化工原理实验常见问题应知应会

管路设计与安装实验应知应会

1.管线连接顺序是怎样的?

管线连接顺序为突然缩小→突然扩大顺序。

2.安装管线时不加垫片行不行?上螺丝时注意事项?

安装管线时两端法兰必须加垫片,否则开泵后漏水。上螺丝时注意对角逐步拧紧,尽量保证四个螺栓受力均匀,否则易紧偏导致漏水。

3.水泵如何启动?

在关闭流量计下调节阀门的情况下启动泵,因a. 减少离心泵启动电流,保护电机。b. 防止流量计浮子突然冲到上端,导致流量计损坏或无法正常读数。

4.三通阀门的开关位置?

水平位置为开,倾斜45度角方位为全关。

5.U管压差计指示剂两液面不平的原因及如何调节?

U管压差计两侧液柱中有空气或左右两侧压力不等,排除连接管中气泡,开三通阀平衡压力,直至两液面相平。

6.管路局部阻力的表示方法

问题:管路局部阻力的表示方法有哪两种?分别是什麽?

局部阻力系数法和当量长度法,公式分别是:或,

7.柏努利方程在该实验中的应用

问题:突然缩小和突然扩大管路两U形管指示剂液面哪个高?为什麽?

突然缩小管路,粗管上U形管指示剂液面比细管上U形管指示剂液面低,因根据柏努利方程可知,阻力损失和静压能转化成动能两因素导致粗管上U形管指示剂液面比细管上U形管指示剂液面低。

突然扩大管路,粗管上U形管指示剂液面与细管上U形管指示剂液面高低无法判断,因根据柏努利方程,阻力损失导致压力降低,而动能转化成静压能导致压力升高,两者相对大小取决于阻力损失大小及突然扩大程度。

8.静力学基本原理的应用

问题:U形管中等压面在哪里?为什麽?

U形管中等压面在指示剂的低液面水平面处,因符合静止、连续、均一、水平原则。

问题:实验中,没开泵前,U管压差计指示剂液面是否应相平?若引压管中有空气,对实验

有无影响?为什麽?

没开泵前,U管压差计指示剂液面在两液面上方压强相等的情况下应相平。若引压管中有空气,对实验有影响。因不符合流体均一的原则,则静力学基本方程不适用,得出的实验结果有偏差,必须排净引压管中空气。

9.流量测量仪表及测量原理相关知识

问题:孔板流量计的测量原理是什麽?它属于哪种类型流量计?在本实验中是否还有其它流量计?它属于哪种类型流量计?

孔板流量计的测量原理是通过测取突然缩小两端的压强差,根据柏努利方程得出压强差与流速的关系而得到流速的。它属于变压头定截面流量计。在本实验中还有转子流量计,它属于定截面变压头流量计。

10.设计知识

问题:为什麽水平管线末端要有一向上U形弯?

形成液封,保证水即使在流速低的时候仍能满管流动,避免半管流动造成压差不稳或波动过大。

离心泵操作应知应会

1:阀门如何开关操作?

有标志时,o-open; s-close; 没有标志时,顺时针为关,逆时针为开。

2:如何辨认阀门?

闸阀、截止阀、和球阀;连接阀门的管道外面有一个低进高出的管形为截止阀。

3:灌泵之后,充水阀门应为什么状态;

自来水本身具有一定的压力,如果灌泵的阀门不关,由于有外力的作用会影响离心泵的特性曲线。所以操作时冲水阀门应为关的状态。

4:离心泵应怎样启动和关闭?

启动——灌泵、关闭冲水阀和出口阀、启动电机。关闭——关闭出口阀、关闭电源

5:实验过程中数据点应如何分配?

由于是测量直管阻力的摩擦因子随雷诺数的变化曲线以及离心泵的特性曲线,所以数据点越多越好,上行和下行的数据点应该是不同的点,并且在流量的量程范围内,数据点最好均匀分布。对摩擦因子随雷诺数的变化曲线测定实验来说,小流量的数据点应该多取,原因是流量较大时,阻力平方区中摩擦系数只是管道粗糙度的函数。

离心泵的特性曲线测定实验中,大流量的数据点应该多取,原因是离心泵的效率曲线中有一个最高效率点,如果数据点过少,有可能不能出现此设计点。

6:实验过程中如何合理读数?

实验过程中,操作参数改变时,各表盘读数不能过快,待各读数稳定后取中间值。 7:完整的泵特性曲线图应包括哪几部分?

扬程曲线、功率曲线、效率曲线,泵的型号和转速。

8:局部阻力系数如何计算?

局部阻力包括闸阀和截止阀两个部分,应分别利用理论公式进行计算各自的平均值。

g u g p H f

22'

?=?-=ζρ,)'''(313211ζζζζ++=

套管式换热器实验应知应会

1.对锅炉进行加热时应注意什么事项?

答:首先启动仪表,观察设定的压力数值,该实验的设定值为0.4MPa ;其次,确保蒸汽调节阀与冷凝水回流阀保持开通的状态;最后开启加热电源,进行加热。

2.送气之前应该注意什么事项?

答:由于蒸汽中的不凝性气体能够很大程度上降低传热系数,所以应该在送气之前打开不凝气排放口排净套管中的空气,然后关闭放气阀。

3.开微音气泵前应注意什么问题?

答:微音气泵属于正位移泵,开启前应该打开旁路调节阀,这是为了防止出口阀关闭时,泵内压头急剧上升,导致机件损坏,电机超负荷。

4.实验过程中观察到的入口温度怎样变化?为什么?

答:理想情况下,入口温度为室温空气的温度,应该保持不变。但实验中观测到的入口温度会随着实验的进行而温度升高,这是由于气泵发热导致送气温度升高的缘故。

5.假定入口温度不变,随着空气流量增加,出口温度如何变化?

答:出口温度变小。

6.转子流量计应该如何读数?

答:转子流量计有不同的形状,应该读转子横截面积最大处的读数;同时由于受流体流速波动的影响,转子会上向波动,应读平局值;读数时还应该著名实验时温度、被测流体介质以及单位。

7.随着流速变化,转子流量计如何移动?

