实验四 单级低频电压放大器

实验四 单级低频电压放大器
实验四 单级低频电压放大器

实验四 单级低频电压放大器(扩展)

实验目的:

1、 掌握幅频特性等的基本概念以及测量方法。

2、 了解负反馈对放大电路特性的影响。

实验原理:

1、 电路频率特性的下限频率值主要受C 1,C 2和C E 影响,其关系分别为

11(3~10)

2()L S be f R r C π≥?+? 2

1(3~10)2()L C L f R R C π≥?+? 1(1~3)

2(//)1L S be E E

f R r

R C πβ

≥+??+

2、 幅频特性曲线、上限频率、下限频率、截止频率中心频率、带宽的测量方法

A V 10.707

f L

f H

f A V 10.707

f 0

f A V 10.707

f 0

f

A V 10.707

f H

f L f 0 (a)单级放大器放大特性

(b)低通特性

(c)高通特性

(d)带

通特性

幅频特性反应了电路增益和频率之间的关系,上图列出了常见的幅频特性类型。 (a)和(d)中的f L 表示下限频率,f H 表示上限频率,(d)中的f 0表示中心频率,带宽BW=f H -f L ; (b)和(c)中的 f 0表示截止频率。在实验中可采用“逐点法”测量不同频率时的电压放大倍数A V 来测量幅频特性。测量时,保持输入信号幅度不变,改变输入信号频率,每改变一次信号频率,用交流毫伏表或示波器测量一个输出电压值,计算其增益,然后将测试数据列表、整理并在坐标纸上将其连接成曲线。由于函数发生器的输出信号幅度在不同的频率会有变化,因此每改变一次频率都要用交流毫伏表或示波器测量输入信号的幅度,一定要保证输入信号的幅度不改变。

为了更快更准确的测量幅频特性,必须根据不同幅频特性类型,选择不同的测量技巧。对于(a)可先测出中频区的输出电压值,然后调高或调低频率使输出电压降到中频电压值的0.707倍,从而找到f L 和f H ,然后在f L 和f H 之间和左右找3至5个点进行测量,即可较准确的绘制曲线。(b)和(c)也可参考这种方式来测量。对于(d)可从较低的频率值逐步增加频率,用交流毫伏表或示波器测量输出信号,刚开始输出信号幅度随着频率的增加而增加,当增加到某一个频率时,输出信号幅度随着频率的增加开始减小,则该频率为中心频率,记下该频率对应的幅度,然后调高或调低频率使输出电压降到中心频率电压的0.707倍,从而找到f L 和f H 。

预习思考:

1、 对于小信号放大器来说一般希望上限频率足够大,下限频率足够小,根据您所学的理论

知识,分析有哪些方法可以增加教材图1-3中放大电路的上限频率,那些方法可以降低其下限频率。

答:增加放大电路的上限频率可以选择极间电容较小的三极管。

降低下限频率可以增大耦合电容或者采用直接耦合方式。

2、 负反馈对放大器性能的影响

引入交流负反馈后,放大器的放大倍数将下降,其表达式为F A

A =

1+AF 。式中,F 为反馈网络的传输系数;A 为无负反馈时的放大倍数。引入负反馈后通频带加宽,负反馈放大器的上限频率f HF 与下限频率f LF 的表达式分别为HF H =(1+AF)f f 和

L

LF =

1+AF

f f 。引入负反馈还会改变放大器的输入电阻与输出电阻,其中并联负反馈能降低输入阻抗,串联负反馈能提高输入阻抗,电压负反馈使输出阻抗降低,电流负反馈使输出阻抗升高。

必做实验:

1、 内容6修改为:

调整I CQ =x(设计值),保持Vi=5mV 不变,改变信号频率,用逐点法测量不同频率下的V O 值,计入表1-2中,并画出幅频特性曲线,记录下限频率f L 、上限频率f H ,计算带宽BW

