高炉喷煤的现状及提高喷煤比的措施

高炉喷煤的现状及提高喷煤比的措施
高炉喷煤的现状及提高喷煤比的措施

高炉喷煤的现状及提高喷煤比的措施

摘要: 本文介绍了国内高炉喷煤现状, 分析了提高喷煤量的限制因素如炉缸热状态,煤粉燃烧,置换比,以及提高高炉喷煤比的措施,通过提高焦炭质量、改善鼓风质量、采用氧煤喷吹、混合喷吹等技术和工艺措施可有效提高喷煤比。

关键词:喷吹煤粉限制因素措施

1 前言

由于受自然资源和技术条件的限制, 我国在今后相当长的一段时间内仍将采用高炉炼铁工艺生产生铁。这是因为非高炉炼铁技术如直接还原炼铁, 目前只有在天然气资源丰富的国家或地区得到较大发展, 熔融还原炼铁正处于开发和完善阶段, 同时, 现有高炉生产能力很大, 还有大量的存量资产, 对现有的焦炉和高炉进行改造, 所需投资远比利用非高炉炼铁技术新建的炼铁设施要省得多。因此, 高炉炼铁技术在炼铁生产中仍将处于主导地位。但是, 高炉生产目前正受到投资、资源、成本、环保和运输等各方面的巨大压力。如何减轻这些压力是推动高炉炼铁继续生存与向前发展的关键。因此, 大力发展喷煤技术, 提高喷煤量是高炉炼铁技术发展的必然趋势。而高炉喷煤对优化高炉生产, 提高其经济效益有很重要的意义, 它可以扩展风口前的回旋区, 缩小呆滞区; 增加煤气中的氢气含量, 改善还原过程; 增加矿石在炉内停留的时间, 提高一氧化炭的利用率; 有利于提高风温和采用富氧鼓风, 对降低焦比和提高高炉的产量有显著效果; 它可以大量代替价格较高的焦炭, 降低生铁成本, 同时富化高炉煤气, 改善钢铁联合企业的能源供应。

2 高炉喷煤的现状

我国高炉喷煤具有较长的历史。进入90年代后高炉喷煤技术有了快速发展, 主要表现在高炉喷煤的一些重要技术问题取得突破, 如: 大高炉喷煤粉分配技术、串联罐软连接连续计量技术、可调混合器调节喷煤量技术、风口单支管煤粉计量技术流化上出料浓相输送技术等。目前, 重点企业喷煤高炉有51座, 占78%, 地方骨干企业喷煤高炉33座, 占28%。全国高炉喷煤总量从1990年的218万t 增加到1997年的638万t, 重点企业高炉喷煤总量达到489万t, 喷煤比达到84Kg/ t, 地方骨干企业喷煤量达到149万t,通过理论研究和生产实践, 确定了所追求的喷吹煤粉的目标: 吨铁燃料消耗500kg以下, 其中焦炭250kg以下, 煤粉250kg以上, 喷煤率(煤比/燃料比100%)达到50%以上。目前, 上述目标只有个别高炉短期内达到过, 如宝钢1号高炉1999年9月月平均焦比达到249. 7kg/ ,t 煤比260. 6kg/,t但燃料比超过了

500kg/,t 为510. 3kg/ t。该高炉1999年全年平均焦比为264kg/ ,t 煤比238kg/,t燃料比502kg/t。目前, 全球还没有高炉能够达到年平均焦比低于250kg/ ,t 同时煤比高于250kg/t 的。

3 提高喷煤量的限制因素

3.1 炉缸热状态

理论和实践表明, 只要高炉下部热量充沛, 上升的煤气通过热交换就能够保证上部的冶炼过程所要求的温度和热量。因此, 炉缸热状态成为高炉生产的关键。表明炉缸热状态的指标有多种,如风口前燃料燃烧的火焰温度(也称理论燃烧温度T理)、焦炭进入燃烧带时的温度Tc、必要的临界炉缸热贮备量等。世界各国炼铁工作者都把T理作为评价炉缸热状态的参数, 并根据各自的原燃料等操作条件和生产业绩, 统计归纳出各种T理的计算式, 以指导生产。应当指出, 各国的生产条件不同, 操作习惯也不同, 因此经验计算式不是万能的, 不能不顾自身条件随意套用。

3. 2 煤粉燃烧

与焦炭相比, 煤粉在风口前的燃烧有其共性也有其特殊性。其共性为同属气固相燃烧反应,反应的热力学和动力学机理相同。其特殊性为:首先煤粉燃烧要经历加热脱气、挥发分着火燃烧和残碳燃烧三个阶段, 而焦炭的前两个过程是在炼焦过程中完成的, 只是挥发分被回收成焦炉煤气, 经清洗, 在用户处燃烧, 因此焦炭在风口前燃烧只进行第三阶段。其次煤粉燃烧需在有限的空间内完成, 即从煤枪出口到燃烧带边缘( 1/3~1/2直吹管、风口小套和燃烧带总长度为2000~ 2500mm) 形成的有限空间内烧完, 否则将作为未燃煤粉被煤气流带入料柱, 而焦炭不受此限制。最后煤粉要在极短的时间内燃烧完。研究表明, 煤粉从煤枪出口到离开燃烧带的时间仅为0. 01~0. 04s。

3.3 置换比

生产中希望尽量提高煤的置换比。煤粉置换焦炭主要靠煤粉中的碳置换焦炭中的碳。在目前高炉炼铁生产中决定焦比的是碳作为热源的作用。

4 提高喷煤比的措施

高炉炉况稳定是喷煤的前提,没有稳定顺行的炉况,喷煤根本无从谈起。在高炉稳定顺行的基础上,通过提高焦炭质量、优化炉料结构、改善鼓风质量、采用氧煤喷吹、混合喷吹等技术和工艺措施来提高喷煤比。