答:根据转子流量计的原理,流速增大时,转子流量计向上移动,反之,向下移动。

8.用转子流量计测量的空气流量数据是否应该校正?为什么?

答:转子流量计在出厂时是根据20℃、101kPa 下的空气进行标定的,实验条件与该条件不一

致时应该进行校正,校正公式为

()

()

1

2

2

1

2

1

ρ

ρ

ρ

ρ

ρ

ρ

-

-

=

f

f

s

s

V

V

。由于化工原理为工程性实验,而实验条

件与出厂标定条件相差不大,所以可以不进行校正。

9.实验时,套管换热器上的压力表读数与蒸汽的温度有什么关系?

答:实验时套管换热器上的压力表读数测得的是水蒸汽的表压,饱和水蒸气的温度与水蒸汽的绝对压强可以查表求得,绝对压强与表压强的关系为:绝对压强=大气压强+表压强,而大气压强可以认为近似等于0.1MPa。

10.用实验测得的总传热系数近似代表对流传热系数值是否可行?为什么?

答:可行。因为蒸汽冷凝的对流传热系数较大,管壁的导热热阻较小,主要的传热热阻集中在空气对流传热一侧,所以总传热系数近似等于空气侧的对流传热系数。

螺旋板式换热器总传热系数的测定应知应会

1. 螺旋板式换热器有何特点?

螺旋板式换热器是由两块薄金属板焊接在一块分隔挡板上并卷成螺旋形成的,两块薄金属板在器内形成两条螺旋形通道,在顶、底部上分别焊有盖板或封头。进行换热时,冷、热流体分别进入两条通道,在器内作严格的逆流流动。

螺旋板换热器的优点为:传热系数高,不易堵塞,可精密控制温度,结构紧凑。缺点是:操作压强和温度不宜太高,不易检修。适于两种液体换热。

2. 气泵的流量调节有哪些调节方法?有哪些注意事项?

本实验所用气泵为正位移泵,不能完全依靠出口阀门调节流量,一般只能用旁路调节,在本实验中,在气泵的电路上安装了调速装置,在空气缓冲罐上安装了排空阀,这样就可以将三种方式结合共同调节空气的流量。需要注意的问题是,无论如何不能将气泵的出口管路完全关闭,以免泵过热烧毁。

3. 进行流体进出口温度测定时,需要注意哪些问题?

实验开始时,先打开仪表电源和热水恒温槽控温电源,等到热水温度指示为59~60?C时,打开水泵电源,调节水流量至150L/h,运行一段时间,使管路系统达到热稳态,然后,

打开气泵电源开关,调节仪表柜上的旋钮,空气阀和空气稳压罐上的排空阀,将空气流量调至10m3/h,稳定一段时间,至温度读数基本不变,记录水与空气的进、出口温度。

4.计算换热器热负荷时,应选用哪个流体作为衡算对象,为什么?

应选用空气作为热负荷计算对象,因为水为热流体,其温度较高,水流放出的热量并没有全部被空气吸收,其中一部分热量损失到环境中,成为换热器的热损失Q L 。从本实验测定的

Q 1和Q 2值比较可以看出,Q 1比Q 2值大得多,说明热损失较大,而且,其随水流量的增大而增大。

5. 计算空气的换热速率时,如何计算空气的质量流量,空气的比热、密度怎样确定?

通过螺旋板换热器间壁的传热速率,即冷空气通过换热器被加热的速率,用下式求得:

)(12t t C m Q p a -=

式中 m a ─空气的质量流量,kg ?s -1; 3600/a a a V m ρ?=

C p ─空气在进、出口平均温度下的比热,J/kg ??C

V a ─空气的体积流量,m 3?h -1

ρa ─进口温度t 1条件下空气的密度,kg/m 3

6. 分别固定水或空气的流量,改变另一种流体的流量,测定二者的进、出口温度,这种实验方法是否合理?

合理,这样做,可以得到总传热系数K 分别于水侧α或空气侧α的关系,验证教科书中讲述的理论,即K 值接近于数值小的α,总传热速率受热阻最大的传热步骤控制。

7. 实验过程中,水与空气的进口温度为何会改变,对总传热系数的测定有何影响?

因为水在输送管路中会散失一部分热量,散热速率受管外空气的自然对流传热系数控制,其量随水流速的增大基本不变,于是,单位质量水的散热量随流量的增加相对减小,水的入口温度随流量的增大而略增;空气在通过气泵时,会吸收气泵产生的一部分热量,而导致其温度升高,因气泵的发热量与压缩比有关,随空气流量的增大压缩比增大,发热量增加,空气的温度升高较大。

通常,空气和水的对流传热系数都随温度的升高而增大,所以,K 值也必随温度的升高而增大。随温度的增大,水的α变化较大,空气的α变化较小。因K 值主要受空气的α的控制,所以空气和水进口温度的改变不会对K 值产生明显的影响。

精馏实验应知应会

1.怎样判定全塔操作已达稳定?

塔顶、塔底温度不再变化时,可以确定全塔基本稳定。

2.精馏塔一般的操作中,若塔顶产品不达要求,应怎样调整操作?

增加塔釜加热量,增大回流比,或加入浓度较高的料液来达到预期的浓度。

3.本装置可否在部分回流时,测取单板效率?

可以。但单板效率较低。

4.压力对蒸馏过程的汽液平衡关系有何影响,如何确定精馏塔的操作压力?

通常压力增加对二元物系的T-X(Y)图中二元物系的交汇区域减小,反之,则增大。具体说,本实验采用的设备是在常压条件做的。通常在常压下,沸点在室温至150℃左右的溶液,采用常压操作。在常压下沸点是室温的混合物,采用加压蒸馏。而对于常压沸点较高或在较高温度下易发生分解、聚合等变质现象的混合物(热敏性物系),采用减压操作。

5.在分离任务一定时,进料热状况对所需的理论板层数有何影响?

进料热状况参数对理论板数目的影响可以从X-Y图中得出,当进料从冷液体到过热蒸汽状态,则精馏线、提馏线和进料线三线的交点距离对角线越来越远,则所需要的理论塔板数目将增大。6.全回流操作的特点是什么,有何实际意义?