下限频率f L =130Hz ,上限频率f H =480KHz 带宽BW ≈480KHz 增加以下内容:

a ) 输入Vi=5mV ,f =f L ,用示波器双踪显示输入输出波形,记录波形,并测量两者间

的相位差

两者相位差为?=138.75?,理论之为输入信号超前?135,误差为2.8%在误差范围内。

f =f L 输入输出波形

b ) 输入Vi=5mV ,f =f H ,用示波器双踪显示输入输出波形,记录波形,并测量两者间

的相位差

两者相位差为?=238.96?,理论之为输入信号超前?225,误差为6.2%在误差范围内。

f =f H 输入输出波形

2、 负反馈对放大器性能的影响

在实验电路中增加反馈电阻R F =10Ω,构成电流串联负反馈放大器, 调整I CQ =x(设计值),测量该电路的增益、输入阻抗、输出阻抗、下限频率f L 、上限频率f H 、带宽BW ,并和前面实验测量的结果进行分析比较。

+

+

+

+12V

R E

C E

R L

C C

R C

V S

R S

R W

R 1

'

R 2

R F

增益:-60 下限频率:83Hz 上限频率:760KHz 带宽:760KHz

输入阻抗:2.17千欧 输出阻抗:2.6千欧 比较可得输入阻抗变大,输出阻抗变小

F

A A A V V

VF +=

1,其中V A =-98,VF A =-56,可得F A V +1=1.75

增益

输入阻抗 输出阻抗(欧) 下限频率Hz 上限频率Hz 带宽Hz

一般电路 -98 1.47K 3K 130K 480K 480K 负反馈 -56

2.17K

2.6K

82K

760K

760K

注意事项:

在测幅频特性时,随着频率升高,信号发生器的输出幅度可能会下降,从而出现输入信号Vi 与

输出信号V o 同时下降的现象。所以在实验中要经常测量输入电压值,使其维持5mV 不变。

第三章《单级低频小信号放大器》单元测试题

第三章单元测试题 班级________________学号____________姓名__________________成绩______________ 一.填空题:(每小格1分,共35分) 1.放大器必须对电信号的________________________有放大作用,否则,就不能称为放大器。 2.写出电压放大倍数A V与电压增益G V之间的关系式:_______________________________写出功率放大倍数G P与功率增益G P之间的关系式:________________________________ 3.电压放大倍数出现正负号表示___________________关系,其中“+”号表示____________关系,而“—”号表示_____________________关系;但电压增益出现“—”号则表示该电路不是_________________________而是_____________________。 4.放大器由于_______________________________________________________所造成的失真,称为非线性失真;而非线性失真又分为_________________失真和______________失真两种。 5.在共射放大电路中,输入电压和输出电压,频率__________________,波形_______________,而幅度得到了________________________,但它们的相位___________________________。 6.画直流通路时,把__________________________视为开路,而其他不变;画交流通路时,把________________________和______________________________视为短路。 7.所谓的建立合适的静态工作点,就是要求将静态工作点设置在_______________的中点位置。 8.放大器的输入电阻越_______________越好,这样有利于减轻____________________的负担; 而输出电阻越__________________越好,这样可以提高_________________________的能力。 9.放大电路的基本分析方法有____________________________、_______________________和_____________________________三种。 10.射极输出器电路属于____________________电路,其对__________________没有放大能力,但对_________________和___________________却有放大能力,它的输入电阻很__________,而输出电阻很___________________。 11.常见的放大电路有______________________________、____________________________和 __________________________________三种类型。 二、选择题 1、分压式共射放大电路中。若更换晶体三极管使β由50变为100,则电路的电压放大倍数将 () A、约为原来的50% B、基本不变 C、约为原来的2倍 D、约为原来的4倍 2、某放大电路如图所示,设VCC>>VBE,ICEO=0,则在静态时三极管处于() A、放大区CC B、饱和区 C、截止区 D、区域不定L 3、放大电路如图所示,若增大Re,则下列说法正确的是()

单管放大电路实验报告—王剑晓

单管放大电路实验报告 电03 王剑晓 2010010929 单管放大电路报告

一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理 实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减小; U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部失真(截 止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则: 电压增益A i=U O/U i=-?(R C// R L)/r be; 输入电阻R i=R B1//R B2//r be; 输出电阻R O= R C; 其中r be=r bb’+(1+?)U T/ I EQ,体现了直流工作点对动态特性的影响; 分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的影 响。由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减小, 那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,与直 流无关; 如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动态 参数分别变为 电压增益A i=U O/U i=-?(R C// R L)/[r be+(1+?) R E1];

