各种温度传感器分类及其原理.

各种温度传感器分类及其原理.
各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,

在此我们暂时介绍最常用的热电阻和热电偶两类产品。

1. 热电偶的工作原理

当有两种不同的导体和半导体 A 和 B

组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为

T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端

或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电

动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。

与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时,

此处便吸收或放出热量 (取决于电流的方向 ,

称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决

于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0

是由接触电势和温差电势合成的。接触电势是指两种不同

的导体或半导体在接触处产生的电势,

此电势与两种导体或半导体的性质及在接触点的温度有关。

温差电势是指同一导体或半导体在温度不同的两端产生的电势,

此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。

无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b

之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图

2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B

为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

的微分热电势为热电势率, 又称塞贝克系数。

塞贝克系数的符号和大小取决于组成热电偶

的两种导体的热电特性和结点的温度差。

2. 热电偶的种类

目前, 国际电工委员会 (IEC 推荐了 8种类型的热电偶作为标准化热电偶, 即为T 型、 E 型、 J 型、 K 型、 N 型、 B 型、 R 型和 S 型。

热电阻

1. 热电阻材料的特性

导体的电阻值随温度变化而改变, 通过测量其阻值推算出被测物体的温度,

利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于 -200—500℃温度范围内的温度测量。

纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性:

①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。

②电阻率高,热容量小,反应速度快。

③材料的复现性和工艺性好,价格低。

④在测温范围内化学物理特性稳定。

目前,在工业中应用最广的铂和铜,并已制作成标准测温热电阻。

2.铂电阻

铂电阻与温度之间的关系接近于线性,在 0~630.74℃范围内可用下式表示 Rt =R0(1 +At+Bt2 (2-1在 -190~0℃范围内为 Rt =R0(1+At+Bt2十 Ct3 (2-2式中, RO 、Rt 为温度 0°及 t°时铂电阻的电阻值, t 为任意温度, A 、 B 、 C

为温度系数,由实验确定, A =3.9684×10-3/℃, B =-5.847×10-7/℃ 2, C =-4.22×10-l2/℃3。由式 (2-1和式 (2-2看出,当 R0值不同时,在同样温度下,其 Rt 值也不同。

3.铜电阻

在测温精度要求不高, 且测温范围比较小的情况下,

可采用铜电阻做成热电阻材料代替铂电阻。在

-50~150℃的温度范围内,铜电阻与温度成线性关系,其电阻与温度关系的表达式为Rt =R0(1+At (2-3式中, A =4.25×10-3~4.28×10-3℃为铜电阻的温度系数

按照温度传感器

输出信号的模式,可大致划分为三大类:数字式温度传感器、

逻辑输出温度传感器、模拟式温度传感器。

一、模拟温度传感器

传统的模拟温度传感器,如热电偶、热敏电阻和 RTDS

对温度的监控,在一些温度范围内线性不好,

需要进行冷端补偿或引线补偿;热惯性大,响应时间慢。集成模拟温度传感

器与之相比,具有灵敏度高、线性度好、响应速度快等优点,而且它还将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片 IC

上,有实际尺寸小、使用方便等优点。常见的模拟温度传感器有 LM3911、

LM335、 LM45、 AD22103电压输出型、 AD590电流输出

型。这里主要介绍该类器件的几个典型。

1、 AD590温度传感器

AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为

3~30V,输出电流 223μA(-50℃ ~423μA(+150℃,灵敏度为

1μA/℃。当在电路中串接采样电阻 R 时, R 两端的电压可作为喻出电压。注意 R 的阻值不能取得太大,以保证 AD590两端电压不低于 3V 。

AD590输出电流信号传输距离可达到 1km 以上。作为一种高阻电流源,最高可达

20MΩ, 所以它不必考虑选择开关或 CMOS

多路转换器所引入的附加电阻造成的误差。

适用于多点温度测量和远距离温度测量的控制。

2、 LM135/235/335温度传感器

LM135/235/335系列是美国国家半导体公司(NS

生产的一种高精度易校正的集成温

度传感器,工作特性类似于齐纳稳压管。该系列器件灵敏度为 10mV/K,具有小于

1Ω的动态阻抗, 工作电流范围从 400μA到 5mA , 精度为 1℃, LM135的温度范围为-55℃ ~+150℃, LM235的温度范围为 -40℃ ~+125℃, LM335为 -40℃

