比都是150多,我觉得有问题。故改为如下公式 function y=snr(x1,x2);%x1是原始信号,x2是降噪后信号 N=length(x1); y1=sum(x1.^2); y2=sum((x1-x2).^2); y=10*log((y1/y2)); https://www.360docs.net/doc/321805358.html,是目前CAD/CAE/CAM/PLM类专业网站中,用户最多,技术含量最高的网站之一,涵盖目前所有常用的C3P类软件技术讨论。 注册登录 ?分栏模式 ?搜索 ?导航 ?论坛 ?C3P门户 ?个人空间 ?论坛问卷 ?帮助

C3P 论坛-CadCaeCamPlm 社区,是来了不想走的地方 ? CAD 回收站专区 ? [047]信号处理方法 ? 求信噪比计算公式 回 复 管理员 UID 21 帖子 42453 精华 14 积分 47337 威望 45 点 C3P 币 47337 元 贡献值 2045 点 推广邀请能量 4571 焦耳 阅读权限 200 在线时间 868 小时 注册时间 2000-7-9 最后登录 主题帖 发表于 2009-2-12 15:37 | 只看该作者 论坛斑竹招募进行中 快快加入C3P 惊喜的朋友圈 广告帖子、乱码帖子、内部错误链接有奖举报点 附件无法下载有奖举报点 申请C3P 基金币 发贴公告 论坛的起源和新手成长必读 各位高手大家好!求各位给个信噪比的计算公式。数据都是现场故障数据,所以公式必须是原始信号和降噪后信号的关 系。 一下是我计算信噪比的公式,但是可能有错误! function y=snr(x1,x2);%x1是原始信号,x2是降噪后信号 N=length(x1); y1=sum(x1.^2); y2=sum((x1-x2).^2); y=10*log((y1/y2)); ============================== 参考 https://www.360docs.net/doc/321805358.html,/forum/vi ... p%3Bfilter%3Ddigest ============================== eight 大哥的文章我看过了,不过那个计算公式好像是原始信号和染噪信号的公式。我现在分析的都是实际的故障信号和降噪后信号的。eight 以前也提过这个问题,这种情况可能只能做一个估计。上面那个函数是我看段晨东文章里面得到的。 他的公式如下: function y=snr(x1,x2);%x1是原始信号,x2是降噪后信号

检测限-信噪比

1. 关于检测限(limit of detection, LOD)的定义: 在样品中能检出的被测组分的最低浓度(量)称为检测限,即产生信号(峰高)为基线噪音标准差k倍时的样品浓度,一般为信噪比(S/N)2:1或3:1时的浓度,对其测定的准确度和精密度没有确定的要求。目前,一般将检测限定义为信噪比(S/N)3:1时的浓度。 2. 计算公式为:D=3N/S (1)式中:N——噪音; S——检测器灵敏度;D——检测限而灵敏度的计算公式为:S=I/Q (2)式中:S——灵敏度;I——信号响应值;Q——进样量将式(1)和式(2)合并,得到下式:D=3N×Q/I (3) 式中:Q——进样量;N——噪音;I——信号响应值。I/N即为该进样量下的信噪比(S/N),该信噪比可通过工作站对图谱进行自动分析获得,一般的色谱或质谱工作站都可进行信噪比分析计算。这样检测限的计算方法就变得非常方便了。 3. 计算方法:实际计算时,检出限有2种表示方法:一种是进样瓶中样品检测限,一种是针对原始样品的方法检出限。1)对第一种检测限,只要知道进样量和信噪比即可计算。如进样瓶中样品浓度为1 mg/L,在此浓度下的信噪比为300(由工作站分析获得),则其检测限为:D =(3×1 mg L-1)/300 = 0.01 mg/L。也可用绝对进样量表示,若进样体积为10 ul,则其检测限为:D = 3×(1 mgL-1×10 ul)/300 = 0.1 ng。2)对第二种表示方法,需同时考虑原始样品的取样量和提取样品的定容体积。仍按前述样品计算,若取样量为5克,最后定容体积为5 mL,则方法检测限为:D = 0.01 mgL-1×5 mL/5 g = 0.01 mg/kg。即当原始样品中待检物质的浓度为0.01mg/kg时,若取样量为5g,样品经前处理后定容体积为5mL时,进样瓶中样品的浓度可达0.01mg/L(假定回收率为100%),此时,在其它给定的分析条件下,能产生3倍噪声强度的信号。在实际检测工作中,第二种表示方法更为常见。 4.注意事项由式(3)可见,信噪比的大小直接关系到检测限的大小。信噪比计算方法的不同,其比值大小有很大不同,这与计算信噪比时基线噪声峰值的定义方式有关,一般有三种不同的定义:①峰/峰(peak to peak)信噪比,用某一段基线噪声的平均高度;②峰/半峰(half peak to peak)信噪比, 用某一段基线噪声平均高度的1/2;③均方根(RMS)信噪比,用某一段基线噪声的均方根值计算。除此之外,信噪比的计算结果还和所取噪声的位置有很大关系,取信号哪一侧基线的噪声,取多长一段基线上的噪声,计算结果都很不完全相同,有时相差甚远。一般多取样品峰两侧的噪声峰值计算。 信噪比计算方法的不同,其比值大小有很大不同,这与计算信噪比时基线噪声峰值的定义方式有关,一般有三种不同的定义:①峰/峰(peak to peak)信噪比,用某一段基线噪声的平均高度;②峰/半峰(half peak to peak)信噪比, 用某一段基线噪声平均高度的1/2;③均方根(RMS)信噪比,用某一段基线噪声的均方根值计算。除此之外,信噪比的计算结果还和所取噪声的位置有很大关系,取信号哪一侧基线的噪声,取多长一段基线上的噪声,计算结果都很不完全相同,有时相差甚远。一般多取样品峰两侧的噪声峰值计算。

