2020年硫化氢腐蚀的机理及影响因素

2020年硫化氢腐蚀的机理及影响因素
2020年硫化氢腐蚀的机理及影响因素

( 安全管理 )

单位:_________________________

姓名:_________________________

日期:_________________________

精品文档 / Word文档 / 文字可改

2020年硫化氢腐蚀的机理及影

响因素

Safety management is an important part of production management. Safety and production are in

the implementation process

2020年硫化氢腐蚀的机理及影响因素

1.H2

S腐蚀机理

自20世纪50年代以来,含有H2

S气体的油气田中,钢在H2

S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2 S不仅对钢材具有很强的腐蚀性,而且H2

S本身还是一种很强的渗氢介质,H2

S腐蚀破裂是由氢引起的;但是,关于H2

S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。

因此,在开发含H2

S酸性油气田过程中,为了防止H2

S腐蚀,了解H2

S腐蚀的基本机理是非常必要的。

(1)硫化氢电化学腐蚀过程

硫化氢(H2

S)的相对分子质量为34.08,密度为1.539kg/m3

。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。

在油气工业中,含H2

S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt 等提出的H2

S04

中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁

作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2

S中的H+

的还原反应。总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。Sardisco,Wright和Greco研究了30℃时H2

S-C02

-H2

0系统中碳钢的腐蚀,结果表明,在H2

S分压低于0.1Pa时,金属表面会形成包括FeS2

,FeS,Fe1-X

S在内的具有保护性的硫化物膜。然而,当H2

S分压介于0.1~4Pa时,会形成以Fe1-X

S为主的包括FeS,FeS2

在内的非保护性膜。此时,腐蚀速率随H2

S浓度的增加而迅速增长,同时腐蚀速率也表现出随pH降低而

上升的趋势。Sardisco和Pitts发现,在pH处于6.5~8.8时,表面只形成了非保护性的Fe1-X

S;当pH处于4~6.3时,观察到有FeS2

,FeS,Fe1-X

S形成。而FeS保护膜形成之前,首先是形成FeS1-X

;因此,即使在低H2

S浓度下,当pH在3~5时,在铁刚浸入溶液的初期,H2

S也只起加速腐蚀的作用,而非抑制作用。只有在电极浸入溶液足够长的时间后,随着FeS1-X

逐渐转变为FeS2

和FeS,抑制腐蚀的效果才表现出来。根据Hausler等人的研究结果,尽管界面反应的重要性不容忽略,但腐蚀中的速率控制步骤却是通过硫化物膜电荷的传递。

干燥的H2

S对金属材料无腐蚀破坏作用,H2

S只有溶解在水中才具有腐蚀性。在油气开采中与CO2

浅谈湿硫化氢对压力容器的腐蚀和检测

龙源期刊网 https://www.360docs.net/doc/321975260.html, 浅谈湿硫化氢对压力容器的腐蚀和检测 作者:王军 来源:《科学与财富》2012年第07期 摘要:随着工业的发展,硫化氢是造成化工设备腐蚀最活跃的硫化合物,本文将湿硫化氢对压力容器的腐蚀与检测。 关键词:湿硫化氢;压力容器;腐蚀;检测 前言 近年来,在化工行业中处理含硫化氢介质的生产装置基本上采用碳钢设备,而且多数设备投用以后还可以正常运行,但也存在少数设备因湿硫化氢腐蚀而被损坏的情况,化工生产装置普遍存在湿硫化氢环境下18一8型不锈钢管线的泄露问题,部分装置还因H2S腐蚀破坏而被迫停产检修并造成严重损失。不仅对环境造成污染,同时还使整个系统被迫停产检修,使得经济造成重大损失,并且危及到个人和他人的生命安全。 一、湿硫化氢对压力容器的腐蚀表现 1、氢鼓泡现象。氢鼓泡 ( HB) 腐蚀过程中析出的氢原子向钢中扩散 , 在钢材的非金属夹杂物、分层和其他不连续处 , 易聚集形成分子氢 , 由于在钢的组织内部的氢分子很难逸出 , 从而形成强大内压导致其周围组织屈服 , 形成表面层下的平面孔穴结构称为氢鼓泡 , 其分布平行于钢板表面。这类发生与外加应力无关 ,但是与材料中的夹杂物等缺陷密切相关。如2000年9月某炼油厂一台回流罐投入使用规格为Φ2400mm×7304mm×12mm ,该设计压力为0.4MPa,设计温度为70℃,操作压力为0.43Mpa,操作温度为70℃。介质为硫化氢、酸性水,封头材质为20g钢。2008年9月开罐检验时发现在进气一侧封头内表面母材上有27处氢鼓包。鼓包直径10~32mm。最大高度为6mm,鼓包处有不规则的裂纹。 2、硫化氢应力腐蚀开裂。硫化氢应力腐蚀开裂 ( SSCC) 湿硫化氢环境中腐蚀产生的氢原子渗入钢的内部 , 固溶于晶格中已经使钢材的脆性增加 , 在外加拉应力或残余应力作用下形成的开裂 , 称为硫化物应力腐蚀开裂。SSCC 通常发生在焊缝或热影响区中高强度、低韧性显微组织存在的部位。这些部位表现为具有高硬度值。SSCC 与钢材的化学成分、力学性 能、显微组织、外加应力与残余应力之和以及焊接工艺等有密切关系。 3、氢诱导开裂。氢诱导开裂 ( HIC) 2 湿硫化氢环境中过程设备的腐蚀开裂过钢在湿硫化氢环境中的腐蚀反应过程: 硫化氢在水中发生分解: H2S H + + HS ↓ + 程 H +S 2- 钢在 H2S 的水溶液中发生电化学反应 : 阳极反应: Fe Fe 2 + + 2e FeS ↓ + Fe + HS FeS ↓+ H 阴极反应 :2H + + 2e 2H H2 ↑ ↓ 2H ( 渗透到钢材中) Fe 2+ 2+ +S 2- - 从以上反应过程可以看出 , 硫化氢在水溶液中