~+100℃。封装形式有 TO-46、 TO-9 2、

SO-8。该系列器件广泛应用于温度测量、温差测量以及温度补偿系统中。

二、逻辑输出型温度传感器

在许多应用中,我们并不需要严格测量温度值,只关心温度是否超出了一个设定范围, 一旦温度超出所规定的范围,则发出报警信号,启动或关闭风扇、

空调、加热器或其它控制

设备,此时可选用逻辑输出式温度传感器。 LM56、 MAX6501-MAX6504、MAX6509/6510是其典型代表。

1、 LM56温度开关

LM56是 NS 公司生产的高精度低压温度开关,内置 1.25V

参考电压输出端。最大只能带 50μA的负载。

电源

电压从 2.7~10V,工作电流最大 230μA,内置传感器的灵敏度为

6.2mV/℃,传感器输出电压为 6.2mV/℃ ×T+395mV。

2、 MAX6501/02/03/04温度监控开关

MAX6501/02/03/04是具有逻辑输出和 SO

T-23封装的温度监视器件开关,它的设计非常简单:用户选择一种接近于自己需要的控制的温度门限(由厂方预设在 -45℃到 +115℃,预设值间隔为

10℃。直接将其接入电路即可使用,无需任何外部元件。其中

MAX6501/MAX6503为漏极开路低电平报警输出, MAX6502/MAX6504为推

/拉式高电平报警输出, MAX6501/MAX6503提供热温度预置门限 (35℃到

+115℃,当温度高于预置门限时报警; MAX6502/MAX6504提供冷温度预置门

限(-45℃到 +15℃,当温度低于预置门限时报警。

对于需要一个简单的温度超限报警而又空间有限的应用如笔记本电脑、

蜂窝移动电话等应用来说是非常理想的, 该器件的典型温度误差是 ±0.5℃,最大

±4℃,滞回温度可通过引脚选择为 2℃或 10℃,以避免温度接近门

限值时输出不稳定。这类器件的工作电压范围为 2.7V 到 5.5V ,典型工作电流

30μA。三、数字式温度传感器

1、 MAX6575

/76/77 数字温度传感器

如果采用数字式接口的温度传感器,上述设计问题将得到简化。同样,当

A/D和微处理器的

I/O管脚短缺时,采用时间或频率输出的温度传感器也能解决上述测量问题。以 MA X6575/76/77系列 SOT-23封装的温度传感器为例,

这类器件可通过单线和微处理器进行温

度数据的传送,提供三种灵活的输出方式 --频率、周期或定时,并具备

±0.8℃的典型精度, 一条线最多允许挂接 8个传感器, 150μA典型电源电流和 2.7V 到5.5V 的宽电源电压范围及 -45℃到

+125℃的温度范围。它输出的方波信号具有正比于绝对温度的周期,采用 6脚 S

OT-23封装, 仅占很小的板面。该器件通过一条 I/O与微处理器相连,

利用微处理器内部的计数器测出周期后就可计算出温度。

2、可多点检测、直接输出数字量的数字温度传感器

DS1612

DS1612是美国达拉斯半导体公司生产的 CMOS

数字式温度传感器。内含两个不挥发性存储器,

可以在存储器中任意的设定上限和下限温度值进行恒温器的温度控制,

由于这些存储器具有不挥发性, 因此一次定入后, 即使不用 CPU

也仍然可以独立使用。

温度测量原理和精度:在芯片上分别设置了一个振荡频率温度系数较大的振荡器(OS C1和一个温度系数较小的振荡器(OSC2。在温度较低时,由于

OSC2的开门时间较短, 因此温度测量计数器计数值 (n 较小; 而当温度较高时, 由于OSC2的开门时间较长, 其计数值(m 增大。

如果在上述计数值基础上再加上一个同实际温度相差的校正数据,

就可以构成一个高精度的数字温度传感器。

该公司将这个校正值定入芯片中的不挥发存储器中, 这样传感器输出

的数字量就可以作为实际测量的温度数据,而不需要再进行校准。它可测量的温度范围为 -55℃ ~+125℃, 在 0℃ ~+70℃范围内, 测量精度为 ±0.5℃, 输出的