单级放大电路

实验二 单级放大电路 一、实验目的 1. 掌握放大器静态工作点的调试方法,学会分析静态工作点对放大器性能的影响。 2. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验仪器及器材 双踪示波器、低频函数信号发生器、低频交流毫伏表、数字万用表、模拟电路实验箱 三、实验原理 图2-1 共射极单管放大器 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B2和R B1 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号U i 后,在放大器的输出端便可得到一个与U i 相位相反,幅值被放大了的输出信号U 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算,U CC 为供电电源,此为+12V 。 CC B B B B U R R R U 2 11 +≈ (2-1) C E BE B E I R U U I ≈-= (2-2) )(E C C CC CE R R I U U +-= (2-3) 电压放大倍数 be L C V r R R A β -= (2-4)

输入电阻 be B B i r R R R 21= (2-5) 输出电阻 C R R ≈0 (2-6) 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号U i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的数字万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压,然后算出I C 的方法,例如,只要测出U E ,即可用E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -=, 由U C 确定I C ),同时也能算出E C CE E B BE U U U U U U -=-=,。 2) 静态工作点的调试 放大器静态工作点的调试是指对三极管集电极电流I C (或U CE )调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大的影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a )所示,如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b )所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a)饱和失真 (b)截止失真 图2-2 静态工作点对U0波形失真的影响 改变电路参数U CC ,R C ,R B (R B1,R B2)都会引起静态工作点的变化,如图2-3所示,但通常多采用调节偏电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。 最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切的说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如须满足较大信号的要求,静态工作点最好尽量靠近交流负载线的中点。

实验二 单级交流放大器

实验一单级交流放大器 一、实验目的 l、掌握放大电路静态工作点的测试方法,进一步理解电路元件参数对静态工作点的影响,以及调整静态工作点的方法。 2、掌握测量电压放大倍数、输入电阻、输出电阻及最大不失真输出电压幅值的方法。 3、观察电路参数对失真的影响。 二、原理简介 放大电路的用途非常广泛,单管放大电路是最基本的放大电路。共射极单管放大电路是电流负反馈工作点稳定电路,它的放大能力可达到几十到几百倍,频率响应在几十赫兹到上千赫兹范围。不论是单级或多级放大器它的基本任务是相同的,就是对信号给予不失真的、稳定的放大。 1、放大电路静态工作点的选择 当对放大电路仅提供直流电源,不提供输入信号时,称为静态工作情况,这时三极管的各电极的直流电压和电流的数值,将和三极管特性曲线上的一点对应,这点常称为Q 点。静态工作点的选取十分重要,它影响放大器的放大倍数、波形失真及工作稳定性等。 静态工作点如果选择不当会产生饱和失真或截止失真。一般情况下,调整静态工作点,就是调整电路有关电阻,使I CQ和U CEQ达到合适的值。 由于放大电路中晶体管特性的非线性或不均匀性,会造成非线性失真,在单管放大电路中不可避免,为了降低这种非线性失真,必须使输入信号的幅值较小。 2、放大电路的基本性能 当放大电路静态工作点调好后,输入交流小信号u i,这时电路处于动态工作情况,放 大电路的基本性能主要由动态参数描述,包括电压放大倍数、频率响应、输入电阻、输出电阻。这些参数必须在输出信号不失真的情况下才有意义。基本性能测量的原理电路如图1-1所示.。 (1) 电压放大倍数A u的测量 用晶体管毫伏表测量图1-1中U i和Uo的值。即: Ui Uo Au/ (2)输入电阻R i的测量 图1-1 交流放大电路实验原理图