硫化氢和含硫气体腐蚀金属的原因

硫化氢和含硫气体腐蚀金属的原因 干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性. 1. 湿硫化氢环境的定义 (1)国际上湿硫化氢环境的定义 美国腐蚀工程师协会(NACE)的MR0175-97"油田设备抗硫化物应力开裂金属材料"标准: ⑴酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥0.0003MPa; ⑵酸性多相系统:当处理的原油中有两相或三相介质(油,水,气)时,条件可放宽为:气相总压≥ 1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S 含量超过15%. 四,硫化氢腐蚀机理 (2)国内湿硫化氢环境的定义 "在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境". (3) 硫化氢的电离 在湿硫化氢环境中,硫化氢会发生电离,使 水具有酸性,硫化氢在水中的离解反应式为: H2S = H+ + HS- (1) HS- = H+ + S2- (2) 2.硫化氢电化学腐蚀过程 阳极: Fe - 2e →Fe2+ 阴极: 2H+ + 2e →Had + Had →2H →H2↑ ↓ [H]→钢中扩散 其中:Had - 钢表面吸附的氢原子 [H] - 钢中的扩散氢 阳极反应产物: Fe2+ + S2- →FeS ↓ 注:钢材受到硫化氢腐蚀以后阳极的最终产物就是硫化亚铁,该产物通常是一种有缺陷的结构,它与钢铁表面的粘结力差,易脱落,易氧化,且电位较正,因而作为阴极与钢铁基体构成一个活性的微电池,对钢基体继续进行腐蚀. 硫化氢电化学腐蚀过程 阳极: Fe - 2e →Fe2+ 阴极: 2H+ + 2e →Had + Had →2H →H2↑ ↓ [H]→钢中扩散 其中:Had - 钢表面吸附的氢原子 [H] - 钢中的扩散氢 阳极反应产物: Fe2+ + S2- →FeS ↓ 五,硫化氢引起氢损伤的腐蚀类型 反应产物氢一般认为有两种去向,一是氢原子之间有较大的亲和力,易相互结合形成氢分子排出;另一个去向就是由于原子半径极小的氢原子获得足够的能量后变成扩散氢[H]而渗入钢的内部并溶入晶格中,溶于晶格中的氢有很强的游离性,在一定条件下将导致材料的脆化(氢脆)和氢损伤.. 1. 氢压理论:与形成氢致鼓泡原因一样,在夹杂物,晶界等处形成的氢气团可产生一个很大的

工艺设备中硫化氢腐蚀特性及选材案例分析

O ct. 2010 化肥设计 Chem ical Fertilizer Design 第48卷 第5期 2010年10月 工艺设备中硫化氢腐蚀特性及选材案例分析 熊同国, 孙 恺 (神华包头煤化工分公司, 内蒙古包头 014010) 摘 要: 介绍了硫化氢腐蚀机理; 着重分析了林德低温甲醇洗工艺中的甲醇洗涤塔等主要设备的硫化氢腐蚀特性;探讨了应对硫化氢腐蚀的设备选材策略; 提出了控制硫化氢腐蚀的工艺操作方案。 关键词: 硫化氢; 低温甲醇洗设备; 腐蚀; 材料; SSCC (硫化物应力腐蚀开裂); 分析 中图分类号: TQ 546. 5 文献标识码: A 文章编号: 1004- 8901( 2010) 05- 0042- 04 Concerning H 2S Corrosion F eature andMater ial Selection Strategy for Linde Low TemperatureMethanolWash XIONG Tong guo, SUN Kai (Shenhua B aotou Coa l Chem ica lE ng ineeringS ubcompany, Baotou InterM ongolia 014110 China ) Abstract : Author has in trodu ced the H 2S corrosion m ech an ism; hasm ain ly analyzed the H2S corros ion characteristic ofm ain equ ipment, su ch as,methano l scrubber etc. in L inde low tem peratu rem eth anolw ashp rocess; has d iscussed the strategy of equ ipmentm ateria l select ion facing H 2S corrosion; has presen ted the process operation scheme for control ling H 2S corrosion. Keyw ords: hydrogen sulphide (H 2S) ; low temp erature m ethanolw as equ ipm ent; corros ion; m ateria;l sscc( su lph ide stress corros ion crack) 1 硫化氢腐蚀机理 H 2S 的分子量为34. 08, 密度为1. 539mg /m 3 ,是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。H 2S 在水中的溶解度很大, 水溶液具有弱酸性。H 2S 在水的作用下电解, 电化学腐蚀过程如下。 H + 得到电子以成为氢原子, 易在合金钢中产生氢脆, 降低合金钢的强度, 同时氢原子易在金属材料有缺陷处产生聚集, 使材料内应力增大, 从而产生氢制裂纹。湿H2 S 环境中腐蚀产生的氢原子渗入钢的内部固溶于晶格中, 使钢的脆性增加, 在外加拉应力或残余应力作用下形成的开裂, 叫做硫化物应力腐蚀开裂。工程上有时也把受拉应力的钢及合金在湿H 2S 及其它硫化物腐蚀环境中产生的脆性开裂统称为SSCC(硫化物应力腐蚀开裂)。通常发生在中高强度钢中或焊缝及其热影响区等硬度较高的区域。 低温甲醇洗系统最易腐蚀的部位,往往是有酸性气通过的换热器处。腐蚀的出现, 主要是由于生成羰基铁, 特别是Fe(CO)5和含硫的羰基铁, 后者是生成Fe(CO)5过程中的中间产物。H 2S 的存在会明显地促进CO 与Fe 的反应。羰基铁的生成对生产十分不利, 一方面造成了设备的腐蚀, 缩

硫化氢腐蚀的机理及影响因素..