4.1 提高焦炭质量

焦炭质量的提高是提高喷煤比的基础。随着入炉焦比降低、喷煤比及高炉利用系数的提高,焦炭在高炉内滞留时间延长,劣化加剧。因为在高炉块状带负荷加重使焦炭粒度变小,而在软熔带及以下区域受碱金属和熔融铁的侵蚀,CO2 熔损反应时间延长,熔损率提高,焦炭气孔增多变大、强度降低及内部结构遭破坏,粉化加剧,导致料层孔隙率降低,炉内透气性变差,最终破坏高炉炉况稳定,限制了喷煤比的提高。通过优化配煤结构炼焦、采用干熄焦技术、煤调湿技术、焦炉大型化、适当延长结焦时间等工艺及技术措施,可明显提高焦炭质量。济钢通过这一系列措施的实施,焦炭M40 达到86 % ,CRI<27 % ,CSR >66 %,为高炉进一步提高喷煤比打下了基础。

4.2 改善鼓风质量

1)提高风温。高炉大喷煤时,理论燃烧温度降低,适当提高风温可补偿理论燃烧温度,提高煤粉的燃烧速度。生产经验表明,每提高100 ℃风温可补偿T 理70 ℃以上,提高喷煤35 kg/t 左右。2)提高鼓风富氧率。高炉喷煤后,煤粉直接进入风口前高温燃烧区,由于煤粉中所含挥发分和灰分比焦炭中含量高,燃烧所产生的煤气体积必然大于全焦冶炼时的量。全焦冶炼时,一般炉缸每分钟产生的煤气体积约为风量的1.21 倍;而喷煤时,则为风量的1.25 ~1.3 倍,同时燃烧产生的灰分要进入炉渣,使渣量增加,而炉腹煤气体积和渣量的增加,势必恶化高炉下部料柱的透气性而影响高炉内炉料的顺行。由计算可知,在相同的冶炼条件下,喷煤量由零增加到100 kg/t(不富氧),炉腹煤气量增加0.8% ,渣量约增加4.3% 。如果在喷煤的同时富氧可减少炉腹煤气量,有利于透气性的提高。鼓风氧含量提高,氮含量减少,此时虽然风量减少而使鼓风带入物理热有所降低,但由于氮含量减少,使理论燃烧温度升高。另外富氧鼓风时,气相中氧气的分压力增加,这些都能加快煤粉燃烧率,提高煤粉燃烧率。

4. 3 采用氧煤喷吹技术

采用氧煤喷枪喷煤技术,可使喷吹煤粉的燃烧率进一步提高,煤粉利用率大幅度提升。

4. 4 混合喷吹

烟煤和无烟煤及贫瘦煤按一定比例混合喷吹,比单种煤喷吹具有更好的效果。烟煤易粉碎、易燃烧但碳含量低,置换比低,并且挥发分高,对安全措施要求高;无烟煤碳含量高,

挥发分低,但灰分高,不易燃烧,且煤质硬难粉碎。贫瘦煤介于二者之间,但价格高。3 种煤或2 种煤混合后,可扬长避短发挥各自的优势,实现喷煤比的提高。

5 结语

提高喷煤比是降低炼铁生产成本的有效途径。通过理论研究和生产实践, 认为喷吹煤粉的目标为: 煤比250kg/ ,t 焦比250kg/,t 燃料比500kg/t。提高煤比的限制性因素很多, 主要有炉缸的热状态、煤粉的燃烧情况、高炉顺行情况及煤焦置换比情况等。为有效提高喷煤比, 应努力解决好精料质量、鼓风质量、喷吹工艺及高炉操作等问题。同时, 不能一味盲目地追求高喷煤比, 应根据高炉各自的条件, 努力寻求最适宜的喷煤量, 以达到低耗、高产、优质、长寿和高效的目的。

参考文献:

[1]翁宇庆. 我国冶金工业在新世纪最初几年的科技进步[J].钢铁,2004 (1):1-8. [2]王凤林. 国内外高炉喷吹燃料的现状及动向[J]. 炼铁,1983(1):63 -67 . [3]徐矩良. 炼铁工艺的新发展和炼铁工序的结构优化1J2. 炼铁, 1994, (4): 8. [4]徐矩良. 国内高炉喷煤情况及展望1J2. 炼铁, 1996, (4): 30-32.

[5]叶才彦. 发展我国高炉喷煤技术的意见1J2. 炼铁, 1992,(4): 21-25.

钢铁厂高炉喷煤操作

高炉喷煤 一、喷吹煤粉已成为小高炉炼铁的当务之急 i.当前,钢铁冶金行业遭遇到全球性的原料价格上涨,焦炭、矿石的 价格涨幅惊人,冶炼成本普遍提高,这给小高炉炼铁业带来更大的 困难。因此,降低冶炼成本成了小高炉作业的重要目标。其中,降 低焦化,尤其重要。 b)从50年代起,人们就在努力向高炉内喷吹相对廉价的煤粉,以部分替代 价格相对昂贵的焦炭。经过半个世纪的努力,在喷煤技术方面取得了巨 大的成功,喷煤技术日趋成熟。但是,成功的喷煤作业绝大部分都是在 大高炉完成的,高炉喷煤技术还有待推广和完善。 二、高炉喷吹煤粉降低焦比的原理 i.焦炭在高炉内主要有三大作用:还原剂和料柱骨架。焦炭生产过程 相对复杂,对于原料有特殊要求,由于资源和设备投资方面的因素, 这些年来焦炭价格不断上涨,成为炼铁成本上升的主要原因。从高 炉风口向高炉的内喷吹煤粉,由于具有和焦炭同样的碳素,可以部 分替代焦炭低廉许多,从而可以在很大程度上降低生铁生产成本。 三、喷吹煤粉的技术效果 i.高炉喷煤后,除了焦比大幅度降低外,还给高炉操作增加了一个调 剂手段,高炉操作人员可以利用控制喷煤量来控制高炉的热状态; 喷煤后,由于煤比焦炭具有更多的挥发分,从而增加了煤气中氢的 含量,煤气还原能力增强,有利于发展间接还原,这实际上也是降 低焦比的原因之一。 四、高炉喷煤的特点