全回流操作的特点是得不到精馏产品,对正常生产无实际意义,但是在精馏的开工阶段或实验研究中,多采用全回流操作便于过程的稳定或控制。

7.在精馏过程中,影响塔板效率的因素是什么?

影响塔板效率的因素主要有物系性质、塔板结构及操作条件三个方面。物系性质主要有黏度、密度、表面张力、扩散系数及相对挥发度。塔板结构主要包括塔板类型、塔径、板间距、堰高及开孔率等。操作条件是指温度、压强、气体上升速度及气液流量比等。

8.精馏操作回流比通常为,试分析根据哪些因素确定倍数的大小? 精馏操作回流比通常为,工程设计中有无一个经验的统计数据?

答:通常对于不同的进料热状况,应选取不同的操作回流比。冷液进料,则操作回流比取较大的数值,而对于气液混合物进料则可以较小的数值。适宜的回流比应通过经济衡算决定。有人对一些精馏过程进行过统计,在工程设计中以1.6~1.8的倍数应用最多。

9.单板效率的数值有无可能超过100%?

答:单板效率的数值有可能超过100%。在精馏操作中,液体沿精馏塔板面流动时,易挥发组分含量逐渐降低,对n板而言,其上液相组成由的高含量降为的低含量,尤其当塔板直径较大、液体流径较长时,液体在板上的浓度差异更加明显,这就使得穿过板上液层而上升的汽相有机会与高于的液体相接触,从而得到较大程度的增浓。为离开第n板上各处液面的汽相平均含量,而是与离开第n板的最终液相含量成平衡的汽相含量,有可能大于,致使大于,此时,单板效率就超过100%。

10.单板效率与全塔效率有何关系?

答:单板效率反映每层塔板的传质效果,它是基于塔板理论增浓程度的概念,而全塔效率反映全塔的传质效果,它是基于所需理论板数的概念。单板效率越高,全塔效率亦越高,但即使塔内各层塔板的单板效率相等,全塔效率在数值上也不等于单板效率。

填料塔流体力学特性与吸收系数的测定应知应会

1. 测定填料塔的流体力学特性有何意义?

填料塔压降和泛点与气、液相流量的关系是其主要的流体力学特性。吸收塔的压降与动力消耗密切相关,而根据泛点则可确定吸收塔的适宜气、液相流量。

2. 什么是干填料压降曲线?

气体通过填料塔时,由于存在形体及表皮阻力而产生压力降。无液体喷淋时,气体的压力降仅与气体的流速有关,在双对数坐标纸上压力降与空塔速度的关系为一直线,称为干填料压降曲线。

3. 什么是湿填料压降曲线?有何特点?

当塔内有液体喷淋时,气体通过填料塔的压力降,不仅与气体流速有关,而且与液体的喷淋密度有关。在一定的喷淋密度下,随着气速增大,依次出现载点和泛点,相应地?P/Z ~U 曲线的斜率也依次增大,成为湿填料压降曲线。

因为液体减小了空隙率,所以后者的绝对值和斜率都要比前者大。图1为实验测定的干、湿填料的压降曲线

D e l t a P /Z (k P a )U (m/s)

图1. 实验测定的干、湿填料的压降曲线

L=0的线应该是 直线

4. 泛点现象有何特征?

填料层出现脉冲震荡时,说明液体下降困难,气体通道发生堵塞,此时气速即泛点气速。

5. 通常填料塔正常操作的空塔气速应控制在多少?

应控制在载点气速以上,泛点气速的0.8倍以下。

6. 本实验所用填料吸收塔的有何特点

本实验所用填料吸收塔的主要技术数据为

1# 、2# 塔

填料层高度:陶瓷拉西环填料为0.35米

塔内径50mm

3#、4#塔

塔内径100 mm 填料层高度塑料鲍尔环700mm S=0.00785m 2

7. 测定填料塔的体积吸收系数有何意义?

吸收系数是吸收设备的主要性能参数,它反映了吸收设备单位体积有效空间的处理能力。

8. 影响体积吸收系数的因素有哪些?

影响吸收系数的因素包括气体流速、液体喷淋密度、温度、填料的自由体积、比表面积以及气液两相的物化性质等。

8. 说明测定填料塔体积吸收系数的原理?

吸收过程的传质速率方程为:m Y A Y V a K N ??=填

吸收过程的物料衡算式为:()21Y Y V N A -=

式中:A N ——氨的吸收量,kmol/s

V ——空气流量,kmol/s

1Y ——塔底气相浓度,kmolNH 3/kmolair

2Y ——塔顶气相浓度,kmolNH 3/kmolair

a K Y ——以气相摩尔比差为推动力的体积吸收系数,s kmol/m 3?

对于低浓度吸收,气液两相的平衡关系可认为符合亨利定律

mX Y =*

221P P P += P

E m = ()2211X Y Y L

V X +-?= 1*1mX Y = 02=X 2*2mX Y =

平均传质推动力为

()()()()2*

1

*

2*1*ln Y Y Y Y Y Y Y Y Y m -----=?

体积吸收系数为

()m

Y Y Z Y Y V a K ???Ω-=21 9. 本实验所用吸收体系有何特点?

本吸收实验以水为吸收剂,吸收空气-氨气体系中的氨。因为氨气为易溶气体,所以此吸收操作属气膜控制。吸收系数随着气速的增大而增大,但气速增大至某一数值时,会出现液泛现象,此时塔的正常操作将被破坏。

本实验所用的混合气中,氨气浓度很低,吸收所得的溶液浓度也不高。气液两相的平衡关系可认为符合亨利定律。

10.如何测定入口混合气体的氨浓度?

在本实验中,空气和氨气的流量分别由转子流量计显示,二者混合后再进入吸收塔,所以其中氨气的摩尔比可用下式计算得到:

0013

air NH V V Y =

11. 如何测定出口混合气体的氨浓度?操作过程中应注意哪些问题?

出口气体中氨气的浓度利用酸碱滴定的方法测定,其摩尔比可用下式计算

4.22/)(102???