硫化氢腐蚀的机理及影响因素 作者:安全管理网来源:安全管理网 1. H2S腐蚀机理 自20世纪50年代以来,含有H2S气体的油气田中,钢在H2S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2S不仅对钢材具有很强的腐蚀性,而且H2S本身还是一种很强的渗氢介质,H2S腐蚀破裂是由氢引起的;但是,关于H2S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。 因此,在开发含H2S酸性油气田过程中,为了防止H2S腐蚀,了解H2S腐蚀的基本机理是非常必要的。 (1) 硫化氢电化学腐蚀过程 硫化氢(H2S)的相对分子质量为34.08,密度为1.539kg/m3。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。 1

在油气工业中,含H2S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt等提出的H2S04中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2S中的H+的还原反应。总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。Sardisco,Wright和Greco研究了30℃时H2S-C02-H20系统中碳钢的腐蚀,结果表明,在H2S分压低于0.1Pa时,金属表面会形成包括FeS2,FeS,Fe1-X S在内的具有保护性的硫化物膜。然而,当H2S分压介于0.1~4Pa时,会形成以Fe1-X S为主的包括FeS,FeS2在内的非保护性膜。此时,腐蚀速率随H2S浓度的增加而迅速增长,同时腐蚀速率也表现出随pH降低而上升的趋势。Sardisco和Pitts发现,在pH处于6.5~8.8时,表面只形成了非保护性的Fe1-X S;当pH处于4~6.3时,观察到有FeS2,FeS,Fe1-X S形成。而FeS保护膜形成之前,首先是形成Fe S1-X;因此,即使在低H2S浓度下,当pH在3~5时,在铁刚浸入溶液的初期,H2S也只起加速腐蚀的作用,而非抑制作用。只有在电极浸入溶液足够长的时间后,随着FeS1-X逐渐转变为FeS2和FeS,抑制腐蚀的效果才表现出来。根据Hausler等人的研究结果,尽管界面反应的重 2

H2S腐蚀研究进展

H2S腐蚀研究进展 摘要 近年来我国发现的气田均含有硫化氢、二氧化碳等腐蚀性气体,特别是我们盆地,含硫化氢天然气分布最广泛。众所周知,硫化氢腐蚀是井下油套管的主要腐蚀类型之一。本文简述了硫化氢的物性,研究了硫化氢腐蚀的机理和影响因素,并在此基础上介绍了采用缓蚀剂、涂镀层管材、根据国际标准合理选材、电化学保护等几种国外常用的防腐措施,并指出了各种方法的优缺点,最后还探讨了硫化氢油气田腐蚀研究的热点问题及发展方向。 关键词:硫化氢腐蚀,腐蚀机理,防腐技术 ABSTRACT In recent years, the gas fields found in our country contain hydrogen sulfide, carbon dioxide and other corrosive gases, especially in the Sichuan basin, with the most extensive distribution of hydrogen sulfide gas. It is well known that the hydrogen sulfide corrosion is one of the main corrosion types of the oil casing in the well. Properties of hydrogen sulfide is described in this paper to study the hydrogen sulfide corrosion mechanism and influencing factors, and on this basis, introduces the corrosion inhibitor, coating tubing, according to international standard and reasonable material and electrochemical protection at home and abroad, several commonly used anti-corrosion measures, and points out the advantages and disadvantages of each method, and finally discusses the hot issues and development direction of the research on oil and gas fields of hydrogen sulfide corrosion by. Key word s:hydrogen sulfide corrosion, corrosion mechanism, corrosion

硫化氢腐蚀

硫化氢(H2S)的特性及来源 1.硫化氢的特性 硫化氢的分子量为34.08,密度为1.539mg/m3。而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。 H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。 H2S不仅对人体的健康和生命安全有很大的危害性,而且它对钢材也具有强烈的腐蚀性,对石油、石化工业装备的安全运转存在很大的潜在危险。 2.石油工业中的来源 油气中硫化氢的来源除了来自地层以外,滋长的硫酸盐还原菌转化地层中和化学添加剂中的硫酸盐时,也会释放出硫化氢。。 3.石化工业中的来源 石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。 干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。 硫化氢腐蚀机理 1.湿硫化氢环境的定义 (1)国际上湿硫化氢环境的定义 美国腐蚀工程师协会(NACE)的MR0175-97“油田设备抗硫化物应力开裂金属材料”标准: ⑴ 酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥ 0.0003MPa; ⑵ 酸性多相系统:当处理的原油中有两相或三相介质(油、水、气)时,条件可放宽为:气相总压≥1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S含量超过15%。(2)国内湿硫化氢环境的定义 “在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境”。 (3)硫化氢的电离 在湿硫化氢环境中,硫化氢会发生电离,使水具有酸性,硫化氢在水中的离解反应式为:

炼油装置湿硫化氢应力腐蚀分析详解

炼油装置湿硫化氢应力腐蚀分析 中国石化茂名分公司吕运容 摘要:本文结合部分案例,对炼没装置湿硫化氢应力腐蚀环境进行了分析,指出了炼油装置湿硫化氢应力腐蚀环境的部位,提出了防范措施。 关键词:硫化氢;应力腐蚀 近年来,沿海和沿江炼油厂加工进口中东高含硫原油的比例不断增加,设备腐蚀日益加重,设备腐蚀问题已经成为影响装置安全、长周期运行的关键因素之一,炼没装置湿硫化氢应力腐蚀问题时有发生,应引起广大技术人员和防腐工作者的关注。本文结合部分案例,对炼没装置湿硫化氢应力腐蚀环境进行了分析,提出了防范措施。 一、腐蚀案例 1、加氢装置 (1)茂名石化一加氢装置汽提塔顶回流罐(容104)器壁97年查出60多个鼓泡。容器材质为A3F沸腾钢,钢的纯净度不够,钢内夹杂物多,GB150-1998已不允许用沸腾钢制造成压力容器,更不能用于有应力腐蚀开裂敏感性的介质。 (2)茂名石化三加氢装置循环氢压缩机C1101、四加氢装置循环氢压缩机C301气体引压阀阀盖螺纹连接处断裂(见图1),阀杆与阀盖飞出,大量氢气喷出,车间发现并处理及时,未发生恶性事故。断口为典型脆性断口,判定为湿硫化氢应力腐蚀断裂。该阀为上海某阀门厂制造,阀体材质为18-8奥氏体不锈钢(含Cr18.2、Ni8.62),硬度HRC56,断裂六角螺母材质为Cr13(含Cr14.8),硬度HRC70,金相组织为马氏体,对SSCC最敏感,这样高硬度(远高于HB235)与敏感的马氏 体组织的螺栓在H 2S+H 2 O的作用下,在应力集中的螺纹尾部产生应力腐蚀断裂。 (3)茂名石化三加氢装置干气冷却器(E1110)小浮头螺栓断裂,材质为1Cr13 、35CrMoA使用约一周时间,均断裂,后改用Q235,使用良好。1Cr13金相组织 为马氏体,对SSCC最敏感,且硬度高,在H 2S+H 2 O的作用下,易产生应力腐蚀断裂。 2、催化装置

2020年硫化氢腐蚀的机理及影响因素

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020年硫化氢腐蚀的机理及影 响因素 Safety management is an important part of production management. Safety and production are in the implementation process

2020年硫化氢腐蚀的机理及影响因素 1.H2 S腐蚀机理 自20世纪50年代以来,含有H2 S气体的油气田中,钢在H2 S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2 S不仅对钢材具有很强的腐蚀性,而且H2 S本身还是一种很强的渗氢介质,H2 S腐蚀破裂是由氢引起的;但是,关于H2 S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。 因此,在开发含H2

S酸性油气田过程中,为了防止H2 S腐蚀,了解H2 S腐蚀的基本机理是非常必要的。 (1)硫化氢电化学腐蚀过程 硫化氢(H2 S)的相对分子质量为34.08,密度为1.539kg/m3 。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。 在油气工业中,含H2 S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt 等提出的H2 S04 中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁

硫化氢腐蚀与防护

1. 选用抗硫化氢材料 抗硫化氢材料主要是指对硫化氢应力腐蚀开裂和氢损伤有一定抗力或对这种开裂不敏感的材料。同时采用低硬度(强度)和完全淬火+回火处理工艺对材料抗硫化氢腐蚀是有利的。 美国国家腐蚀工程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使用的钻杆、钻杆接头、钻铤和其它管材的最大硬度不许高于HRC22;钻杆接头与钻杆的焊接及热影响区应进行淬火+595℃以上温度的回火处理;对于最小屈服强度大于655MPa的钢材应进行淬火+回火处理,以获得抗硫化物应力腐蚀开裂的最佳能力 抗H2S腐蚀钢材的基本要求: ⑴成分设计合理:材料的抗H2S应力断裂性能主要与材料的晶界强度有关,因此常常加入Cr、Mo、Nb、Ti、Cu等合金元素细化原始奥氏体晶粒度。超细晶粒原始奥氏体经淬火后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应力腐蚀的高强度钢最有效的途径。 ⑵采用有害元素(包括氢, 氧, 氮等)含量很低纯净钢; ⑶良好的淬透性和均匀细小的回火组织,硬度波动尽可能小; ⑷回火稳定性好,回火温度高(>600℃); ⑸良好的韧性; ⑹消除残余拉应力。 2.添加缓蚀剂 实践证明合理添加缓蚀剂是防止含H2S酸性油气对碳钢和低合金钢设施腐蚀的一种有效方法。缓蚀剂对应用条件的选择性要求很高,针对性很强。不同介质或材料往往要求的缓蚀剂也不同,甚至同一种介质,当操作条件(如温度、压力、浓度、流速等)改变时,所采用的缓蚀剂可能也需要改变。 用于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓蚀剂),有胺类、米唑啉、酰胺类和季胺盐,也包括含硫、磷的化合物。如四川石油管理局天然气研究所研制的CT2-l和CT2-4油气井缓蚀剂及CT2—2输送管道缓蚀剂,在四川及其他含硫化氢油气田上应用均取得良好的效果。 3.控制溶液pH值 提高溶液pH值降低溶液中H+含量可提高钢材对硫化氢的耐蚀能力,维持pH值在9~11之间,这样不仅可有效预防硫化氢腐蚀,又可同时提高钢材疲劳寿命。 4. 金属保护层 在需保护的金属表面用电镀或化学镀的方法镀上Au,Ag,Ni,Cr,Zn,Sn等金属,保护内层不被腐蚀。 5. 保护器保护 将被保护的金属如铁作阴极,较活泼的金属如Zn作牺牲性阳极。阳极腐蚀后定期更换。 6. 阴极保护 外加电源组成一个电解池,将被保护金属作阴极,废金属作阳极。 硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显著,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。