高炉喷煤之后,高炉压差并没有显著增加,也就是说,对于高炉透气性的影响不如大高炉那样明显。高炉由于整体能耗水平较高,喷煤后 效果比较明显,置换比好于大高炉,接近1.0。高炉采用球式热风炉,风 温相对较高,有利于喷煤。此外,小高炉喷煤的实践表明:喷煤后高炉 炉况进一步稳定,炉缸工作状态改善,普遍顺行。 五、重要意义 i.高炉喷煤对现代高炉炼铁技术来说是具有革命性的重大措施。它 是高炉炼铁能否与其他炼铁方法竞争,继续生存和发展的关键技 术,其意义具体表现为: b)以价格低廉的煤粉部分替代价格昂贵而日趋匮乏的冶金焦炭,使高炉 炼铁焦比降低,生铁成本下降; c)喷煤是调剂炉况热制度的有效手段; d)喷煤可改善高炉炉缸工作状态,使高炉稳定顺行; e)喷吹的煤粉在风口前气化燃烧会降低理论燃烧温度,为维持高炉冶炼 所必需的动力,需要补偿,这就为高炉使用高风温和富氧鼓风创造了 条件; f)喷吹煤粉气化过程中放出比焦炭多的氢气,提高了煤气的还原能力和 穿透扩散能力,有利于矿石还原和高炉操作指标的改善; g)喷吹煤粉替代部分冶金焦炭,既缓和了焦煤的需求,也减少了炼焦设 施,可节约基建投资,尤其是部分运转时间已达30年需要大修的焦 炉,由于以煤粉替代焦炭而减少焦炭需求量,需大修的焦炉可停产而 废弃; h)喷煤粉代替焦炭,减少焦炉炉座数和生产的焦炭量,从而可降低炼焦 生产对环境的污染。 六、工艺组成 高炉喷煤工艺系统主要由原煤贮运、煤粉制备、煤粉输送、煤粉喷吹、干燥气体制备和供气动力系统组成。 七、工艺模式 从煤粉制备和喷吹设施的配置上来分,高炉喷煤工艺有两种模式,即间接喷吹模式和直接喷吹模式。制粉系统和喷吹系统结合在一起直接向高炉喷吹的工艺叫直接喷吹工艺;制粉系统和喷吹系统分开,通过罐车或气动输送管道将煤粉从制粉车间送到靠近高炉的喷吹站,再向高炉喷吹煤粉的工艺

高炉喷煤基本知识

高炉喷煤基本知识 一、喷吹煤粉对高炉的影响: 1、炉缸煤气量增加,鼓风动能增加,燃烧带扩大。煤粉含碳氢化合 物高,在风口前气化后产生大量H2,使炉缸煤气量增加,煤气中的H/C比值越高,增加的幅度越大,无疑也将增大燃烧带; H2的粘度和密度均小,穿透能力大于CO,部分煤粉在风管和风口内就开始脱气分解和燃烧,所形成的高温混合气流其流速和动能远大于全焦冶炼时的风速和动能,故喷吹煤粉后,风口面积应适当扩大,以保持适宜的煤气流分布。 2、理论燃烧温度下降,而炉缸中心温度均匀并略有上升。理论燃烧 温度下降的原因:①喷入煤粉量冷态进入燃烧带;②煤粉中碳氢化合物在高温作用下先分解再燃烧,分解反应吸收热量;③燃烧生成的煤气量增加。 炉缸中心温度上升的原因:①煤气及动能增加炉缸径向温度梯度缩小;②上部还原得到改善,热支出减少;③高炉热交换改善。 3、料柱阻损增加,压差升高。①喷吹后煤气量增加流速加快;②料 柱中的矿/焦比值越大。 4、间接还原发展。①煤气中还原成份(CO+H2)浓度增加;②H2 的数量和浓度显著提高,炉内温度场变化。 二、喷吹燃料“热补偿” 喷吹燃料以常温态进入高炉要消耗部分热量需进行热补偿,经验

表明:喷煤量增加,50kg/t ·Fe 需补偿风温均80℃。 三、 热滞后: 煤粉在炉缸分解吸热增加,初期使炉缸温度降低直到新增加喷吹量带来的煤气量和还原气体浓度(尤其是H 2量)的改变而改善了矿石的加热和还原下到炉缸后,开始提高炉缸温度比过程所经历的时间为“热滞后”时间,即炉料从H 2代替C 参加还原的区域(炉身温度1100~1200℃处)下降到炉缸所经过的时间,一般滞后时间在2—4h 。 估算热滞后时间 ·V 13 V 2—每批料的体积m 3 N —下料批数 批/h 四、 煤粉喷入高炉后的去向: 风口前燃烧 煤粉 未燃煤粉 随煤气逸出炉外 五、 置换比煤粉的置换比常为0.7—0.9,一般取0.8。 六、 喷煤高炉操作 1、 应固定风温调剂煤量,用调节喷吹量来保持料速的基本稳定。 2、 喷煤纠正炉温波动的效能,随喷煤量的增加而减弱。