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

实验5 单级放大器交流特性的测试

实验5 单级放大器交流特性的测试 一、实验目的 1.学会测量放大器的电压放大倍数和幅频特性。 2.观察静态工作点对放大器输出波形的影响。 3.学会测量放大器的输入电阻和输出电阻。 二、实验原理 1.放大器的电压放大倍数AV 及其测量 电压放大倍数AV 的值 |AV | ,是输出电压与输入电压的比值。即 它以可通过公式计算,对本实验的电路 (图 1.5.3) 而言,有 其中, 在实验中,|AV | 值可以通过晶体管毫伏表直接测量输出电压Vo 和输入电压 Vi 求得。 2. 放大器的输入电阻及其测量 放大器的输入电阻是从放大器的输入端向放大器看进去的等效电阻。在实验中,输入电阻可以采用“换算法”通过测量某些参量而求得。其测量原理如图 1.5.1 所示。其测量方法是:在信号源与放大器之间串入一已知阻值的电阻R ,并分别测出电阻R 两端的电压 VS 和 Vi ,则可算出放大器的输入电阻为 当 Vi =VS / 2 时,R i = R 。 所串入的电阻R 的阻值应与Ri 为同一数量级。不能取得太大或太小。R 取得太大则容易引入干扰,取得太小则测量误差较大。 3.输出电阻及其测量 放大器的输出电阻是指将放大器的输入端短路,从放大器的输出端向放大器看进去的等效电阻。和输入电阻一样,输出电阻也可以采用“换算法”通过测量放大器的某些参量而求得。其测量原理如图 1.5.2 所示。图中,放大器的输出端被等效为一个电压源 V o c 和一个输出电阻 R o 的串联。通过测量放大器接入负载 R L 前后,输出电压 V o 的 值可以 求 得 输 出 电 阻 R o 。 具体测量方法是:在放大器的输入端加一个固定的信号电压Vi ,分别测量出 RL 断开时输出端的电压Voc 和RL 接入时输出端的电压Vo ,则输出电阻 Ro 可通过下式求得 当 Vo = Voc / 2 时,Ro =RL 。 为了保证测量精度,RL 的阻值应与Ro 为同一数量级。 (1.5.1) i V V V A 0=be L c i V r R R V V A )//(0β-==(1.5.2) )() (26)1(300mA I mV r E be β++= (1.5.3) (1.5.4) R V V V R V V I V R i s i R i i i i ?-===

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

低频小信号放大器电路实验

低频小信号放大器电路实验 〈1〉实验目的 1、加深对共射极单级小信号放大器特性的理解。 2、掌握单级小信号放大器的调试方法和特性测量。 3、熟悉示波器等常用电子仪器的使用方法。 〈2〉实验前准备 复习晶体管放大器工作原理,掌握单级放大器基本线路和放大倍数的计算方法。熟悉基本偏置电流大小与晶体管工作状态关系,以及对输出波形的影响。 〈3〉实验原理 1、晶体管单级放大器是组成各放大电路的基本单元,原理图见图1。 2、放大器静态工作点和负载电阻是否恰当将影响放大器的增益和输出波形。所 以当放大器的Vcc及Rc确定后,正确调整静态工作点是很重要的。 3、调节图中的R1可改变放大器的工作点。 4、静态工作点一般测量Ie、Vce和Vbe. 〈4〉实验器材 1、XST电学实验台。 2、示波器、万用表各一只。 3、其他按图选用元器件模块及导线。 〈5〉实验步骤 1、在通用电路板上按图1所示联接电路。 2、检查电路联接无误后,将实验台的Ⅰ组支稳压直流电源电压调至与电路需求 电压相同并接入电路中。 3、调节R1使集电极电流为1.5mA左右。 4、在输入端加入f=1KHz,Vi=10mV的正玄信号。用示波器观察输入与输出波 形。 5、调节R1,当输出波形的正峰或负峰刚要出现削波失真时,切断输入信号,分 别记下Ib和Vce的值。 6、接上信号源,保持输入信号f=1KHz,逐渐增大低频信号发生器输出信号幅度, 调节R1,使放大器输出波形正峰与负峰恰好出现削波失真为止,此时工作点已经调正确。 7、放大倍数测试:当R4=1K时,给f =1KHz,10mV信号电压,用示波器观察V o 的波形。在不失真的条件下,测定R L=∞及R L=5.1K时,电压放大倍数,并记录在表2中。 8、观察集电极负载电阻的改变,对放大器的输出波形的影响: 不接R L逐渐增大输入信号,使输出波形恰好不失真。改变Rc阻值为510Ω和10KΩ观察,对输出波形的影响,并记录在表4中。 〈6〉实验报告