防止硫化氢应力腐蚀的热喷涂技术研究

防止硫化氢应力腐蚀的热喷涂技术研究 2007-8-23 摘 要:对压力容器用钢WH530及其用铝及锌铝复合涂层实行热喷涂的试样进行了涂层结合强度及 H2S应力腐蚀试验。结果表明,铝涂层可显著提高抗H2S应力腐蚀能力,锌铝复合涂层较差;文中同时对锌铝涂层的失效机理进行了探讨。 关键词:压力容器 硫化氢应力腐蚀 热喷涂技术 1 引言 碳钢及低合金钢在湿硫化氢环境中发生的硫化物应力腐蚀开裂(SSC)是石油化工设备安全隐患之一。国内外最新研究结果表明:对低浓度硫化氢环境,可通过净化材质、大幅降低S、P含量、改善材料组织结构等措施对SSC加以防护;但对于高浓度的硫化氢环境,就目前的钢材冶炼水平,即使钢材纯净度达到S含量在0 002%以下的超低水平,仍难以避免发生SSC[1]。因此,近年来有采用热喷涂技术防止发生H2S应力腐蚀的报道[2、3]。热喷涂技术用于防止金属一般腐蚀已有多年历史,技术上也较成熟;但用于防止H2S应力腐蚀尚属新课题。从技术和经济角度考虑,对大型设备,热喷涂材料采用铝及锌铝合金较为普遍。为探讨对防止H2S应力腐蚀的效果,本文以武钢压力容器用钢WH530为对象,对其基材及其用铝涂层及锌铝复合涂层热喷涂的试样分别进行了涂层结合强度及应力腐蚀性能试验。并对试验结果进行了机理分析。 2 试验材料 喷涂试验基材采用由武汉钢铁(集团)公司提供的WH530高强度低合金钢,其化学成分及力学性能见 表1(略)及表2(略)。涂层采用24目刚玉砂进行喷砂处理,压力为5~6kg;随后进行电弧喷涂,电弧喷涂工艺参数见表3(略)。底锌面铝复合涂层中锌铝层各厚100μm,热喷涂铝层厚度200μm。 3 试验结果 3.1 涂层结合强度试验 本试验按GB8642—88[4]进行。试验在CSS-1110型电子万能试验机上进行,加载速度为3mm/min,试件直径 25mm,试验结果见表4(略)。试验结果表明,铝涂层与钢铁基体的结合强度是底锌面铝复合涂层与钢铁基体结合强度的5倍。 3.2 恒负荷拉伸试验 本试验执行GB4157—84[5]并参照美国腐蚀工程师协会NACETMO177—96[6]。试验在P1500应力腐蚀横负荷拉伸试验机上进行。试件为 5mm圆截面光滑试件。将基材试件及涂层试件浸入NACE标准饱和H2S溶液中进行恒负荷拉伸试验,其试验结果见表5(略)。取出在恒负荷试验1100小

硫化氢腐蚀与防护相关知识

硫化氢腐蚀与防护相关知识 1. 硫化氢腐蚀的预防措施 1.1. 选用抗硫化氢材料 抗硫化氢材料主要是指对硫化氢应力腐蚀开裂和氢损伤有一定抗力或对这种开裂不敏感的材料。同时采用低硬度(强度)和“完全淬火+回火”处理工艺对材料抗硫化氢腐蚀是有利的。 美国国家腐蚀工程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使用的钻杆、钻杆接头、钻铤和其它管材的最大硬度不许高于HRC22;钻杆接头与钻杆的焊接及热影响区应进行“淬火+595℃以上温度的回火”处理;对于最小屈服强度大于655MPa的钢材应进行“淬火+回火”处理,以获得抗硫化物应力腐蚀开裂的最佳能力。 1.2. 抗H2S腐蚀钢材的基本要求 ⑴成分设计合理:材料的抗H2S应力断裂性能主要与材料的晶界强度有关,因此常常加入Cr、Mo、Nb、Ti、Cu等合金元素细化原始奥氏体晶粒度。超细晶粒原始奥氏体经淬火后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应力腐蚀的高强度钢最有效的途径。 ⑵采用有害元素(包括氢,氧,氮等)含量很低纯净钢; ⑶良好的淬透性和均匀细小的回火组织,硬度波动尽可能小; ⑷回火稳定性好,回火温度高(>600℃); ⑸良好的韧性; ⑹消除残余拉应力。 1.3. 添加缓蚀剂 实践证明合理添加缓蚀剂是防止含H2S酸性油气对碳钢和低合金钢设施腐蚀的一种有效方法。缓蚀剂对应用条件的选择性要求很高,针对性很强。不同介质或材料往往要求的缓蚀剂也不同,甚至同一种介质,当操作条件(如温度、压力、浓度、流速等)改变时,所采用的缓蚀剂可能也需要改变。 用于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓

硫化氢腐蚀的影响因素

硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显着,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴ 显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。 油气开采及加工工业对不昂贵的、可焊性好的钢材的需要,基本上决定了研究的工作方向就是优先研制抗硫化物腐蚀开裂的低合金高强度钢。 ⑶ 合金元素及热处理 有害元素:Ni、Mn、S、P; 有利元素:Cr、Ti 碳(C):增加钢中碳的含量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。 镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。原因是镍含量的增加,可能形成马氏体相。所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%。含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。 铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。不论铬含量如何,被试验钢的稳定性未发现有差异。也有的文献作者认为,含铬量高时是有利的,认为铬的存在使钢容易钝化。但应当指出的是,这种效果只有在铬的含量大于11%时才能出现。 钼(Mo):钼含量≤3%时,对钢在硫化氢介质中的承载能力的影响不大。