我国高炉喷煤技术的现状及发展趋势

邯钢1000m3高炉提高喷煤比的探索 刘伟,樊泽安,王飞,徐俊杰 (河北钢铁集团邯郸钢铁公司炼铁部,河北邯郸056015) 摘要:邯钢4#高炉(有效容积1000m3)经过不断探索,加强原燃料管理、高炉的操作和维护,使喷煤比逐月提高、焦比和综合焦比不断下降。喷煤比由2008年的130.6 kg/t提高到2009年6月的163.1 kg/t,焦比由361kg/t下降到了305kg/t,综合焦比由524kg/t下降到了500kg/t,取得了良好的经济效益。 关键词:高炉;喷煤比;探索 引言 邯钢4#高炉有效容积917m3,2007年、2008年虽然炉况长期稳定顺行,但由于燃料变化比较大,有时甚至一天就变换数次焦炭,各项指标未达到最好水平,平均日产2600t上下,一级品率70%,焦比361kg/t,煤比130kg/t,焦丁比16kg/t风温1100℃,平均[Si]0.61%。进入2009年以来,4#高炉以“低耗高产”举措应对当前市场挑战,进一步探索好的经济技术指标成效显著,通过监督改善原燃料质量、适时调整煤气流分布、降低入炉焦比、提高富氧、增加喷煤、高风温协调互补、适当提高炉渣碱度等措施,基本实现了全捣固焦冶炼的长期稳定顺行,并实施了低硅冶炼,取得了很好的经济技术指标。2009年4月以来,平均日产达到2700t以上,利用系数达到3.0,一级品率93.45%,焦比降到305kg/t,煤(全无烟煤)比达到160kg/t以上,中焦比达到18kg/t,焦丁比达到16kg/t,风温达到1135℃,平均[Si]达到0.43%以下。通过优化高炉操作技术经过不断实践和探索,在喷吹全无烟煤的情况下煤比达到160kg/t以上实属难得(见表1)。 表1 4高炉生产指标 利用系/t. (m-2. d-1) 煤 比 /kg.t-1 入 炉焦比 /kg.d-1 焦 丁比 /kg.d-1 中 焦比 /kg.d-1 风 温/℃ R 2 [ Si]/% 20 08 2.88 6 1 30.6 361 14 20 1 107 1 .15 .61 20 09.4 3.0 1 51.7 327 16 18 1 132 1 .13 .44 20 3.001308 17 18 110

喷煤工艺流程图及概述

炼铁一厂喷煤系统工艺流程图及概述 山西中阳钢铁有限公司一体系升级改造项目高炉工程制粉喷吹系统,制粉、收粉系统全部利旧;干燥系统除热风炉废气管道需改造外,其他设施利旧;对喷吹系统进行局部改造。 制粉喷吹系统主要工艺现状:制粉喷吹站厂房为混凝土结构,全封闭。煤粉制备系统采用单系列全负压制粉工艺,喷吹系统采用1个煤粉仓、下部六罐并列(每三罐分别对应405m3高炉)。整个系统即1套干燥气发生炉系统、1套磨煤机制粉系统、1套煤粉收集系统、2套喷吹系统(一个煤粉仓,下部六罐并列)。 新建1780m3高炉投产后,2座405m3高炉拟全部拆除,现有制粉喷吹站只为新1780m3高炉供给煤粉。新建1780m3高炉主管及分配器设置方案为:2根喷吹主管(一个主管对应一个分配器)及2个炉前分配器(1#分配器对应奇数风口,2#分配器对应偶数风口)的直接喷吹工艺。 喷吹系统与原系统的交接界面为:喷吹罐输煤阀后的喷吹主管起点。喷吹煤粉主管及分配器平台为本工程设计范围。 1、工艺条件及要求 1)原煤条件 单一煤种和混合煤均可喷吹,通常使用三种煤组成混合煤,安全措施上按强爆炸性烟煤设计。原煤的理化指标见表2.10-1。 表1 原煤的理化指标表

2)煤粉条件 煤粉质量要求见表2.10-2。 表2 煤粉质量要求表 3)制粉喷吹能力 按高炉正常日产铁水量4005吨,正常喷吹能力为160kg/t铁计,高炉正常喷吹所需煤粉量为26.7t/h;按高炉正常日产铁水量4005吨,喷吹能力为200kg/t铁计,高炉最大喷吹所需煤粉量为33.4t/h。 2、主要工艺参数 制粉喷吹系统主要工艺参数见表2.10-3。

高炉喷煤流化板新技术

技术秘密全文 1、技术秘密名称:高炉喷煤流化板新技术 2、股份公司原有技术及存在的问题 高炉喷煤系统喷吹罐流化板,采用的是多层不锈钢丝网结构,存在易被煤粉堵塞,每次定修时要拆检、疏通。1号、2号、4号高炉采用的是在不锈钢板上密布直通小孔结构,每块5万元,价格高,且存在煤粉可以通过的弊端。而且随着使用时间的推移,流化效果将有所降低,影响到喷吹精度和喷煤量。 3、国内外解决同类问题的技术方案 目前国内外同行或同专业领域,除上述技术外,也有采用陶瓷粉末冶金技术制造的流化板,价格高,属脆性材料,受震动、冲击易碎裂。 4、技术秘密的具体内容 采用不锈钢丝网夹层过滤材料制作流化板,上下两层是不锈钢丝网,中间层是粉末黏结过滤材料,其过滤网目数大于煤粉的最高目数-220网目,使得煤粉不能通过,而气体可以通过,不锈钢丝网焊接在不锈钢法兰上。 此种流化板价格每块280元,价格低,有韧性不碎裂,煤粉不能通过、不会堵塞,无需定期拆检、疏通。 焊接处不锈钢丝网粉末黏结过滤材料 不锈钢法兰不锈钢丝网焊接处 图一不锈钢丝网夹层过滤材料流化板(保密) 5、实施后效果 原喷吹罐流化板,是采用直通小孔结构,煤粉可以通过,易被煤粉堵塞,流化效果明显降低,直接影响到喷吹精度和喷煤量。每年四次定修时和日常检修时均要安排拆检、疏通。通过采用流化板新技术后,经过一年时间的生产实践后证明,流化板没有发生过被煤粉堵塞的情况,使得流化装置始终能正常发挥流化作用。在流化氮气压力低于喷吹罐喷吹压缩空气压力时,也没有发生过倒压造成煤粉倒灌的情况,提高了设备稳定性,每年减少了检修工作量,喷煤精度误差减小0.5%,而且不需要定修拆检、疏通,保障了高炉生产的稳定顺行。同时从根本上解决了制约750m3高炉的大喷量喷煤的瓶颈,喷煤量从原来15t/h