9位编码直接与温度相对应。

DS1621同外部电路的控制信号和数据的通信是通过双向总线来实现的,由 CPU 生成串行时钟脉冲(SCL , SDA 是双向数据线。通过地址引脚 A0、 A1、 A2将

8个不同的地址分配给各器件。通过设定寄存器来设置工作方式,

并对工作状态进行监控。被测的温度数据被存储在温度传感器寄存器中,高温(TH 和低温(TL 阈值寄存器存储了恒温器输出 (Tout 的阈值。

现在,各种集成的温度传感器的功能越来越专业化。比如,MAXIM

公司近期推出的 M AX1619

是一种增强型精密远端数字温度传感器,能够监测远端 P-N 结和其自身封装的温度。它具有双报警输出:ALERT 和 OVERT。ALERT 用于指示各

传感器的高/低温状态, OVERT

信号等价于一个自动调温器,在远端温度传感器超上限时触发,MAX1619 与MAX 1617A 完全软件兼容,非常适合于系统关断或风扇控制,

甚至在系统“死锁”后仍能正常工作。美国达拉斯半导体公司的 DS1615

是有记录功能的温度传感器。器件中包含实时时钟、数

字式温度传感器、非易失性存储器、控制逻辑电路以及串行接口电路。数字温度传感器的测量范围为-40℃~+85℃,精度为±2℃,读取 9 位时的分辨率是

0.03125℃。时钟提供的时间从秒至年月,并对到 2100

年以前的闰年作了修正。电源电压为 2.2V~5.5V,8 脚 SOIC 封装。DS17775

是数字式温度计及恒温控制器集成电路。其中包含数字温度传感器、A/D 转

换器、数字寄存器、恒温控制比较器以及两线串行接口电路。供电电压在 3V 至5V 时的测量温度精度为±2℃,读取 9 位时的分辨率是 0.5℃,读取 13

位时的分辨率是 0.03125℃。

国际品牌温度传感器介绍一..

一、霍尼韦尔 公司简介: 霍尼韦尔是《财富》百强公司,总部位于美国。致力于发明制造先进技术以应对全球宏观趋势下的严苛挑战,例如生命安全、安防和能源。公司在全球范围内拥有大约130,000 名员工,其中包括19,000 多名工程师和科学家。 霍尼韦尔在华的历史可以追溯到1935年。当时,霍尼韦尔在上海开设了第一个经销机构。1973年美国总统尼克松访华时,应中国政府之邀从十大领域推荐精英企业来华推动两国双向交流,并促进中国的现代化建设。其中炼油石化领域唯一被选中推荐给中国政府的美国环球油品公司,正是霍尼韦尔旗下的子公司。80年代的改革开放成为了霍尼韦尔融入中国经济发展的又一个新起点,作为首批在北京设立代表处的跨国企业,霍尼韦尔在彼时开始了一系列的高品质投资。目前,霍尼韦尔四大业务集团均已落户中国,旗下所辖的所有业务部门的亚太总部也都已迁至中国,并在中国的20多个城市设有多家分公司和合资企业。目前,霍尼韦尔在中国的投资总额超10亿美金,员工人数超过12,000名。 主要产品及服务: 家具与消费品——环境自控解决方案及产品 航空与航天——航空航天UOP中国传感与控制 生命安全与安防——霍尼韦尔安全产品安防气体探测技术 建筑、施工与维护——环境自控解决方案及产品安防英诺威发泡剂极冷致制冷剂 传感与控制——扫描与移动生产力扫描与移动技术 工业过程控制——无线自动化解决方案环境自控解决方案及产品传感与控制气体探测技术 能效与公共事业——环境自控解决方案及产品无线自动化解决方案传感与控制 汽车与运输——极冷致制冷剂传感与控制 石油、天然气、炼油、石油化工与生物燃料——环境自控解决方案及产品UOP中国无线自动化解决方案传感与控制气体探测技术安防 医疗保健——扫描与移动技术阿克拉薄膜传感与控制Burdick & Jackson 溶剂和试剂 化学品、特殊材料与化肥——Burdick & Jackson 溶剂和试剂阿克拉薄膜尼龙6树脂UOP中国极冷致制冷剂OS有机硅密封胶添加剂 制造——环境自控解决方案及产品尼龙6树脂A-C高性能添加剂传感与控制 无线自动化解决方案