? ???=T T V N V Y air HCl V 为盐酸的体积(L ),N 为浓度(mol/L ),V air 为湿式气体流量计的读数,T 1为空气的温度。

11.如何判定甲基橙的颜色由橙色变为黄色?

操作时,应先用移液管量取一定量的已知浓度的盐酸溶液(0.5-1mol,0.008662mol/L),放入吸收盒,加入几滴(2-3)甲基橙作指示剂,再加蒸馏水至一定位置,连接好管路,记录湿式流量计的起始读数。

待系统稳定后,慢慢打开吸收盒阀门,注意通过吸收盒的气速不易过快。待甲基橙的颜色由橙色变为黄色时,记录湿式流量计的终点读数。

13. 如何判定甲基橙的颜色由橙色变为黄色?

这是本实验最难以掌握的技术,要点是配溶液时,甲基橙的浓度一定要合适,颜色浓淡适中。观察现象时,可将该种溶液放在旁边作为比照。尤其要注意的是进入吸收盒的气速不能太高,也不能太低,以保持气泡与液体的充分混合。可以先练习几次,寻找颜色突变的瞬间。14. 启动气泵,调节空气流量时应注意哪些问题?

本实验所用气泵为正位移泵,不能完全靠出口阀门调节流量,需要用旁路辅助调节。如果气泵的出口管路完全关闭,泵会快速升温,直至烧坏。所以,调节流量时,应保持排空阀始终开启,先用出口阀门调节,至该阀门开到最大,仍然达不到设定流量时,再关小排空阀,以进一步提高流量。减小流量时,应先开大排空阀,至开到最大,再逐渐关小出口阀门。

15. 氨气流量计的读数是否需要校正?为什么?

氨气流量计的读数需要校正,氨气的实际流量=氨气流量计读数*4/3。这是因为测定氨气流量的转子流量计是用20 C空气标定的,二者的密度不同,所以需要校正。

16. 实验完毕后,关闭系统流路的次序有何要求?为什么?

实验完毕,先关闭氨气系统,再关水、空气泵。因为,氨气气味很重,有很强的刺激性。在系统正常运行时,绝大部分被水吸收。如果先关水,空气携带大量氨气的空气会直接排入室内。先关空气,因氨气的流量较小,会大量滞留在管路内,引起安全隐患。

17. 实验过程中,测定水温有何用处?

用来查取亨利系数

18. 实验过程中,是否需要测量空气的温度?

计算空气的摩尔密度时需要空气的温度。

干燥实验应知应会

1.对水蒸汽~空气系统,干球温度t、绝热饱和温度(即湿球温度t w)及露点t d三者之间的关系是什麽?

不饱和空气或;饱和空气或

2.干燥过程可大致划分为几个阶段?分别是什麽?分别有什麽特点?

干燥过程可大致划分为两个阶段。恒速干燥阶段和降速干燥阶段。恒速干燥阶段:当物料的表面温度升至空气状态的湿球温度时,空气传给物料的显热恰等于水分汽化所需的潜热,而物料表面的温度维持在t w不变,物料的含水量随干燥时间直线下降,而干燥速率保持恒定。CDE表降速干燥阶段:物料开始升温,热空气传给物料的热量一部分用于加热物料使其温度升高,另一部分用于水分汽化,在此阶段内干燥速率随物料含水量的减少而降低,当物料的含水量等于平衡含水量X*,干燥速率降为零,干燥过程停止。

3.本实验在原来的条件下进行长时间的干燥,最终能否达到绝干物料?

不能,因干燥介质并非绝干气,则不能达到绝干物料。

4.实验过程中为什么风机进出口的片阀要部分开启?

若不开启,则随干燥过程进行,空气湿度越来越大,空气状态发生变化,从而影响干燥速率。所以,实验过程中风机进出口的片阀要部分开启,排出部分高湿气体,吸入部分新鲜空气,保证空气状态恒定。

5.怎样才能保持实验过程中的湿球温度不变?

保证湿球温度计的水槽中有水。

6.物料的干燥速率与那些因素有关?

与空气湿度、温度、试样性质等因素有关。

化工原理实验习题答案

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封液封高度如何计算 答:保证塔内液面,防止气体漏出,保持塔内压力. 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量为宜。 (2)测定填料塔的流体力学性能有什么工程意义 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一 (4)为什么二氧化碳吸收过程属于液膜控制 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制 (5)当气体温度和液体温度不同时,应用什么温度计算亨利系数 答:液体温度。因为是液膜控制,液体影响比较大。

2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。而且由于冷凝压力的升高致使排气压力升高,还会减少压缩机的使用寿命。应把握好空气的进入,和空气的质量。 3.答:冷凝水不及时排走,附着在管外壁上,增加了热阻,降低传热速率。 在外管最低处设置排水口,及时排走冷凝水。 4.答:靠近蒸气温度因为蒸气冷凝传热膜系数远大于空气膜系数。 5. 答:基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 3、离心泵特性曲线测定 1、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。 2、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 3、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好用的。 4、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。 5、不合理,安装阀门会增大摩擦阻力,影响流量的准确性 6、本题是研究密度对离心泵有关性能参数的影响。由离心泵的基本方程简化式可以看出离心泵的压头,流量、效率均与液体的密度无关,但泵的轴功率随流体密度增大而增大即:密度增大N增大,又因为其它因素不变的情况下Hg↓而安装高度减小。 4、流体流动阻力的测定 1、是的,因为由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 2、在流动测定中气体在管路中,对流动的压力测量产生偏差,在实验中一定要排出气体,让流体在管路中流动,这样流体的流动测定才能准确。当流出的液体无气泡是就可以证明空气已经排干净了。