大中型高炉技术经济指标改善的条件

大中型高炉技术经济指标改善的条件和途径近一年来,我国一些大中型高炉生产不稳定,技术经济指标下滑。这与2011年上半年全国重点钢铁企业高炉运行状况是一致的。反应出,高炉焦比和燃料比升高,喷煤比和利用系数下降等。这给联合企业生产带来较大的负面影响。能耗、成本升高,产量下降,经济效益下滑,使企业生产工作量加大。要用科学发展观去分析,问题出在哪儿?如何去解决? 1. 高炉炼铁是以精料为基础 国内外炼铁工作者均公认,高炉炼铁是以精料为基础。精料技术水平,对高炉生产指标的影响率在70%,工长操作水平占10%,企业管理占10%,设备运行状态占5%,外界因素(动力、供应、上下工序等)占5%。 我们要按《高炉炼铁工艺设计规范》中提出的对不同容积高炉,焦炭、烧结矿、球团矿、块矿、喷吹煤粉等的质量要求去组织生产。目前,炼铁原燃料供应紧张,价格高,且波动大。造成企业采购有一定难度。 精料技术的核心是要提高入炉矿含铁品位。含铁品位下降1%,炼铁燃料比下降1.5%,产量下降2.5%,吨铁渣量增加30kg/t,要减少喷煤粉15kg/t.目前,高品位矿价高难买,企业已不再过度追求高品位。可以采用以下办法提高入炉矿含铁品位:将买来的矿石进行再选,提高球团矿配比,增加高品位块矿使用比例等。 《高炉炼铁工艺设计规范》中对烧结矿质量提出的要求是: 铁分波动±≤0.5%,碱度波动±≤0.08%,铁分和碱度波动达标率≥80%~98%;含FeO≤9.0%,波动达标±≤1.0%.目前,一些企业达不到这个标准,严重影响了高炉正常生产。现在,我国炼铁生产存在的最大问题是生产不稳定,其主要原因是原燃料质量不稳定(特别是焦炭质量变化)。稳定是高炉生产的灵魂,炼铁企业应当在生产稳定上下功夫。 原燃料波动的影响:品位波动1%,产量影响3.9%~9.7%,焦比2.5%~4.6%. 碱度波动0.1,产量影响2%~4%,焦比1.2%~2.0%。 我们希望,钢铁企业有稳定的原燃料供应基地,可以使高炉炉料质量和数量均有稳定的保证。 烧结矿质量应符合表1的规定。

高炉喷煤制粉控制方案(王宏伟)

高炉喷煤控制系统 技术方案 辽宁中新自动控制有限公司 2003-2-17

目录 一、概述 二、高炉喷煤工艺流程及主要部分自动化控制说明 三、自动化系统硬件组成 四、控制策略 五、控制系统的监控与操作

一、概述 近年来,我国的高炉喷煤取得了巨大的成绩,已经形成了具有特色的、成熟配套的喷煤技术和工艺流程。在高炉炼铁过程中采用富氧大喷煤可以节省大量焦炭,能够较大幅度地降低炼铁成本。例如采用先进的配煤技术,能够把不同性能的煤种进行混合,以提高其燃烧率;采用中速磨进行煤粉制备,大幅度降低电耗和噪音污染;采用热风炉烟气做载气和干燥气,既节约了能耗又起到了防爆作用;采用布袋一次收粉,取消了一级、二级旋风收粉装置;采用一级风机,实现全负压操作;采用直接喷吹工艺,喷吹系统和制粉系统设在同一厂房内;喷吹罐可采用串联或并联方式,采用流化罐上出料及浓相输送技术,可以使出煤均匀,防止脉动和减少对输煤管道的磨损;采用总管加分配器工艺将煤粉送至高炉的各个风口;采用电容流量计进行总管及支管煤粉计量,配合其它设备可以形成闭环煤量自动控制;采用氧煤枪进行局部富氧以提高煤粉燃烧率;采用供氧及安全控制系统以防止氧气泄露。因此,如何在保证控制安全可靠的前提下,实现低成本自动化,是喷煤自动控制设计者主要考虑的问题。 二、高炉喷煤工艺流程及主要部分自动化控制说明 从工艺角度来讲,整个系统可分为制粉和喷吹两个子系统,制粉工艺系统又分为原料控制系统、干燥系统、磨煤系统,喷吹工艺系统又分为布袋除尘、喷吹系统、动力系统。如下面高炉喷煤主工艺图。其工艺流程见图