温度传感器工作原理

温度传感器工作原理 温度传感器temperature transducer,利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 1.热电偶的工作原理当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当△V 很小时,△V与△T成正比关系。定义△V对△T的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度

温度传感器主要形式和温度探头类型

温度传感器主要形式和温度探头类型 温度传感器三种主要形式 热电偶由两种不同的金属丝焊接而成,例如:NiCr-Ni(K型),利用热电效应来工作的,两种不同的金属丝,构成一个闭合回路,不同的两种导体存在着温差,两者产生电动热。因而在回路中形成一个大小的电流,此现象称之为热电现象。 铂电阻测量原理不同于热电偶测量方法。铂电阻传感器本质上来讲属于PTC热敏电阻的一种。金属的电阻率会随着温度的升高而增大,因此这种特性被用来测量温度。薄膜式铂电阻,由于结构超薄,因此在电阻不被影响的前提下,配置了一个玻璃套管,用以保护。目前通用的铂电阻的电阻值为100Ohm(0℃时),这是目前国际通用的铂电阻。另外一种PT100传感器采用绕线陶瓷式,此种方法将铂丝攻成螺旋状,再装入陶瓷基体内,此传感器结构十分紧密,在所有铂电阻传感器中,这种结构精度最高,使用时间持久并且无老化现象,但是相较于热电偶的测量原理,反应时间较缓,因此在应用时经常运用于食品科技,特别是实验室研发环节。 NTC热敏电阻使用较为广泛且较经济的一款温度传感器。由于混合的氧化物陶瓷材料构成,具有负的温度系数,这是称之为NTC的原因(negative temperature coefficient缩写)。随着温度的升高,阻值降低,这与PT100传感器的测量特性完全相反。

温度探头三种主要类型 刺入/浸入式探头 用于测量液体及固体的温度,探头的前端设计为针状刺入式。使用时如果测量探头的温度比被测物体低,根据能量守恒原理,热能会从被测物体热导至探头上;如果测量探头的温度比被测物体较高,同理热能则从探头传导至被测物体。这就意味着被测物体被加热升温,所测得的温度是加温之后的物体温度,在此测量情况,探头与介质的比值必须考虑,因为探头与介质的比值越好,越能更精准的测得物体获取的能量,由于能量转移的原因会导致测量时产生误差。我们一定要注意仪器测量的不是介质的温度,而是传感器的温度,此测量误差可以通过以下方式减小:刺入或浸入的深度10或15倍于探头的直径;当测量液体时,尽量何持液体的流动可以有效减少误差。 空气温度探头 用来测量空气温度,例如冷库、冷柜、空调室(调温)、通风场所(通风/排风)等,空气探头的传感器裸露,因此示值很容易受气流所影响,最好的解决方法是在气流为2-3m/s时,顺流轻移探头,使温度达成平衡稳定。 表面探头 用来测量物体的表面温度。空气温度探头和表面探头使用进行表面温度测量时,探头的前端必须垂直于被测物体,与被测物体充分完全的接触。必须注意的是探头与被测物的接触面必须平坦,否则在测量时则会影响测量结果。