高温硫化氢腐蚀

2、腐蚀案例分析——1号柴油加氢T202进料线腐蚀穿孔 (1)事件情况 1号柴油加氢装置汽提塔T202进料管线于2009年2月20日凌晨3:30时左右出现穿孔泄漏,装置随即降压生产,经测厚检查发现T202进料管线整段高温部位管线已整体减薄,最薄处为1.6mm,装置停工把该段管线更换。 图7.1 1号柴油加氢装置汽油管段(φ219×6)减薄穿孔图7.2 减薄管线剖开形貌 (2)管道使用情况 40万吨/年柴油加氢精制装置由原茂名石化设计院设计,建设公司安装。该装置主要是以二次加工粗柴油或高含硫直馏粗柴油为原料,通过加氢精制,生产储存安定性和燃烧性能都较优良的柴油组分,副产少量粗汽油和瓦斯。装置的加工流程灵活,也可以直馏煤油为原料,生产优质灯油或航煤。并考虑了切换焦化粗汽油为原料,生产车用汽油调和组分的可能性。 装置于1991年4月基本建成,7月正式投产。装置在2003年2月份的大修中进行了扩能改造,柴油处理能力已达到60万吨/年。2006年8月,装置改造成以焦化汽油为原料,生产高质量的乙烯原料石脑油,目前汽油加氢精制能力为40万吨/年。 汽提塔T202进料线流程如图7.2所示,已部分预热的低分油(含汽油,H2S,H2)经反应产物第一换热器E201与反应产物换热,热塔进料与另一路90℃左右的冷进料混合后得到170℃左右的塔进料油进入汽提塔T202。此段流程于2003年3月大修时改造完成,原先设计的流程为经反应产物第二换热器E202换热后进入T202,见图中虚线部位,按原流程换热后温度约为250℃;改造后流程为经反应产物第一换热器E201换热,换热后温度大大提高,达到280-320℃。

硫化氢腐蚀的影响因素

硫化氢腐蚀的影响因素 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

硫化氢腐蚀的影响因素1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显着,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴ 显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。 油气开采及加工工业对不昂贵的、可焊性好的钢材的需要,基本上决定了研究的工作方向就是优先研制抗硫化物腐蚀开裂的低合金高强度钢。 ⑶ 合金元素及热处理 有害元素:Ni、Mn、S、P; 有利元素:Cr、Ti 碳(C):增加钢中碳的含量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。 镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。原因是镍含量的增加,可能形成马氏体相。所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%。含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。 铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。不论铬含量如何,被试验钢的稳定性未发现有差

湿硫化氢腐蚀类型及机理研

湿硫化氢腐蚀类型及机理研 杨智华(山东豪迈化工技术)引言随着原油消耗量的不断增加,从国外进口原油的数量也会不断增长,国外原油尤其是中东原油中硫含量会比较高。因此对设备的腐蚀也越来越严重。对设备腐蚀较严重的含硫化合物主要是硫化氢 (H2S)。H2S的腐蚀主要表现为湿H2S的腐蚀。若湿H2S 与酸性介质共存时,腐蚀速率会大幅提高。 1. 腐蚀分类在氢存在环境操作的设备中,由于氢的存在或氢与金属反应造成的材质失效主要有以下几大类:氢损伤、氢和湿硫化氢腐蚀、高温氢和硫化氢的腐蚀、不锈钢堆焊层的氢致剥离[1]。 1.1氢损伤 氢损伤是指金属中由于含有氢或金属中的某些成分与氢反应,从而使金属材料的力学性能发生改变的现象[1]。氢损伤导致金属或金属材料的韧性和塑性降低,易使材料开裂或脆断。电镀、酸洗、潮湿环境下的焊接、高温临氢环境(加氢反应、氮氢气合成氨的反应)、非高温临氢环境(含硫化氢和氰化物的溶液)均能引起不同性质的氢损伤。氢损伤的形式主要有氢脆、氢鼓泡、氢腐蚀、表面脱碳4种不同类型。 1.1.1氢脆氢脆发生在钢材中,当钢中氢的质量分数为0.1-10μg/g,并在拉应力与慢速应变时钢材表现出脆性上升,甚至

出现裂纹。在-100~100℃内极易发生氢脆[2],随着温度升高,氢脆效应下降,当温度超过71-82℃时不太容易发生,所以实际氢脆损伤往往都是发生在装置开、停工过程的低温阶段。若将钢材中的氢释放出来,钢材机械性能仍可恢复,因此氢脆是可逆的。 1.1.2氢鼓泡氢鼓泡形成的两个主要条件:一是存在原子状态的氢;二是金属内部存在“空穴”。原子状态的氢来源于湿H2S 对石油管道钢材表面的腐蚀,而钢材内部的“空穴”则来源于钢材的冶金缺陷和制造缺陷。腐蚀过程中析出的氢原子向钢中扩散,在钢材的非金属夹杂物、分层和其他不连续处易聚集形成分子氢。由于氢分子较大,难以从钢的组织内部逸出,从而形成巨大内压导致其周围组织屈服,形成表面层下的平面孔穴结构造成氢鼓泡,其分布平行于钢板表面。氢鼓泡的产生无需外加应力,与材料中的夹杂物缺陷密切相关。 1.1.3 氢腐蚀氢腐蚀则是在高温(205-595℃)下发生的,主要是在高温下氢原子渗入钢内与碳化合成甲烷,引起钢材的内部脱碳,温度降低后也会使钢材表面发生鼓泡。 即:2H2+Fe3C----3Fe+CH4C+2H2-----CH4或C+4H----CH4生成甲烷的化学反应在晶界上进行,它在钢中的扩散能力很小,没有能力从钢材中扩散出去,在钢材缺陷部位聚集,在孔穴处生长且连接起来,形成局部高压,造成应力集中,导致微观孔隙发展,以至形成内部裂纹使钢材强度和延性显著