高炉喷煤工艺主流程图 1:排烟风机入口调节阀,2:布袋除尘事故充氮阀,3:布袋反吹阀,4:中速磨事故充氮阀,5:煤粉仓事故充氮阀,6:均压阀,7:煤粉仓流化阀,8、9:喷吹罐放散阀,10、11:蝶阀,12、13:球阀,14、15:充压阀,16、25:补压阀,17、18:喷吹罐流化阀,19、22:补气调节阀,20、23:出煤阀,24、快切阀,26:氮气空气切换阀,27:安全用氮减压阀,28:氮气总管调节阀电气控制主要设备: a、制粉系统: 圆盘给料机、胶带机、检铁器、犁式卸料器、定量给料机、热风炉废气引风机,助燃风机,中速磨(密封电机、液压电机、慢传电机、加热器、润滑泵)、排煤风机。 各种阀:热风炉废气放散阀,冷风阀、干燥剂放散阀,中速磨事故充氮阀,快切阀,输煤阀等。 b、喷吹系统: 主排烟风机、布袋叶轮给煤机 各种阀:排烟风机入口调节阀,布袋除尘事故充氮阀,布袋反吹阀,煤粉仓脉冲阀、停风阀、煤粉仓事故充氮阀,煤粉仓流化阀,均压阀,喷吹罐放散阀,蝶阀,球阀,充压阀,补压阀,喷吹罐流化阀,补气调节阀,出煤阀,快切阀,氮气空气切换阀,安全用氮减压阀,

国外钢铁企业的高炉喷煤技术

2 国外钢铁企业的高炉喷煤技术 2.1浦项光阳厂和阿塞勒Gijon厂 近年来,浦项公司和阿塞勒公司的高炉生产者一直计划改进现有的喷煤装置,并对其静力分配器系统提出两种改进方案。改进现有喷煤装置的主要原因如下:1)焦炭的价格提高,质量较差,改进喷煤系统后,可以减少焦炭的使用量;2)寻求一种更经济、更稳定的高炉操作方式;3)高炉中修后,铁水生产能力提高;4)多年来的喷煤实践证明,喷吹煤粉可以实现高炉工艺最佳化,高煤比操作是可行的;5)原有喷煤装置的计量精度无法满足更高煤比的要求,即高煤比时不能保证稳定喷吹。 要想对原有的喷煤装置进行改进,有两个问题必须解决:首先,提高喷煤装置喷吹能力,应额外增加1台喷吹罐或优化喷吹罐的倒罐循环次序;其次,须检测煤粉总流量和流量精度。 对于单管流量控制系统或采用分配器的喷吹系统以及流量均衡喷嘴的系统,在安装测量和控制设备后,一般能够达到所要求精度,为了达到今后所必需的高精度,须改进喷煤装置。 2.1.1 单管流量控制 计划用一台喷吹罐取代静力分配器。喷吹罐后序的喷吹管线将安装煤粉流量的测量装置和煤粉流量控制阀,以对高炉各个风口煤粉喷吹过程实现闭环控制。喷吹罐前序的输送罐将用于向喷吹罐送煤。输送煤的载气一部分用于维持喷吹罐内的压力,另一部分通过布袋收粉器释放掉。布袋收粉器出口处的压力控制阀用于控制喷吹罐内的压力。这套方案具有单管流量控制装置的所有优点,如在喷吹管路中,煤粉流量精度的偏差小于1%、总流量控制偏差小于0.5%以及带入高炉的氮气量少等。实际上,由于喷吹罐的位置靠近高炉,因此喷吹罐内的喷吹压力较低,可实现高浓相输送。 此外,由于输送系统(输送罐到喷吹罐)与喷吹系统是分开的,所以总流量的波动不会影响喷吹流量。对简单分配器进行的第一套改进方案已在韩国浦项公司光阳厂的1号高炉成功实施,其原理见图1-1所示。

浅谈高炉经济喷煤比

浅谈高炉经济喷煤比 王立杰尹焕岭赵杨 (唐钢不锈钢) 摘要:高炉喷煤是降低铁水成本,增加利润的重要手段;同时,直接喷吹煤粉,不经过焦化工艺,减少了环境污染。提高喷煤比应具备的条件是:稳定的原燃料质量、合适的理论燃烧温度、精细的操作和合理煤气分布。高炉提高喷煤比是冶炼技术发展的必然趋势,然而各单位能满足的条件不同,因此各单位的经济煤比也应根据自身条件确定。 关键词:高炉经济喷煤比理论燃烧温度未燃煤粉置换比 0 前言 高炉喷吹煤粉则是部分替代焦炭的“提供热量”及“还原剂和渗碳剂”,即以价格低廉的煤粉部分替代价格日趋昂贵的冶金焦炭,以缓解因炼焦用主焦煤匮乏所造成的冶金焦炭产量渐显不足的矛盾,最终降低高炉炼铁焦比和生铁成本。当前高炉生产的一些习惯性认识和操作,直接影响到高炉喷煤的科学性,且给高炉喷煤效益乃至生铁成本带来不良影响,因此选择合理的喷煤比就是实现企业效益最大化的重要一项。 1 经济喷煤比的概念 所谓经济喷煤比,是在一定的生产条件下(产量、原燃料质量、炉料结构、煤和焦炭的市场价格等),喷煤比最高且稳定、焦比和燃料比最低的操作煤比。可见,经济喷煤比的大小取决于喷煤量水平、煤交置换比和能量消耗利用程度,最终有总燃料消耗、工序成本来确定。喷煤对高炉工序降低值的影响可按下式计算:△J=PCR(P k×R—P m)/1000(1) 式中△J——高炉工序成本降低值,元/t; PCR——喷煤比,kg/t; R——未校正煤焦置换比; P k——焦炭价格,元/t; P m——煤粉工序成本,元/t。 从图1曲线可见,喷煤生产操作中存在经济喷煤比。由于原燃料质量、炉况参数在一定范围内波动,因此经济喷煤比是一个操作范围。 2 提高喷煤比的关键技术 2.1稳定原燃料条件 2.1.1提高焦炭质量,特别是焦炭的热性能,保证高炉必要炉料柱透气性。