温度传感器简介与选型

温度监控的I/O解决方案 选择和采购温度传感器 监测温度和采集数据的传感器种类繁多。从单一房间的温度监测到复杂的批次过程控制应用都依赖精准的温度获取。电阻温度计(RTD),热电偶,积体电路温度计(ICTD),热敏电阻,红外线传感器是用于以上目的的主要传感器类型。 RTD决定于材料电阻和温度的关系,它读数精确(一般小数点后2-3位),具有多种封装形式。他们一般由镍,铜及其他金属制造,但是较早前,RTD是由铂制造的,很大程度上因为铂的电阻在较宽的温度区间里与温度成线性关系。但是由于铂价格昂贵且当温度超过660°C时不能适用,因为在这范围以外铂的惰性会失效导致读数不准。RTD需要一个小功率激励源才能进行操作,且RTD应用性很强,在较大范围内它侦测温度非常准确漂移很小。 热电偶是由双金属导体制备,受热时产生的电压与温度成比例.同RTD一样,热电偶常用于工业设置里。其种类丰富(B,J,K,R,T等),提供不同的温度敏感范围。热电偶读数没有RTD那么精确,有时可能高达一度之差。热电偶和RTD一样本身及其脆弱,使用时它通常附有一根耐用探针。一般热电偶价格不贵,但若装了特殊外壳或装置,其价格将大大上升。因为热电偶种类繁多测温范围很大,最高可达1800°C,能用在高温条件下(但值得注意的是,高温使用一般需要特殊外壳、包装或绝热材料)。 ICTD是常见的通用温度传感器,其价格不贵,类似2线晶体管装置,工作电压在5-30V之间,由此产生的电流与温度成线性比例。也和RTD一样,ICTD低噪音,但比RTD更易使用,因为其无需电阻测量电路。ICTD的特点在于其简易,工业应用偏少,在-50~100°C范围内温度测量较准确,例如在HVAC,制冷机和室内温度监控等应用上。 热敏电阻工作原理是由电阻调节获得不同温度。这样看来热敏电阻和RTD的工作原理类似,差别在于前者使用2线互连,对温度更加敏感,但是一定程度上读数不准。除此,电热调节器所用材料通常是陶瓷或聚合物(而RTD使用纯金属),这样使其具有价格上的优势。热敏电阻适应于大容量的温度监测,范围在-40~200°C,并且允许一定量的漂移的场合。 红外传感器代表了温度监测设备中最新前沿的仪器。红外辐射通过监测物体的电磁辐射(也叫做热摄影或高温测量)来对其进行远程温度测定,红外监测对快速移动的物体或难以测得高温易变化的环境有很好的效果红外广泛应用在制造流程中,如对金属、玻璃、水泥、陶瓷半导体、塑料、纸品、织物及涂层的温度。 重要提示:在决定使用哪种测温器件时,需着重考虑的是价格、温度测量所需达到的精度、设备对环境的适用性以及布线。例如:对ICTD来说,一般双绞电缆,最简单的布线方案就能使它正常工作,几千米的布线也不会造成信号损失。;而相比较RTD,则需要3或4线制。对于RTD,线的规格也同样重要。直径必须相配,接合无误,即使在最佳的条件下,也易受噪音的影响,尤其在线过长的情况下。热电偶的应用通常都有严格的布线要求。每种热电偶有其匹配的线,和它的材料组成相搭配。这种专业线价格昂贵,所以在热电偶应用时,以短程布线为多。 Opto 22 的解决方案 SNAP输入模块 Opto 22的特点在于能为所有类型温度监测设备---RTD,热电偶,ICTD,热敏电阻,红外监测提供解决方案。方案包括一套完整的多通道模拟输入模块,能与以上设备连接用于远程监控和数据采集。 更值得注意的是,Opto 22的I/O模块有多种构造,从双通道到八通道一应俱全。八通道的模块是需要多通道温度采集的最佳经济选择。应用包括水处理、制冷系统、杀菌、巴氏消毒及焊接等。 Opto 22的SNAP AICTD-8模块是特别为能源管理相关应用而设计的,能从标准ICTD中获得八通道模

温度传感器原理

一、温度传感器热电阻的应用原理 温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.温度传感器热电阻测温原理及材料 温度传感器热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。温度传感器热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造温度传感器热电阻。 2.温度传感器热电阻的结构

(1)精通型温度传感器热电阻工业常用温度传感器热电阻感温元件(电阻体)的结构及特点见表2-1-11。从温度传感器热电阻的测温原理可知,被测温度的变化是直接通过温度传感器热电阻阻值的变化来测量的,因此,温度传感器热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有关具体内容参见本篇第三章第一节. (2)铠装温度传感器热电阻铠装温度传感器热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型温度传感器热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