单管放大电路的设计与实现实验报告

华中科技大学 《电子线路设计、测试与实验》实验报告 实验名称:单管放大电路的设计与实现 院(系): 专业班级: 姓名: 学号: 时间: 地点:华中科技大学南一楼 实验成绩: 指导教师:

一、实验目的 1.掌握单管放大电路的工作原理。 2.掌握MOSFET共源放大电路以及BJT共射放大电路静态工作点的设置与调整方法。 3.了解电路参数变化对于电路静态工作点的影响。 4.学习使用PSpice或Multisim软件对模拟电子电路进行仿真分析。 5.掌握BJT单极共射放大电路主要性能指标(A v、R i、R o)的测量方法。 二、实验元器件 类型型号(参数)数量 三极管9013 1只 电位器100kΩ1只 电阻51Ω、1kΩ、100kΩ各1只; 10kΩ、10kΩ各2只; 电容10μF 2只 47μF 1只 三、实验原理及参考电路 1.参考电路 实验电路如图1所示。该电路采用自动稳定工作点的分压式射极偏置电路,其温度稳定性好。 图1 2.静态工作点的估算与调整 静态工作点是指输入交流信号为零时三极管的基极电流IBE、集电极电流I CQ、和管压降V CEQ。 根据上图所示的直流通路可得出: 开路电压V BB = R b12V CC/(R b11+R b12) 内阻R B = R b11//R b12

则I BQ =(V BB–V BEQ)/( R B +(1+β)( R e1 +R e2)) I CQ = βI BQ V CEQ ≈ V CC – (R C + R e1 +R e2)I CQ 当管子确定后,改变V CC、R B、R B2、R C、(或R E)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过R P调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。 3.放大电路电压增益的测量 放大电路电压增益A v 是指输出电压与输入电压的有效值之比,即 A v =V o /V i。 对于该电路,放大电路的电压增益A v 为 A v= -β(R C // R L) /( r be + (1 + β)R e1) 当三极管跟负载电阻选定后,A v主要取决于静态工作点I CQ。 4.输入电阻的测量 对于上述参考电路图所示参数,放大电路输入电阻为: R i = R b11//R b12//[r be + (1 + β)R e1] 三极管输入电阻r be 为: r be = 300 + (1+β)CQ 测量原理为:在信号源与放大电路之间串一个已知阻值的电阻R,用万用表分别测出R 两端的电压V S,和V i,则输入电阻为: Ri = Vi / Ii = Vi R /( V s- V i) 5.输出电阻的测量 输出电阻的测量原理为:用万用表分别测量放大器的开路电压V O和负载电阻上的电压V OL,则输出电阻R O可通过计算求得。 R O =( V O – V OL)R L /V OL 当R L = R O 时,测量误差最小。 6.幅频特性的测量 放大器的幅频特性是指放大器的增益与输入信号频率之间的关系曲线。一般用逐点法进行测量。在保持输入信号幅值不变的情况下,改变输入信号的频率,住店测量不同频率点的电压增益。利用各点数据,在单对数坐标纸上描绘出幅频特性曲

单级低频放大电路

实验三单级低频放大电路 1.实验目的 (1)研究单管低频小信号放大电路静态工作点的意义。 (2)掌握放大电路静态工作点的调整与测量方法。 (3)掌握放大电路主要性能指标的测试方法。 2.实验涉及的理论知识和实验知识 本实验体现了三极管的工作原理、放大电路的静态工作点调试方法以及放大器性能指标的基本测试方法。 3.实验仪器 信号发生器、示波器、直流稳压电源、电压表 4.实验电路 实验电路如图3.1.1所示。图中电位器R W是为调节晶体管静态工作点而设置的。 O 图3.1.1单级共发射极放大电路 5. 实验原理 在电子系统中,放大电路是信号处理的基本电路。其作用是将微弱信号增强到所需要的数值,单级低频放大电路是放大电路中最基本的结构形式,是组成各种复杂电路的单元和基础。因此它的分析方法、电路调整技术以及参数的测量方法等具有普遍意义。 实验电路采用由NPN型硅材料三极管以及若干电阻、电容组成的共发射极放大电路,以图3.1.1所示电路为例进行研究。 (1)电路组成原则 放大是最基本的模拟信号处理功能,它是通过放大电路实现的,电子技术里的“放大”有两方面的含义。一是能将微弱的电信号增强到所需要的数值,即放大电信号,以便于测量和使用。二是要求放大后的信号波形与放大前的波形的形状相同,即信号不能失真,否则就会丢失要传送的信息,失去了放大的意义。 因此,电路组成原则是首先要给电路中的晶体管施加合适的直流偏置,即发射结正偏、集电结反偏,使其工作在放大状态,而且还要有一个合适的工作电压和电流,即合适的静态工作点。其次要保证信号发生器、放大电路和负载之间信号能够正常传输,即有u i时,应该有输出响应u o。