高炉喷煤技术方案 2

1 概述 上世纪60年代初,我国高炉喷煤试验获得成功后,高炉喷煤技术在我国逐渐推广应用。进入90年代,特别是经过“八五”“氧煤强化炼铁”项目攻关后,我国高炉喷煤技术发展跃上了一个新的台阶,已经赶上了世界先进水平,吨铁喷煤量和覆盖率大幅度增加。2002年全国54家重点(原重点和地方骨干)联合钢铁企业吨铁喷煤量已达到125kg/t,企业喷煤覆盖率达到85%以上。高炉喷吹煤粉及提高喷煤量已经成为现代高炉炼铁技术的发展方向,同时也是降低生产成本最直接和最有效的手段之一。当前我国炼铁生产规模正在迅速扩大,生产效率也在不断提高,对焦炭的需求量日益增加,导致冶金焦价格高,资源紧缺,高炉大量喷煤是解决这一矛盾的最佳措施。 贵公司现有两座高炉450立方米的高炉。年产生铁约126万吨。如两座高炉采用全焦冶炼,每年需要焦炭约70万吨。高炉生产成本较高,采用高炉喷煤技术,不但在很大程度上可以缓解焦炭的供需矛盾,减轻焦炭质量波动对高炉操作的影响,而且也会进一步降低炼铁生产成本,同时也为高炉操作增加了下部调节手段,有利于改善高炉生产的技术经济指标。 鉴于上述情况,以及着眼于贵公司长期的发展战略目标,拟建设高炉喷煤工程,工程建设指标为喷煤工艺及设备能力正常XX kg/t,最大达到XXX kg/t喷煤比能力,喷吹煤种为无烟煤浓相输送设计。置换比按X计算,可以代替约X万吨焦炭。

2.喷煤设计工艺要求 2.1 喷煤量 根据贵公司对喷煤工程的要求,和参照国内外喷煤技术的发展…。 2.2 设计条件 喷吹用煤…。 2.3工艺流程 设计采用…方案,以节省投资和占地面积。…本喷煤工程包括…高炉。目前高炉喷煤系统有关的工艺参数如表1所示。 表1 喷吹系统有关的基本参数 2.4 喷吹站 喷吹站采用并罐浓相喷吹工艺。 喷吹站的操作全部自动联锁,整个系统各设备既可自动也可手动。 2.5 原煤理化指标

高炉经济喷煤比计算

关于高炉经济喷煤比 的理论计算 通过查阅资料得知: 经济喷煤比取决于喷煤量水平、高炉煤焦置换比、能量消耗利用程度。喷煤对高炉工序成本降低的影响可按照公式(1)计算。 1000 )(m k P R P X J -?=? (1) 其中:J ?---炼铁工序成本降低值,元/t ; X------喷煤量,kg/t ; P k -----焦炭价格,元/t ; R------煤焦置换比; P m ----喷吹煤粉的价格加工序成本,元/t ; 经查阅资料得知:在生产条件稳定条件下,煤焦置换比与喷煤比存在线性关系如公式(2)所示。 R=1.025-0.00158X (2) 煤粉配比按照无烟煤55%,烟煤45%标准计算。 所以,可以得出结论: 1000)] %45%55()00158..0025.1([m 工烟无m m k P P P X P X J +?+?--?=? (3) 其中:无m p ---无烟煤价格; 烟m p ---烟煤价格; 工m p ---煤粉工序成本; 公式(3)中:P k ,无m p ,烟m p ,工m p 依据成本表查询实时价格,可 以认为是常数,所以公式(3)是高炉工序成本下降值J ?关于喷煤比X 的二次函数,所以在一定生产条件下,存在一个合适的喷煤比,最

大程度的降低高炉的工序成本。 例:依8月成本数据进行计算: (1)480高炉合适的喷煤比: P k = 1865.61元/t 无m p = 1188.25元/t 烟m p = 742.87元/t 工m p =10元/t 带入公式(3)计算: J ?=1000 )10%4587.742%5525.1188()00158.0025.1(61.1865[+?+?--?X X =0.001X (1912.25-2.95X-997.83) =-2.95??-310X 2+914.42??-310X 依据抛物线的性质得知: 当X=95 .2242.914?-=154.98kg/t 时,高炉成本下降值最大 480max J ?=70.86元/t (2)1080高炉合适的喷煤比: P k =1920.28元/t 无m p = 1188.25元/t 烟m p = 742.87元/t 工m p =10元/t 带入公式(3)计算: J ?=1000 )10%4587.742%5525.1188()00158.0025.1(28.1920[+?+?--?X X =0.001X (1912.25-2.95X-997.83) =-3.03??-310X 2+970.46??-310X 依据抛物线的性质得知: 当X=03 .3246.970?-=160.14kg/t 时,高炉成本下降值最大 1080max J ?=77.71元/t