(3)端面温度传感器热电阻端面温度传感器热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向温度传感器热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型温度传感器热电阻隔爆型温度传感器热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型温度传感器热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。 3.温度传感器热电阻测温系统的组成 温度传感器热电阻测温系统一般由温度传感器热电阻、连接导线和显示仪表等组成。必须注意以下两点: ①温度传感器热电阻和显示仪表的分度号必须一致

温度传感器工作原理

温度传感器工作原理 1.引脚★ ●GND接地。 ●DQ为数字信号输入\输出端。 ●VDD为外接电源输入端(在寄生电源接线方式时接地) 2.与单片机的连接方式★ 单线数字温度传感器DS18B20与单片机连接电路非常简单,引脚1接地(GND),引脚3(VCC)接电源+5V,引脚2(DQ)接单片机输入\输出一个端口,电压+5V和信号线(DQ)之间接有一个4.7k的电阻。 由于每片DS18B20含有唯一的串行数据口,所以在一条总线上可以挂接多个DS18B20芯片。 外部供电方式单点测温电路如图★ 外部供电方式多点测温电路如图★ 3.DS18B20的性能特点 DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器。与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下: ●独特的单线接口仅需要一个端口引脚进行通信。 ●多个DS18B20可以并联在唯一的三线上,实现多点组网功能。 ●不需要外部器件。 ●在寄生电源方式下可由数据线供电,电压围为3.0~5.5V。 ●零待机功耗。

●温度以9~12位数字量读出 ●用户可定义的非易失性温度报警设置。 ●报警搜索命令识别并标识超过程序限定温度(温度报警条件)的器件。 ●负电压特性,电源极性接反时,温度计不会因发热而烧毁,只是不能正常工作。 4.部结构 .DS18B20采用3脚PR—35封装或8脚SOIC封装,其部结构框图★ 64位ROM的位结构如图★◆。开始8位是产品类型的编号;接着是每个器件的唯一序号,共有48位;最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用单线进行通信的原因。非易失性温度报警触发器TH和TL,可通过软件写入用户报警上下限数据。 MSB LSB MSB LSB MSB LSB DS18B20温度传感器的部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PROM。 高速暂存RAM的结构为9字节的存储器,结构如图★。前2字节包含测得的温度信息。第3和4字节是TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5字节为配置寄存器,其容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转化为相应精度的数值。该字节各位的定义如图★,其中,低5位一直为1;TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式,在DS18B20出厂时,该位被设置为0,用户不要去改动;R0和R1决定温度转化的精度位数,即用来设置分辨率,其定义方法见表★ 高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节是前面所有8

AD590温度传感器简介

AD590温度传感器简介 AD590就是一种集成温度传感器(类似的芯片还有LM35等),其实质就是一种半导体集成电路。它利用晶体管的b-e结压降的不饱与值VRE与热力学温度T与通过发射极电流I的下述关系实现对温度的检测。 式中,k就是波耳兹曼常数;q就是电子电荷绝对值。 集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出与电流输出两种。电压输出型的灵敏度一般为10mV/K(温度变化热力学温度1度输出变化10mV),温度0K时输出0,温度25℃时输出2、9815V。电流输出型的灵敏度一般为1μA/K,25℃时输出298、15μA。 AD590就是美国模拟器件公司生产的单片集成两端温度传感器。它主要特性如下: 1) 流过器件电流的微安数等于器件所处环境温度的热力学温度(开尔文)度数,即 式中,IT为流过器件(AD590)的电流,单位为μA;T为温度,单位为K。 2) AD590的测量范围为-55~+150℃。 3) AD590的电源电压范围为4~30V。电源电压从4~6V变化,电流IT 变化1μA,相当温度变化1K。AD590可以承受44V正向电压与20V 的反向电压。因而器件反接也不会损坏。