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理实验课课后习题答案

化工原理实验课课后习 题答案 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

流体流动阻力的测定 1.如何检验系统内的空气已经被排除干净?答:可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;若开机后真空表和压力表的读数为零,则表明,系统内的空气没排干净。 行压差计的零位应如何校正?答:先打开平衡阀,关闭二个截止阀,即可U行压差计进行零点校验 3.进行测试系统的排气工作时,是否应关闭系统的出口阀门为什么答:在进行测试系统的排气时,不应关闭系统的出口阀门,因为出口阀门是排气的通道,若关闭,将无法排气,启动离心泵后会发生气缚现象,无法输送液体。 4.待测截止阀接近出水管口,即使在最大流量下,其引压管内的气体也不能完全排出。试分析原因,应该采取何种措施?答:待截止阀接近进水口,截止阀对水有一个阻力,若流量越大,突然缩小直至流回截止阀,阻力就会最大,致使引压管内气体很难排出。改进措施是让截止阀与引压阀管之间的距离稍微大些。5.测压孔的大小和位置,测压导管的粗细和长短对实验有无影响为什么答:由公式2p可知,在一定u下,突然扩大ξ,Δp增大,则压差计读数变大;2u?反之,突然缩小ξ,例如:使ξ=,Δp减小,则压差计读数变小。 6.试解释突然扩大、突然缩小的压差计读数在实验过程中有什么不同现象?答:hf与很多值有关,Re是其中之一,而λ是为了研究hf而引入的一个常数,所以它也和很多量有关,不能单单取决于Re,而在Re在一定范围内的时候,其他的变量对于λ处于一个相对较差的位置,可以认为λ与Re关系统一。 7.不同管径、不同水温下测定的~Re曲线数据能否关联到同一曲线答:hf与很多值有关,Re是其中之一,而λ是为了研究hf而引入的一个常数,所以它也和很多量有关,不能单单取决于Re,而在Re在一定范围内的时候,其他的变量对于λ处于一个相对较差的位置,可以认为λ与Re关系统一。正如Re在3×103~105范围内,λ与Re的关系遵循Blasius关系式,即λ= 8.在~Re曲线中,本实验装置所测Re在一定范围内变化,如何增大或减小Re的变化范围答:Redu,d为直管内径,m;u为流体平均速度,m/s;为流体的平均密度,kg/m3;s。为流体的平均黏度,Pa · 8.本实验以水作为介质,作出~Re曲线,对其他流体是否适用为什么答:可以使用,因为在湍流区内λ=f(Re, )。说明在影响λ的因素中并不包含流体d本身的特性,即说明用什么流体与-Re无关,所以只要是牛顿型流体,在相同管路中以同样的速度流动,就满足同一个-Re关系。 9.影响?值测量准确度的因素有哪些答:2dp,d为直管内径,m;为流体的平均密度,kg/m3;u为流体平均速2u度,m/s;p为两测压点之间的压强差,Pa。△p=p1-p2,p1为上游测压截面的压强,Pa;p2为下游测压截面的压强,Pa 离心泵特性曲线的测定 1.为什么启动离心泵前要先灌泵如果灌水排气后泵仍启动不起来,你认为可能是什么原因 答:离心泵若在启动前未充满液体,则泵壳内存在空气。由于空气密度很小,所产生的离心力也很小。此时,在吸入口处所形成的真空不足以将液体吸入泵内。虽启动离心泵,但不能输送液体。泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 2.为什么启动离心泵时要关出口调节阀和功率表开关启动离心泵后若出口阀不开,出口处压力表的读数是否会一直上升,为什么答:关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。 3.什么情况下会出现气蚀现象?答:金属表面受到压力大、频率高的冲击而剥蚀以及气泡内夹带的少量氧气等活泼气体对金属表面的电化学腐蚀等,使叶轮表面呈现海绵状、鱼鳞状破坏。4.为什么泵的流量改变可通过出口阀的调节来达到是否还有其他方法来调节流量答:用出口阀门调节流量而不用泵前阀门调节流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好用的。 5.正常工作的离心泵,在其进口管线上设阀门是否合理为什么答:合理,主要就是检修,否则可以不用阀门。 6.为什么在离心泵吸入管路上安装底阀? 答:为便于使泵内充满液体,在吸入管底部安装带吸滤网的底阀,底阀为止逆阀,滤网是为了防止固体物质进入泵内而损坏叶轮的叶片或妨碍泵的正常操作。 7.测定离心泵的特性曲线为什么要保持转速的恒定?答:离心泵的特性曲线是在一定转速n下测定的,当n改变时,泵的流量Q、扬程H及功率P也相应改变。对同一型号泵、同一种液体,在效率η不变的条件下,Q、H、P随n的变化关系如下式所示 见课本81页当泵的转速变化小于20%时,效率基本不变。8.为什么流量越大,入口真空表读数越大而出口压力表读数越小?答:据离心泵的特征曲线,出口阀门开大后,泵的流速增加,扬程降低,故出口压力降低;进口管道的流速增加,进口管的阻力降增加,故真空度增加,真空计读数增加。 过滤实验 1.为什么过滤开始时,滤液常有些混浊,经过一段时间后滤液才转清?答:因为刚开始的时候滤布没有固体附着,所以空隙较大,浑浊液会通过滤布,从而滤液是浑浊的。当一段时间后,待过滤液体中的固体会填满滤布上的空隙从而使固体颗粒不能通过滤布,此时的液体就会变得清澈。

化工原理实验数据处理关于

离心泵特性曲线原始数据 序号 水流量Q/m3/h 水温°C 出口压力/m 入口压力 /m 电机功率 /KW 1 0.00 27.70 21.50 0.00 0.49 2 1040.00 27.70 20.40 0.00 0.53 3 2170.00 27.70 19.20 0.00 0.58 4 3110.00 27.60 18.10 -0.30 0.64 5 3890.00 27.60 17.10 -0.40 0.69 6 4960.00 27.50 15.20 -0.70 0.75 7 5670.00 27.50 14.30 -1.00 0.80 8 6620.00 27.30 13.10 -1.20 0.85 9 7380.00 27.40 11.50 -1.50 0.88 10 8120.00 27.00 8.90 -1.70 0.90 11 8950.00 26.60 5.80 -2.10 0.93 已知 ΔZ=0.2m η电=0.9 η转=1.0 此温度下水的密度约为ρ=997.45kg/m3 以第 组数据为例计算 根据扬程Z g p g p H ?+-= ρρ12e 转电电轴ηη??=N N 102Q e e ρ??= H N 轴 N N e =η He= N 轴= e N = η=