单级交流放大电路

深圳大学实验报告课程名称:模拟电路 实验项目名称:单级交流放大电路 学院:信息工程学院 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.复习三极管及单管放大电路工作原理。

2.进行放大电路静态工作点和电压放大倍数的估算。 四、实验内容及步骤 1.装接电路与简单测量 图1.l 基本放大电路 如三极管为3DG6,放大倍数β一般是25—45;如为9013,一般在150以上 (1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。 U BE=0.7V、U BC=0.7V,反向导通电压无穷大。 所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线), 、 (2)按图1.2接线,调整R P使V E=2.2V,计算并填表1.1。 图1.2 工作点稳定的放大电路 为稳定工作点,在电路中引入负反馈电阻R e,用于稳定静态工作点,即当环境温度变化时,保持静态集电极电流I CQ和管压降U CEQ基本不变。依靠于下列反馈关系: T↑—β↑—I CQ↑—U E↑—U BE↓—I BQ↓—I CQ↓,反过程也一样,其中R b2的引入是为了稳定U b。但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻r i变大了,输出电阻r o不变。

e be L c u R r R R A )1()(ββ++-= ,))1((21e be b b i R r R R r β++=,c o R r = 由以上公式可知,当β很大时,放大倍数u A 约等于 e L c R R R ,不受β值变化的影响。 输出波形时要调节R b1,使输出波形最大且不失真时开始测量。输入输出波形两者反相,相差180度。 (3) 信号源频率不变,逐渐加大信号源幅度,观察V O 不失真时的最大值并填表1.2。 分析图1.3的交流等效电路模型,由下述几个公式进行计算: E be I mV r 26) 1(200β++≈,be ce c L V r r R R A β-=,c ce o be b b i R r r r R R r ==,2

低频小信号放大器电路设计毕业论文

摘要 低频小信号放大器电路设计 摘要 实用性低频小信号放大器电路设计,它主要用于使用前置放大器的低频小信号的电压经过集成块LM358的放大使其增益二十几倍,达到信号放大的作用,本文介绍了其基本原理,内容,与低频放大微弱信号放大能力的技术路线,设计电路图方案等。 本系统是基于(IC)LM358设计而成的一种低频小信号放大器,整个电路主要由稳压电源,前置放大电路,波形变换电路3部分。电源主要是为前置放大器提供稳定的直流电源。前置放大器主要是由ML358一级放大电路和ML358二级放大电路组成,第一级可以将电压放大5倍,第二级可以放大1-5倍,总增益20-25倍,接通电源后,信号发生器产生信号,示波器用于变换的波形显示。通过波形的数据变化,计算出增益效果,是否满足设计需求。 该设计的电路结构简单,实用,充分利用了集成功放的优良性能。实验结果表明,前置放大器的带宽,失真,效率等方面具有较好的指标,具有较高的实用性,为小信号放大器的设计是一个广泛的思考。 关键词:低频小信号,电压放大,前置放大级电路,集成块LM358