4) 输出电阻为710MΩ。 5) AD590在出厂前已经校准,精度高。AD590共有I、J、K、L、M 五挡。其中M档精度最高,在-55~+150℃范围内,非线性误差为±0.3℃。I档误差较大,误差为±10℃,应用时应校正。 由于AD590的精度高、价格低、不需辅助电源、线性度好,因此常用于测量与热电偶的冷端补偿。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

pt100温度传感器原理

pt100温度传感器原理 PT100是一个温度传感器,是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在-200℃至650℃的范围. 电阻式温度检测器(RTD,Resistance Temperature Detector)是一种物质材料作成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻係数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)作成的电阻式温度检测器,最为稳定-耐酸碱、不会变质、相当线性...,最受工业界采用。 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT)其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度
因此白金作成的电阻式温度检测器,又称为PT100。 1:V o=2.55mA ×100(1+0.00392T)=0.255+T/1000 。 2:量测V o时,不可分出任何电流,否则量测值会不準。电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V,靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为 2.55mA,使得量测电压V如箭头所示为0.255+T/1000。其后的非反向放大器,输入电阻几乎无限大,同时又放大10倍,使得运算放大器输出为2.55+T/100。6V齐纳二极体的作用如7.2V 齐纳二极体的作用,我们利用它调出2.55V,因此电压追随器的输出电压V1亦为 2.55V。其后差动放大器之输出为

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

温度传感器DS18B20工作原理

温度传感器: DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。 2 DS18B20的内部结构 DS18B20内部结构如图1所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地,见图4)。 ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+1)。ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 图1 DS18B20的内部结构

图2DS18B20的管脚排列 DS18B20中的温度传感器完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。 温度值高字节 高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入。其中配置寄存器的格式如下: R1、R0决定温度转换的精度位数:R1R0=“00”,9位精度,最大转换时间为93.75ms;R1R0=“01”,10位精度,最大转换时间为187.5ms;R1R0=“10”,11位精度,最大转换时间为375ms;R1R0=“11”,12位精度,最大转换时间为750ms;未编程时默认为12位精度。 高速暂存器是一个9字节的存储器。开始两个字节包含被测温度的数字量信息;第3、4、5字节分别是TH、TL、配置寄存器的临时拷贝,每一次上电复位时被刷新;第6、7、8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。 3 DS18B20的工作时序 DS18B20的一线工作协议流程是:初始化→ROM操作指令→存储器操作指令→数据传输。其工作时序包括初始化时序、写时序和读时序,如图3(a)(b)(c)所示。

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

温度传感器工作原理

空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。NTC在电路中主要有如图一所示两种用法,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。本文附表为几种空调的NTC参数。室内环温NTC作用:室内环温NTC 根据设定的工作状态,检测室内环境的温度自动开停机或变频。定频空调使室内温度温差变化范围为设定值+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。室内盘管NTC 室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷)制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。室外盘管NTC 制热化霜温度检测,制冷冷凝温度检测。制热化霜是热泵机一个重要的功能,第一次化霜为CPU定时(一般在50分钟),以后化霜则由室外盘管NTC控制(一般为—11℃要化霜,+9℃则制热)。制冷冷凝温度达68℃停压缩机,代替高压压力开关的作用;变频制冷则降频阻止盘管继续升温。外环温NTC 控制室外风机的转速、冬季预热压缩机等。排气NTC 使变频压缩机降频,避免外机过热,缺氟检测等。吸气NTC 控制制冷剂流量,有步进电机控制节流阀实现。故障分析室内外盘管NTC损坏率最高,故障现象也各种各样。室内外盘管NTC由于位处温度不断变化及结露或高温的环境,所以其损坏率较高。主要表现在电源正常而整机不工作、工作短时间停机、制热时外机正常内风机不运转、外风机不工作或异常停转,压缩机不启动,变频效果差,变频不工作,制热不化霜等。化霜故障可代换室外盘管NTC或室外化霜板。在电源正常而空调不工作时也要查室内环温NTC;空调工作不停机或达不到设定温度停机,也要先查室内环温NTC;变频空调工作不正常也会和它有关。因室内环温NTC若出现故障会使得CPU错误地判断室内环温而引起误动作。室内环温NTC损坏率不是很高。