离心泵特性曲线 序号 水流量 Q/m3/s He/m N 轴/KW Ne/KW η 1 0.00 21.70 0.44 0.00 0.00 2 0.29 20.60 0.48 0.06 0.12 3 0.60 19.40 0.52 0.11 0.22 4 0.86 18.60 0.58 0.16 0.27 5 1.08 17.70 0.62 0.19 0.30 6 1.38 16.10 0.68 0.22 0.32 7 1.58 15.50 0.72 0.24 0.33 8 1.84 14.50 0.77 0.26 0.34 9 2.05 13.20 0.79 0.26 0.33 10 2.26 10.80 0.81 0.24 0.29 11 2.49 8.10 0.84 0.20 0.24 2 0.00 0.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.85Q (m3/s ) 离心泵 特 性曲线 η N E (K W ) 8 1012141618 2022 He-Q η-Q N 轴-Q He (m )

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

关于化学的学习心得体会5篇

关于化学的学习心得体会5篇 心得体会是指一种读书、实践后所写的感受性文字。一般分为学习体会,工作体会,教学体会,读后感,观后感。以下是关于化学的学习心得体会5篇,欢迎阅读参考! 关于化学的学习心得体会(一) 科学的目的除了应用以外,还有发现世界的美,满足人类的好奇心。物理化学自然也是科学,所以同样适用。 化学热力学,化学动力学,电化学,表面化学……物理化学研究的主要内容大致如此。然而,在刚刚开始学物化的时候,我几乎被一大堆偏微分关系式所吓晕。尤其是看那一大堆偏微分的公式,更是让我觉得头痛。然而通过阅读以及对以前高数的复习,我慢慢地能理解偏微分的含义了。由于物化是一门交叉性的学科,因此我们除了上课要认真听讲更重要的是联系以前学习过的知识,将它们融会贯通,这才能学习好物化。 物化是有用的,也是好玩的,这些是学习物化的动力,那么,怎样才可以学好物化呢? 对我来说,主要就是理解-记忆-应用,而串起这一切的线索则为做题。理解是基础,理解各个知识点,理解每一条重要公式的推导过程,使用范围等等。我的记性不太好,所以很多知识都要理解了之后才能记得住,但是也正因如此,我对某些部分的知识点或公式等的理解可能比别人要好一点,不过也要具体情况具体分

析,就好像有一些公式的推导过程比较复杂,那或许可以放弃对推导过程的理解,毕竟最重要的是记住这条公式的写法及在何种情况下如何使用该公式,这样也就可以了,说到底,对知识的记忆及其应用才是理解的基础物理化学不在于繁杂的计算,而是思路。 我觉得学习物化时应该逐渐的建立起属于自己的物理化学的理论框架,要培养出物理化学的思维方式,而且应该有自己的看法,要创新。物化离不开做题。 认真地去做题,认真地归纳总结,这样才可以更好地理解知识,这样才能逐渐建立起自己的框架,而且做题也是一个把别人的框架纳入自己的框架的过程。从另一个方面来说,现阶段我们对物理化学的应用主要还是体现在做题以及稍后的物理化学实验中,当然把它们应用于生活中也是可以的,至于更大的应用,如工业生产上,还是得等毕业之后才有机会吧。 尽量培养自己对物化的兴趣,多看书,多做题,总结自己的经验,最终建立起属于自己物理化学理论框架,这就是我所知道的学习物化的方法。我又记起高中教我数学的老师说过的”知识要收敛,题目要发散”,其实这也适用与对物理化学的学习。所谓以不变应万变。在做题过程中不断总结归纳,不断增进对理论知识的理解,持之以恒,最终就有可能读通物化,面对什么题目都不用怕了。这一点尤其是对有志考化学专业研究生的同学来说很重要。最后,加油吧,各位。让我们共同努力吧。期待在这个学期收获更多! 关于化学的学习心得体会(二)

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理实验习题答案

化工原理实验习题答案 Prepared on 22 November 2020

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封液封高度如何计算 答:保证塔内液面,防止气体漏出,保持塔内压力. 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量 为宜。 (2)测定填料塔的流体力学性能有什么工程意义 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一

(4)为什么二氧化碳吸收过程属于液膜控制 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制(5)当气体温度和液体温度不同时,应用什么温度计算亨利系数 答:液体温度。因为是液膜控制,液体影响比较大。 2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。而且由于冷凝压力的升高致使排气压力升高,还会减少压缩机的使用寿命。应把握好空气的进入,和空气的质量。 3.答:冷凝水不及时排走,附着在管外壁上,增加了热阻,降低传热速率。在外管 最低处设置排水口,及时排走冷凝水。 4.答:靠近蒸气温度因为蒸气冷凝传热膜系数远大于空气膜系数。 5. 答:基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故 (ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 3、离心泵特性曲线测定 1、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。 2、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

《化工原理》课程设计实践教学总结

《化工原理》课程设计实践教学总结 摘要:化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使学生初步掌握化工设计的基础知识、设计原则及方法。 关键词:化工原理;课程设计;实践;可行性 中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)22-0205-02 《化工原理》是化学工程与工艺专业的必修专业课程之一,理论课之后国内大部分高校的本科人才培养计划中安排了实践教学环节――《化工原理》课程设计。我们学校的化学工程与工艺专业培养计划也如此。《化工原理》课程设计是培养化工专业学生综合运用所学的理论知识,树立正确的设计思想,解决常规化工设计中一些实际问题的一项重要的实践教学。其出发点是通过课程设计提高学生搜集资料、查阅文献、计算机辅助绘图、分析与思考解决实际生产问题等能力。笔者从事了3届的课程设计教学,从中总结了许多宝贵的经验和教学方法,以期提高教学效果。现将笔者的教学体会作一介绍。 一、课程设计题目应具有普遍性、代表性