Abstract Design of low frequencysmall signal amplifier Abstract: The utility of low frequency small signal amplifier circuit design, it is mainly used for voltage low frequency small signal using a pre amplifier after amplification integrated block LM358 has gain 20 times, achieve signal amplification effect, this paper introduces the basic principle, content, and low frequency amplification technology route of weak signal amplification ability, circuit design scheme. The system is based on (IC) a low frequency small signal amplifier LM358 designed, the whole circuit is mainly composed of a regulated power supply, preamplifier circuit, a waveform transform circuit 3 parts. The power supply is mainly to provide a stable DC power for the preamplifier. The preamplifier is mainly composed of ML358 amplifier and ML358 two stage amplifier circuit, the first stage of the voltage can be magnified 5 times, second can be magnified 1-5 times, 20-25 times of the total gain, power, signal generator generates a signal, oscilloscope is used to transform the waveform display. By the waveform data changes, calculated the gain effect, whether meet the design requirements. The design of the circuit structure is simple, practical, make full use of the excellent performance of the integrated amplifier. The experimental results show that, the pre amplifier bandwidth, distortion, has better efficiency indicators, and has higher practicability, designed for small signal amplifier is a broad thinking. Keywords:Lowfrequency smalsignal,voltage amplification,preamplifiercircuit,Integrated block LM358

电子专业技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

————————————————————————————————作者:————————————————————————————————日期:

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (5) 二、实验仪器 (5) 三、实验原理 (5) (一)单级低频放大器的模型和性能 (5) (二)放大器参数及其测量方法 (7) 四、实验内容 (9) 1、搭接实验电路 (9) 2、静态工作点的测量和调试 (10) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (11) 4、放大器上限、下限频率的测量 (12) 5、电流串联负反馈放大器参数测量 (13) 五、思考题 (13) 六、实验总结 (13)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

单级低频电压放大电路(基础)实验报告模板

东南大学电工电子实验中心 实验报告 课程名称: 第次实验 实验名称: 院(系):专业: 姓名:学号: 实验室: 实验组别: 同组人员:实验时间:年月日评定成绩:审阅教师:

实验三单级低频电压放大电路(基础) 一、实验目的 1、掌握单级放大电路的工程估算、安装和调试; 2、了解三极管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频 特性等的基本概念以及测量方法; 3、掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流电压表、 函数发生器的使用技能训练。 二、实验原理 三、预习思考 1、器件资料: 上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表: 2 教材图1-3中偏置电路的名称是什么,简单解释是如何自动调节BJT的电流I C以实现稳定直流工作点的作用的,如果R1、R2取得过大能否再起到稳定直流工作点的作用,为什么? 答: 3、电压增益: (I)对于一个低频放大器,一般希望电压增益足够大,根据您所学的理论知识,分析有 哪些方法可以提高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。 答: (II)实验中测量电压增益的时候用到交流毫伏表,试问如果用万用表或示波器可不可以,有什么缺点。 答:

4、输入阻抗: (I)放大器的输入电阻R i反映了放大器本身消耗输人信号源功率的大小,设信号源内阻 为R S,试画出图1-3中放大电路的输入等效电路图,回答下面的连线题,并做简单解释: R i = R S放大器从信号源获取较大电压 R i << R S放大器从信号源吸取较大电流 R i >> R S放大器从信号源获取最大功率答: (II)教材图1-4是实际工程中测量放大器输入阻抗的原理图,试根据该图简单分析为什么串接电阻R S的取值不能太大也不能太小。 答: (III)对于小信号放大器来说一般希望输入阻抗足够高,根据您所学的理论知识,分析有哪些方法可以提高教材图1-3中放大电路的输入阻抗。 答: 5、输出阻抗: (I)放大器输出电阻R O的大小反映了它带负载的能力,试分析教材图1-3中放大电路的 输入阻抗受那些参数的影响,设负载为R L,画出输出等效电路图,回答下面的连线题,并做简单解释。 R O = R L负载从放大器获取较大电压 R O << R L负载从放大器吸取较大电流 R O >> R L负载从放大器获取最大功率答: (II)教材图1-5是实际工程中测量放大器输出阻抗的原理图,试根据该图简单分析为什么电阻R L的取值不能太大也不能太小。 答: (III)对于小信号放大器来说一般希望输出阻抗足够小,根据您所学的理论知识,分析有哪些方法可以减小教材图1-3中放大电路的输出阻抗。 答: 6、计算教材图1-3中各元件参数的理论值,其中 已知:V CC=12V,V i=5mV,R L=3KΩ,R S=50Ω,T为9013 指标要求:A V>50,R i>1 KΩ,R O<3KΩ,f L<100Hz,f H>100kHz(建议I C取2mA) 答: 四、实验内容 1、除1-(1)外的全部实验(所有波形必须定量记录,包括幅度、频率等,输入和输出波形 必须记录在同一坐标内)。 2、实验修改内容