硫化氢腐蚀试验方法

硫化氢腐蚀试验方法

1.目的 通过该试验判定产品耐硫化氢腐蚀的能力,以及防护措施的有效性。 2.适用范围 适用于采用银或含银金属工艺制作的片式阻容器件、银浆厚膜电路、IC、继电器银触点、接触器银触点等的耐硫化氢腐蚀的能力判定,以及由此类器件组成的单板或模块耐硫化氢腐蚀的能力判定。也可用于含有其他能与硫化氢发生化学反应的金属的器件或产品。 本规范之前的相关标准、规范的内容如与本规范的规定相抵触的,以本规范为准。 3.引用/参考标准或资料 GB2424.12-82 电工电子产品基本环境试验规程试验Kd:接触点与连接件的H2S试验方法注:该标准等同于UDC 621.3、620.1 4.名词解释 显微剖切(Microsectioning):为了对一种材料或多种材料进行金相检验所作的样品制备。通常包括截面切割、灌封、抛光、蚀刻、染色等。又称剖切/Cross-sectioning,习惯简称“切片”。 5.试验设备和物料清单 日本富士H2S专用试验设备:ZS-4S。 金相显微镜 扫描电镜 能谱分析仪 切片设备(包括切割机、磨片机、环氧树脂等设备和材料) 硫化氢气体若干 6.规范内容 6.1试验概述 将试验样品放入标准试验环境中,按试验条件进行试验,然后逐步进行功能测试、外观、内部切片分析,并根据腐蚀程度情况判定试验样品的耐H2S腐蚀能力。 本规范以含银器件或产品作为试验对象,生成物为硫化银,如果为其他金属,则相关的描述需做相应的更改。如硫化铜等。 6.2试验样品准备 按产品正常生产的标准工艺制作试验样品,样品制成后要密封包装(防硫包装),以免运送过程中受到污染而使试验结果出现偏差。 6.3试验条件与级别 本试验属于加速型试验,通过改变试验条件,在短时间内呈现试验对象在实际大气污染中长时间的变化情况。 在硫化氢腐蚀试验中,不同的试验条件对试验结果有较大影响,其中以浓度大小和试验持续时间长短的影响最为关键。本规范以H2S浓度、温度、湿度作为加速条件,根据腐蚀试验持续时间的长短作为评价样品耐受硫化氢腐蚀的能力,并以此分成2个级别,分别对应不同的大气污染条件。

井控硫化氢试题带参考答案

《硫化氢防护技术》试卷 注意:请将正确答案填写在答题卡表中!一、判断题(每题1分,共计40分)(对)1、影响硫化氢腐蚀金属的因素主要有温度、溶液的PH值、金属自身的性能。 (对)2、风就是空气的流动。空气流动的主要原因是平面上下气压不等造成的。 (错)3、根据嗅觉器官测定硫化氢的存在是极可靠的检测方法。 (错)4、一般情况下,便携式检测仪以光报警,固定式检测仪以声报警。(错)5、操作人员在进入已知硫化氢浓度或未知硫化氢浓度的区域时可以不穿戴防护用具。 (错)6、正压式空气呼吸器气瓶内充灌的为氮气。 (对)7、当油井中硫化氢浓度大于30mg/m3(20ppm),应挂红警示牌。(对)8、硫化氢应力腐蚀开裂的事故往往是突然的、灾难性的,发生之前无明显的先兆。(错)9、使用防毒面具时,头发卡在面罩和脸部之间,不会影响其密封性。(对)10、硫化氢燃烧时为蓝色火焰,并生成危害人眼睛和肺部的SO2。(对)11、H2S及其水溶液对金属有强烈的腐蚀作用,尤其是溶液中含有CO2或O2时,腐蚀更快。 (对)12、二氧化硫比空气重,容易在低洼处聚集。 (对)13、当硫化氢浓度<15mg/m3(10ppm)时,警示器为绿色。 (对)14、人员中毒后,应立即脱离现场,疏散到空气新鲜的上风方向,立即给氧。 (对)15、进入毒气区抢救中毒人员之前,自己应先戴上防毒用具。 (对)16、心肺复苏是心跳呼吸骤停后,现场进行的紧急人工呼吸和心脏胸外 按压技术。 (对)17、成人人工呼吸一次吸气量约为800~1200ml。 (错)18、作业区空气中H2S浓度超过15mg/m3时,要有红色的警示牌标志。

(对)19、硫化氢对人体的危害有麻痹神经和腐蚀粘膜作用。 (对)20、硫化氢能使嗅觉失灵,使人不能发觉危险性高浓度硫化氢的存在。(对)21、接触较高浓度硫化氢后可出现头痛、头晕、乏力、供给失调,可发生轻度意识障碍。 (错)22、当空气中的硫化氢浓度达到15mg/m3时,H2S探测报警系统能以光、声连续报警。 (对)23、硫化氢相对密度为1.189,比空气重,易在低洼处聚集 (对)24、有事例表明血液中存在酒精能加剧硫化氢的毒性。 (对)25、硫化氢会造成管材的电化学腐蚀、氢脆破坏。 (错)26、硫化氢在空气中爆炸极限为5~15%(体积比);甲烷在空气中爆炸极限为4.3~46%。 (对)27、在含硫油气井中禁止使用红丹丝扣油 (错)28、进入密闭空间时,不用进行有毒气体检测。 (错)29、硫化氢燃烧的产物二氧化硫对人体没有毒性。(错)30、硫化氢在任何情况下都对金属和非金属有腐蚀作用。 (错)31、人们对硫化氢的敏感性随其 与硫化氢的接触次数的增加 而增加,第二次接触就比第 一次安全,依次类推。(对)32、H2S易使原来比较软的金属 变硬,而原来较硬的金属变 脆而破裂,所以,较硬的金 属易受H2S的应力腐蚀。(错)33、硫化氢可以溶于水,不能溶 解于乙醇、甘油等有机溶剂 中。 (对)34、对进入含硫化氢现场临时性 工作的外来人员应进行教 育,并有专人监督监控。(对)35、对含H2S场所施工首先要进行风险评估,并制定应急预案。(错)36、低浓度(0.13-4.6ppm)的硫化氢有臭鸡蛋味,是目前人类凭借人体本能识别硫化氢的唯一方法。(对)37、只要条件适当,轻轻地振动含有硫化氢的液体,可使硫化氢气体挥发到大气中。