输出信噪比计算

function snr_vec = fftdisto(x, C, varargin) % FFTDISTO compute distortion of sinusoidal signal % SNR_VEC = FFTDISTO(X,C,N) % input: % x signal vector % C number of full sinusoids in X % N length of signal to consider (must be a power of 2) % only N last samples in x are used in fft % output vector: % 1 pwr signal power [dB] (amplitude 1 --> 0dB) % 2 sndr signal-to-noise+distortion ratio (DC omitted) [dB] % 3 snr only uncorrelated noise (harmonics + DC omitted) [dB] % 4 sdr signal-to-distortion (only harmonics, noise+DC omitted) [dB] % 5 tdh total harmonic distortion [%] % NOTE: make N > 6 * C --> % considers only approx. first N/2C harmonics, % rest are treated as noise if nargin > 3 fprintf('nargin = %d\n', nargin) error('Too many arguments.'); end N = length(x); if nargin == 3 if varargin{1} > N error('N exceeds length(x)'); end lenx = N; N = varargin{1}; if lenx > N x(1:(lenx-N)) = []; end end N2 = 0.5 * N; if log2(N2) ~= round(log2(N2)) error('N must be power of 2'); end if C > N2 error('C > N/2 (signal frequency > sampling frequency'); end if N < 6*C % warning('computing less than 3 harmonics!'); end a = abs(fft(x))/N2; % amplitude vector p = a .* a; % power vector

有关信噪比的几个问题与计算

有关信噪比的几个问题与计算 学号:2016888888 姓名:xxx 班号:xxx 信噪比是什么?如果有100个人(包括你)在同一个屋里随意相互说着话,你与相临人聊天的信噪比是1/100吗?为什么? 解:英文名称: Signal to Noise Ratio, S/N 。 特定参数(信号)值与非特异性参数(噪声)的比值。如实验中样品的放射性与本底放射性强度之比;荧光在X 射线底片上所造成的感光强度与非特异感光背景强度之比;序列同源性比较时,配对与非配对序列之比等。 在规定的条件下,传输信道特定点上的有用功率与和它同时存在的噪声功率之比。 信号不可能无中生有,所以要改善信噪比,只能想办法增大信号、降低噪声,很多时候信号的大小是不能再提高了,降低噪声变成了主要工作。 信噪比狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。如:信噪比一般不应该低于70dB ,高保真音箱的信噪比应达到110dB 以上。 信噪比:衡量一个信号质量优劣的指标。它是在指定频带内,同一端口信号功率Ps 和噪声功率Pn 的比值,即: 当用分贝表示信噪比时,就为: 信噪比越大,信号质量越好。 信噪比(脉冲幅度分析): 当噪声是白噪声时的匹配滤波器: 与滤波器频响无关,改善途径:提高输入能量,降低噪声。非白噪声的白化。 与相临人聊天的信噪比不是1/100。按照信噪比定义和计算如下: 相互无关(S = 1, N = 100-1 ): 成对说话,相互无关(N = 50-1): /s n P S N P =/()10lg s n P S N dB P =η==输入信号的能量 最大信噪比输入白噪声功率谱密度 S/N 1/10 =≈S/N 1/7 =≈

相关文档
最新文档