我校化学工程与工艺专业的《化工原理》课程设计一般为二周时间。课程设计基本要求是通过这一设计过程使每个学生都受到一定程度的训练,使将来在不同岗位就业的学生都能受益,都能解决这类工程的实际问题,并可以举一反三。所以课程设计的选题需要我们指导老师慎重,尽量选择化工行业中最普遍且最具代表性的单元操作进行设计。根据以往的教学的经验,题目的选取应从以下几个方面考虑: 1.课程设计题目尽可能接近实际生产,截取现有的某化工项目中的某一操作单元为设计模型,比如某合成氨厂的传热单元的设计,流体输送过程中离心泵的设计,管壳式换热器等等。这样学生在课程设计过程中有参照体系,不至于出现不合理的偏差。 2.课程设计题目应该围绕着常见的化工操作单元进行展开,比如我们都知道在讲授《化工原理》理论知识时其中的单元操作有流体输送、传热、精馏、吸收、萃取等等。一个课程设计题目应该包括2~3个常见的单元操作,从而实现某一简单的化工任务。 3.课程设计题目中涉及的物质尽可能常见易得。因为完成虚拟的生产任务过程中需要这些物质的物性参数进行核算,常见易得的物质能够降低学生在查阅参数方面的工作量。比如,如果我们设计分离任务尽量选择苯-甲苯,或甲醇-水等这样的体系,因为这些混合体系的参数大部分工具

化工原理实验心得体会

化工原理实验心得体会 这个学期我们学习了《化工原理》这门课,在学习了部分理论知识后,我们进入了实验室,开始学习《化工原理实验》并分组进行了实验。和前几个学期类似,大家先要进行实验的预习,在了解和熟悉实验的要求和操作的基础上,然后在老师提问检查每一组各位组员对实验过程的预习程度后,对各位组员的预习情况进行点评,并指出其中的不足和缺漏。然后在指导老师的悉心讲解后,对实验有一个新的、更全面的认识后进行实验。通过动手实验,我更加深刻的理解了化工原理课上老师讲解的知识,增强了动手能力,对理论知识有了形象化的认识。 本学期我们共学习了五个实验,分别是: 实验一、离心泵的特性曲线实验; 实验二、流体流动阻力的测定; 实验三、空气—蒸汽对流传热系数的测定; 实验四、恒压过滤常数的测定; 实验五、填料塔的精馏实验, 通过对实验的学习并亲手操作,我掌握了许多知识。 这几个实验中我印象最深刻的是恒压过滤常数的测定,实验以生活中常见的碳酸钙的水浆液位测定原料。这个实验和空气—蒸汽对流传热系数的测定实验一起分组进行。老师讲解完实验原

理并强调了注意事项后,我们开始实验。我们小组先进行了恒压 过滤常数测定实验,首先我们对两个小组的成员进行了各项职责 的分配分别是:两位同学负责碳酸钙水浆液的搅拌和回收,由一 位同学负责数据的采集和记录的工作。每个三分钟记录床层温度 一次,取样一次,并由同组同学进行含水量的测定,由两位同学 负责装好板框,最后分别由其他两位同学负责压力阀的控制和滤 液进口阀、滤液出口阀的控制。这样一来整个实验的分工工作就 已经完成了。实验过程中,我们互相配合,进行的很顺利。但是 在第一次实验时由于我们的粗心大意,我们将四块滤板中的一块 方向装反了,使得我们第一次采集的数据无效了,因此指导老师 还对我们实验时的粗心大意进行了严厉的批评教育,这些批评教 育使我们牢记在这是一个教训,实验中细心认真完成每一步,我 们的动手能力才会在这个过程中得到提升。 在这一个学期短暂的实验学习过程中,使我们重新认识了在 大学学习生活中,在实验过程中一个实验者的认真预习和摈弃粗 心大意,认真、谨慎的进行好每一步的操作、合理的分工协同工 作对于一个实验的成败与否是至关重要的。或许在将来生活工作 中也一样,俗话说得好,所谓“细节决定成败”。一个做事粗心 大意,做事前从不做准备的人不管他将来从事什么样的工作都无 法取得好的成绩,因为在他的心理或许压根就没有重视过自己所 从事的事情或者是行业。俗话说“机遇永远是给有准备的人的”。 化工原理实验的任务主要是了解一些典型化工设备的原理和

化工原理实验思考题及答案

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的C~Re关系曲线应在单对数坐标纸上标绘。 2.孔板流量计的V S ~ R关系曲线在双对数坐标上应为_直线—。 3.直管摩擦阻力测定实验是测定入与Re的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定直管阻力和局部阻力。 5.启动离心泵时应关闭出口阀和功率开关。 6.流量增大时离心泵入口真空度增大出口压强将减小。 7 .在精馏塔实验中,开始升温操作时的第一项工作应该是开循环冷却水。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小。 10.在传热实验中将热电偶冷端放在冰水中的理由是减小测量误差。 11.萃取实验中_水_为连续相,煤油为分散相。 12.萃取实验中水的出口浓度的计算公式为C E1=V R(C R1-C R2)/V E。 13.干燥过程可分为等速干燥和降速干燥。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为5% ,其过滤介质为帆布。 16.过滤实验的主要内容测定某一压强下的过滤常数。

17.在双对数坐标系上求取斜率的方法为:需用对数值来求算,或者直接用 尺子在坐标纸上量取线段长度求取。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为:先将手动旋钮旋 至零位,再关闭电源 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是:要有一组数据处理的计 算示例。 21.在阻力实验中,两截面上静压强的差采用倒U形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加 空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q值,实验中需要测定 进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa 如果达到0.008?0.01mPa可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互