硫化氢试题答案

硫化氢试题库 一、填空题(每空1分) 1、API标准中H2S的8小时允许暴露极限为(A10ppm)。 2、API标准中H2S的短期暴露极限为(B15ppm)。 3、H2S是一种无色、( A 剧毒)、( B酸性 )气体,低浓度的H2S气体有一股(C臭鸡蛋味)。 4、H2S对健康和生命有立即危险的浓度是(A100ppm)。 5、API标准推荐SO2门限值为8小时加权平均值(A2ppm),超15分钟短期暴露量平均植(B5ppm)。 6、中华人民共和国石油天然气行业标准(SY/T5087---2003)规定,露天8小时允许浓度的最高限量为( A 15mg/m3)。 7、检查呼吸是否停止的判断方法是(A看)、(B试)、(C听)。 8、单人法人工呼吸与心脏按压的比例为(A 2:15)。 9、硫化氢进入人体的途径有( A 呼吸道吸入)、( B皮肤吸收)、(C消化道吸收)。 10、H2S溶于水形成弱酸,对金属引起氢损伤的腐蚀类型有( A氢鼓泡 )、( B氢致开裂 )和( C硫化物应力腐蚀开裂 )、(D氢脆)。 11、在含H2S地层钻井时,进入气层前应将二层台、钻台周围设置的( A 防风护套)和其它类的围布拆除。 12、打开气道的三种方法为(A仰头抬颈法)、(B仰头举颏法)、(C推颌法)。 13、被抢救病人的体位一般采取(A仰卧式)。 14、在钻进含H2S地层时,要求钻井液的PH值始终控制在( A 9.5)以上。 15、在含H2S井施工时,钢材的拉应力应尽量控制在钢材屈服极限的( A 60%)以下。 16、在进入怀疑有H2S存在的地区前,应先( A 检测),以确定其是否存在及其浓度。 17、疏松的硫化铁与钢铁接触形成了( A 原电池),硫化铁是正极,钢铁是负极,因而加速了电化学失重腐蚀。 18、有H2S中毒时,应迅速将中毒者从毒气区抬到( A空气清醒的安全区域 ),并送医院抢救。 19、硫化氢是仅次于(A氰化物)的剧毒物,是极易致人死亡的有毒气体。 20、H2S高含量时(A无气味),难被发觉,因为此时人的(B嗅觉)神经已经很快地被麻痹而失去了知觉。 21、你被告知处在有硫化氢存在的地方时,只要有可能,都要在(A上风向)或(B地势较高)的地方工作。 22、英国伦敦曾多次发生有煤烟引起的大气污染的烟雾事件,这类事件被称为(A伦敦烟雾)。 23、石油天然气行业标准(SY/T5087---2003)规定,日工作8小时的暴露安全极限 ( A 15mg/m3)。 24、(A22mg/m3)为短期暴露限制,日工作8小时内不能超过(B4)次接触,每次接触不超过(C15)分钟,每次间隔时间不少于(D60)分钟。 25、硫化氢被吸入人体,首先剌激(A呼吸道),使嗅觉钝化、咳嗽,严重时将其灼伤。其次,刺激(B神经系统)。 26、通常(A HRC22)可作为判断钻柱材料是否适合于含硫油气井钻探的标准。 27、正压空气呼吸器包括以下五个部件:储存压缩空气的(A气瓶)、支承气瓶和减压阀的(B背托架)、安装在背托架上的(C减压阀)、面罩和安装于面罩上的(D供气阀)。 28、供气阀有一个红色(A冲泄阀)和一个用橡胶罩保护的(B节气开关)。 29、在使用正压空气呼吸器过程中,应随时观察压力表的指示数值,当压力下降到(A5—6MPa)时,应及时撤离现场。 30、为了保证硫化氢检测仪测量精度,仪器在使用过程中应定期进行(A调校)并严格记录。 31、没有(A标准气体)不得随意调节校正电位器“S1”。 32、检测仪探头置于现场硫化氢易(A泄漏)或(B聚集)的区域。 33、探头传感器防雨罩的圆柱面指向(A地面)。 34、固定式硫化氢检测仪安装完毕后对传感器要进行(A极化)。 35、钻探含硫化氢地层前,应从当地气象资料中了解当地(A盛行风)的方向。 36、全体人员应该自觉地注意观察风向,要养成在紧急情况下,人员向(A上风疏散)的习惯。 37、钻探含硫化氢地层时,在无风和微风的时候,应当用大的(A鼓风机)或(B排风扇)对一定方向吹风。 38、放喷管线至少应装两条,高压井应装四条,其夹角为900,并接出井场(A100)米以外。 39、井控装置和管材在使用前应进行(A无损探伤),不允许有微小裂纹存在。

相关文档
最新文档