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当△V很小时,△V与△T成正比关系。定义△V对△T的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2.热电偶的种类 目前,国际电工委员会(IEC)推荐了8种类型的热电偶作为标准化热电偶,即为T型、E型、J型、K型、N型、B型、R型和S型。

空调温度传感器的种类及工作原理

自动空调系统温度传感器包括:发动机冷却液温度传感器、车内温度传感器、环境温度传感器、蒸发器温度传感器、日光辐射传感器、制冷剂温控开关等。控制单元根据这些传感器信号,计算出吹入客舱内空气所需的温度,选择所需的空气量,然后控制空气混合入口,水阀、进出气口转换板等,在驾驶员设定的温度范围内自动调节客舱内的温度,使其达到最佳,并自动控制空调的开启和关闭。 当发动机冷却液温度超过120℃时为了保护发动机,会让空调停止工作。空调压缩机内制冷剂温度过高,温度开关会切断压缩机电磁离合器的电路。装在蒸发器中央的蒸发器温度传感器或温度开关通过控制空调压缩机的运转来控制蒸发器的温度。 蒸发器温度控制的目的是防止蒸发器结霜。如果蒸发器的温度低于0℃,凝结在蒸发器表面的水分就会结霜或结冰,严重时会堵塞蒸发器的空气通道,导致冷却系统制冷效果明显降低。为了避免蒸发器结霜,就必须将蒸发器的温度控制在0℃以上。蒸发器温过低,低于设定值0℃以下时,空调放大器会切断压缩机电磁离合器的电路。蒸发器出口温度传感器失效,会导致空调压缩机离合器频繁吸合和分离。膨胀阀到蒸发器之间管路结霜,会导致空调出风量小。 空调系统制冷的条件之一是环境温度高于室内温度,环境温度传感器断路,端子进水、接触不良或接地不良,数据流会显示环境温度-30℃以下,将造成空调不制冷。 同时,发动机冷却液温度传感器断路或接地线接触不良,信号失准时,散热风扇不转,导致空调散热不良,也会进入失效保护,让空调停止工作。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/322878292.html,。

温度传感器原理温度传感器有几种分类怎么选择温度传感器

温度传感器原理温度传感器有几种分类怎么选择温度传感器 随着现在环境污染越来越严重,全球温度变化越来越不稳定,现在很多企业工厂单位研究所为了更好的控制温度的变化都采用温度传感器来收集温度参数数据,从而更好的做出对温度的控制,我们广州骏凯电子科技有限公司通过很多客户对温度传感器的使用还是有误解和疑惑,所以我们现在具体来说以下温度传感器的原理和使用方式。 温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照接触方式来分通常分为接触式和非接触式两类。 一、接触式 由热平衡原理可知,两个物体接触后,经过足够长的时间达到热平衡,则他们的温度必然相等。如果其中之一是温度计(热电偶或热电阻),就可以用他对另外一个物体进行温度测量,这种测温方式就叫接触式测温。他的特点是,温度计要与被测物体有良好的热接触,使两者达到平衡。应此,测稳精确度非常高。用接触式测温时,感温元件要与被测物体有良好的接触,往往会破坏被测物体的热平衡状态,并受被测物体同化,使其温度一样。应此,对感温元件的结构、性能要求比较高。 二、非接触式 利用物体的热辐射能随温度变化的原理测定物体温度。这样的测温方式叫做非接触式册温。他的特点是:不与被测物体接触,也不改变被测物体的温度分布,热惯性小。从原理上看,用这样的方式测温没有上限。通常用来测量1000度以上的移动、旋转或反映迅速的高温物体的温度或表面温度。 所以购买温度传感器首先必须选择传感器的结构,使敏感元件的规定的测量时间之内达到所测流体或被测表面的温度。温度传感器的输出仅仅是敏感元件的温度。实际上,要确保传感器指示的温度即为所测对象的温度,常常是很困难的。在大多数情况下,对温度传感器的选用,需考虑以下几个方面的问题: (1) 被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2) 测温范围的大小和精度要求。 (3) 在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (4) 被测对象的环境条件对测温元件是否有损害。 (5) 使用是否方便,质量是否保证!

相关文档
最新文档