实验教学心得体会10篇

实验教学心得体会10篇 实验心得(一) 实验室是培养高层次人才和开展科学研究的重要基地。在西方发达国家,学校对培养学生的动手潜力是分重视的,这一问题近年来也越来越受到我国教育界人士的广泛重视。为了提高学生的动手潜力,让学生做相关实训并完成单片机实验报告,在实验的形式上注重培养学生的实验技能和动手潜力。从单片机实验心得中学生就能够总结出超多的经验以适应当代社会的发展。 学习单片机这门课程(教学中选用inter公司的mcs-51),要掌握单片机指令系统中汇编语言各种基本语句的好处及汇编语言程序设计的基本知识和方法,以及单片机与其他设备相连接的输入输出中断等接口-技术。使学生从硬件软件的结合上理论联系实际,提高动手潜力,从而全面掌握单片机的应用。 实验教学的全过程包括认识、基储综合3个阶段。以往的单片机实验是进行软件的编制和调试,与实际应用中的硬件电路相脱节。使学生缺乏硬件设计及调试分析潜力,对单片机如何构成一个单片机最小应用系统,缺乏认识。发布的单片机实验板,透过计算机连接仿真器在实验板上把硬件和软件结合起来一齐调试, 软件的修改也分方便,软件和硬件调试都透过后,把程序固化在eprom当中,插上8051单片机构成一个完整的单片机应用系统。 实验心得(二) 我觉得化工原理实验是一门验证性课程,它把我们在化工原

理学到的各种单元操作化为实实在在的东西,而让我们把学到的知识认识到它的实在性。流体输送——离心泵、过滤——板框压滤机、对流传热——套管式换热器、吸收蒸馏——填料塔板式塔、干燥——厢式干燥装置。一个个实验和装置让我们对每种单元操作都有了除理性认识之外的感性认识。 此刻回过头来看,在做实验前对实验的原理和操作步骤没有认真研究,导致有些实验做的效果并不好,这是预习不够充分的表现。认真的预习报告应要3小时左右,而我犯懒预习方面很敷衍,一小时就完事,于是就在做实验的过程中产生了许多问题,这是我应当深刻检讨的。正如《礼记中庸》所说“凡事豫(预)则立,不豫(预)则废,言前定则不跲,事前定则不困,行前定则不疚,道前定则不穷。”所以以后做实验不应急于开始实验,应搞清楚目的和设计流程的来龙去脉。另外感激俞教师实验前的仔细讲解让我做实验时不至于对整个流程不知所措。 做化工原理实验我感觉很有意思,因为实验数据并不是先定的,自我得出实验结论有一种成就感,这对培养我们不盲从、实证的思维方式有益,并且由于我们是分组实验,每4-5人一组,锻炼了我们的协作的本事。化学实验研究中中分工协作尤为重要,能够发挥整体效能提高进行实验的效率,取长补短,最重要的是团队精神和氛围会产生强大的动力,所以这方面的锻炼是化原实验中我的重要收获之一。 在进行实验和处理数据时,我们用到了非传统的方法用Excel、

【免费下载】下化工原理实验考试题及答案

中南大学考试试卷(A ) 2012 -- 2012 学年 2 学期 时间60分钟 化工原理实验 课程 48 学时 2 学分 考试形式: 闭 卷 专业年级: 化工10级总分100分,占总评成绩 50 % 班级___________姓名__________ 学号_________ 成绩 一、多选题(共60分,每小题2分,正确的在最后页答题卡中填写T,错误的打F 。例如A,B,C,D 只有BC 正确,则在相应题号中填写FTTF, A,B,C,D 只有D 正确,则在相应题号中填写FFFT)1、柏努利实验中,测压管的测压孔正对水流方向时所出的液位高度表示该点的FFTF A . 动压头; B . 静压头;C . 动压头与静压头之和;D . 动压头、静压头、损失压头之和。2、当管径相同而两侧压孔方向也相同时,两测压管之间所测得液位差表示 FFTT A . 两截面之间的动压头之差; B . 两截面之间的静压头之差。C . 两截面之间的压强差; D . 两截面之间的损失压头。3、当管子放置角度或水流方向改变而流速不变时,其能量损失 FFT A . 增大;B . 减少; C . 不变。 4、U 型压差计可直接测出如下各值:TF A . 表压、真空度、压强差。 B. 表压、真空度、压强差和绝对压。 5、用量筒和秒表测定体积流量中,所算出的流速是 TFF A . 平均流速; B . 点流速;C . 最大点速度。 6、蒸馏操作能将混合液中组分分离的主要依据是:TFT A . 各组分的沸点不同; B . 各组分的含量不同; C . 各组分的挥发度不同 7、全回流操作的特点有TTT A . F = O, D = 0, W = 0; B . 在一定分离要求下N T 最少; C . 操作线和对角线重合; 8、本实验能否达到98% (质量)的塔顶乙醇产品?FTFT A . 若进料组成大于95.57%,塔顶不能可达到98% 以上 B . 若进料组成大于95.57%,塔釜可达到98% 以上 C . 若进料组成小于95.57%,塔顶可达到98% 以上 D . 若进料组成小于95.57%,塔顶不能达到98% 以上 9、冷料回流对精馏操作的影响为FTF 规范与

化工课程设计心得体会

化工课程设计心得体会 篇一:化工原理课程设计心得 小结;本次化工原理课程设计历时两周,是学习化工原理以来第一次独立的工业设计。化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;理解计算机辅助设计过程,利用编程使计算效率提高。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。 在短短的两周里,从开始的一头雾水,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过

程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。 我们从中也明白了学无止境的道理,在我们所查找到的很多参考书中,很多的知识是我们从来没有接触到的,我们对事物的了解还仅限于皮毛,所学的知识结构还很不完善,我们对设计对象的理解还仅限于书本上,对实际当中事物的方方面面包括经济成本方面上考虑的还很不够。 在实际计算过程中,我还发现由于没有及时将所得结果总结,以致在后面的计算中不停地来回翻查数据,这会浪费了大量时间。由此,我在每章节后及时地列出数据表,方便自己计算也方便读者查找。在一些应用问 题上,我直接套用了书上的公式或过程,并没有彻底了解各个公式的出处及用途,对于一些工业数据的选取,也只是根据范围自己选择的,并不一定符

合现实应用。因此,一些计算数据有时并不是十分准确的,只是拥有一个正确的范围及趋势,而并没有更细地追究下去,因而可能存在一定的误差,影响后面具体设备的选型。如果有更充分的时间,我想可以进一步再完善一下的。 通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,这对我们的继续学习是一个很好的指导方向,我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。 我还要感谢我的指导老师***老师对我们的教导与帮助,感谢同学们的相互支持。限于我们的水平,设计中难免有不足和谬误之处,恳请老师批评指正。

相关文档
最新文档