实验一单级放大电路

实验一单级放大电路 一、实验目的 1、掌握单管电压放大电路的调试和测试方法。 2、掌握放大器静态工作点和负载电阻对放大器性能的影响。 3、学习测量放大器的方法,了解共射极电路的特性。 4、学习放大器的动态性能。 二、实验仪器 1、模拟电路实验箱及附件板 2、示波器 3、万用表 4、直流毫伏表 5、交流毫伏表 6、函数发生器 7、+12V电源 三、实验原理 实验采用分压式工作点稳定电路,如图1.1所示。

1、静态工作点的估算 当流过基极分压电阻的电流远远大于三极管的基极电流时,可以忽略BQ I , 则有:CC 2b 1b 1 b BQ V R R R V += ,e BEQ BQ EQ CQ R U V I I -=≈ )(e c CQ CC e EQ c CQ CC CEQ R R I V R I R I V U +-≈--= β CQ BQ I I = 2、动态指标的估算与测试 放大电路的动态指标主要有电压放大倍数,输入电阻,输出电阻及通频带等。 理论上,电压放大倍数be L u r R A '-=β ,输入电阻be be 2b 1b i ////r r R R R ≈=,输出电阻c o R R ≈ 测量电压放大倍数时,首先将电路调整到的合适静态工作点,给定输入电压i u ,在输出电压不失真的情况下,用毫伏表测出输出电压o u 与输入电压i u 的 有效值,则i o u U U A = 四、实验内容及步骤 1、在模拟电路实验箱上插上附件板,按图1.1电路,用插接线连接实验电

路,接线完毕,检查无误后,接上+12V直流电源。 2、调试静态工作点 接通直流电源前,先将R W调至最大,函数信号发生器输出旋钮旋至零。接通+12V电源、调节R W,使I C=2.0mA(即U E=2.0V),用直流电压表测量U B、U E、U C及用万用电表测量R B2值。记入表1-1。 表1-1 I C=2mA 3、测量电压放大倍数 在放大器输入端加入频率为1KHz的正弦信号u S,调节函数信号发生器的输出旋钮使放大器输入电压U i 10mV,同时用示波器观察放大器输出电压u O波形,在波形不失真的条件下用交流毫伏表测量下述两种情况下的U O值,并用双踪示波器观察u O和u i的相位关系,记入表1-2。 表1-1 I C=2mA 表2.1

低频小信号放大器的设计

1. 设计任务及要求 1.1 设计任务: 运用放大器原理等知识,设计一个低频小信号放大器。 1.2 设计要求: 1)放大倍数≥1000(60db); 2)共模抑制比K CMR ≥60db; 3)输入阻抗R i ≥10M; 4)频带范围0~100HZ; 5)信噪比SNR≥40db; 2. 方案设计 2.1.1同相放大电路 输入电压u i接至同相输入端,输出电压u o通过电阻R F仍接到反相输入端。 R 2的阻值应为R 2 =R 1 //R F . 根据虚短和虚断的特点,可知I - =I + =0, 则有 o F u R R R u? + = - 1 1 且 u - =u + =u i ,可得: i o F u u R R R = ? + 1 1 1 F i o uf R R 1 u u A+ = = 同相比例运算电路输入电阻为:∞ = = i i if i u R 输出电阻: R of =0 因此选择同相放大电路满足输入阻抗足够大 2.1.2 差分放大电路 差动输入比例运算(即减法运算) 在差动放大电路中,有两个输入端,当在这两个端子上分别输入大小相等、相位相反的信号,(这是有用的信号)放大器能产生很大的放大倍数,我们把这种信号叫做差模信号,这时的放大倍数叫做差模放大倍数。如果在两个输入端分别输入大小相等,相位相同的信号,(这实际是上一级由于温度变化而产生的信号,是一种有害的东西),我们把这种信号叫做共模信号,这时的放大倍数叫做共模放大倍数。 由差模放大倍数和共模放大倍数可求差模增益A vd 和共模增益A cd ,共模抑制 比K CMR =20log(A vd /A cd ) 2.1.3 仪表放大器

相关文档
最新文档