高炉富氧喷煤

高炉富氧喷煤 摘要:提高煤比是今后我国炼铁的重要任务。富氧对提高煤比的作用在理论和实践中都得到证实。3%一5%的富氧是实现200kg/t以上煤比的必要条件。当今的价格体系使富氧在经济上已可行,变压吸附制氧为高炉用氧提供了新的选择。必须建立完善的高富氧大喷煤技术保障措施,尤其重视风口监测、鼓风湿分的监控以及喷煤系统的完善。 关键词:高炉富氧鼓风喷煤 Blast furnace oxygen-enriched coal spray Abstract :High coal ratio is a target of ironmaking in future and the role of oxygen enrichment in high coal ratio has been proved in theory and practice.3%~5%oxygen enrichment is essential for realizing the coal ratio higher than 200 kg/t.The current price system makes the oxygen enrichment feasible economically and oxygen generation by absorption at variable pressure provides new routine of oxygen supply for blast furnace.It is very important to set up a complete technical system of pulverized coal injection with high oxygen enrichment,monitoring of tuyere status and water content in blasting air. Key words: blast furnace air blasting with oxygen enrichment pulverized coal injection 1.概述 高炉是生产率和热效率都很高的炼铁设备,其主要目的是用燃料和铁矿石及溶剂,经济而高效率地得到温度和成分合乎要求的液态生铁。目前,炼铁系统正受到投资、资源、成本、能源、环境和运输等方面金融风暴的巨大影响,面临着严重的挑战。而利用技术进步减轻这些压力是高炉炼铁系统继续生存和发展的关键。高炉富氧喷煤技术可以使高炉大幅度降低焦碳消耗,缓解各方面的压力,提高高炉的竞争力。高炉富氧喷煤技术是炼铁系统结构优化的中心环节。 2 高炉富氧鼓风 2.1何谓高炉富氧鼓风 富氧鼓风是指往高炉鼓风加入工业氧(一般含氧99.5%),使鼓风含氧超过大气含氧量,其目的是提高冶炼强度以增加高炉产量和强化喷吹燃料在风口前燃烧。 2.2富氧鼓风的方法 富氧鼓风的方法主要有两种:一种是从鼓风机吸入口加入低压氧气,其优点是氧气不用专门氧压机加压,可节约投资与电耗,高炉操作方便;其缺点是需设高炉专用制氧机,氧漏损较多,该方法在前苏联普遍采用;另一种是采用高压供氧即工业氧通过加压后直接加入高炉管道内,其优点是可与炼钢用氧联网,保持制氧机全负荷运行,比较经济,但需增设氧压机加压,投资多,电耗高。最近一些国家正在研究发展高炉氧煤燃烧器,即将工业氧通过氧煤燃烧器送入,与喷吹煤粉有效混合,实现充分燃烧和大量喷吹煤粉。 2.3 高炉富氧鼓风对冶炼的影响 (1)提高冶炼强度: (2)提高理论燃烧温度;

降低高炉炼铁燃料比技术措施方案

整体解决方案系列 降低高炉炼铁燃料比技术 措施 (标准、完整、实用、可修改)

编号:FS-QG-32785降低高炉炼铁燃料比技术措施Technical Measures to Reduce the Blast Furnace Ironmaking Fuel Ratio 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目 标管理科学化、制度化、规范化,特此制定 钢铁产业节能减排的工作重点是在炼铁系统。由于炼铁系统的能耗占钢铁联合企业总能耗的70%左右。节能减排的工作思路是:首先要抓好减量化用能,体现出节能要从源头抓起;其次是要进步能源利用效率;第三是进步二次能源回收利用水平。降低高炉炼铁燃料比就是体现出企业节能工作是要从源头抓起,对企业的节能工作是有着重大意义。 1.降低炼铁燃料比是进步高炉利用系数的正确途径 炼铁学理论上是:高炉利用系数=冶炼强度÷燃料比。也就是说,进步利用系数有两个办法。一个是进步冶炼强度,另一个是降低燃料比。我国中小高炉实现高利用系数主要是采用进步冶炼强度的办法。采用配备大风机,大风量操纵高炉,进行高冶炼强度生产,来实现高利用系数。这种做法就带来高炉的能耗高,不符合钢铁产业要节能降耗的工作思路,

应当予以纠正。目前大型高炉吨铁所消耗的风量在1200m3以下,宝钢为950m3左右。而一些小高炉的吨铁风耗是在1400m3左右,甚至有大于1500m3的现象。燃烧1kg标准煤要2.5m3的风,鼓风机产生1m3风要消耗0.85kg标准煤。大风量,高冶炼强度操纵的高炉,燃料比就要升高。所以说小高炉的燃料比要比大高炉高30~50kga。钢铁产业要实现"十一五"期间GDP能耗要降低20%,主要工作方向就是要在降低炼铁燃料比上下功夫!由于高炉炼铁工序的能耗要占联合企业总能耗的50%左右。 2.高炉炼铁燃料比的现状 国际先进水平的炼铁燃料比是在500kg/t以下,领先水平是在450kg/t左右。20xx年我国重点钢铁企业高炉炉炼铁的燃料比为529kg/t,首钢为464kg/t,宝钢为484kg/t,太钢为491kg/t,武钢为488kg/t,鞍钢为500kg/t,最高的企业达到673kg/t。这说明,我国已把握了先进的高炉炼铁技术,但是炼铁企业发展不平衡,尚有较大的节能潜力。 高炉炼铁的燃料比是:进炉焦比+喷煤比+小块焦比。喷煤比是不计算量换比。这样企业之间进行对比才公道科学。

高炉喷煤的现状及提高喷煤比的措施

高炉喷煤的现状及提高喷煤比的措施 摘要: 本文介绍了国内高炉喷煤现状, 分析了提高喷煤量的限制因素如炉缸热状态,煤粉燃烧,置换比,以及提高高炉喷煤比的措施,通过提高焦炭质量、改善鼓风质量、采用氧煤喷吹、混合喷吹等技术和工艺措施可有效提高喷煤比。 关键词:喷吹煤粉限制因素措施 1 前言 由于受自然资源和技术条件的限制, 我国在今后相当长的一段时间内仍将采用高炉炼铁工艺生产生铁。这是因为非高炉炼铁技术如直接还原炼铁, 目前只有在天然气资源丰富的国家或地区得到较大发展, 熔融还原炼铁正处于开发和完善阶段, 同时, 现有高炉生产能力很大, 还有大量的存量资产, 对现有的焦炉和高炉进行改造, 所需投资远比利用非高炉炼铁技术新建的炼铁设施要省得多。因此, 高炉炼铁技术在炼铁生产中仍将处于主导地位。但是, 高炉生产目前正受到投资、资源、成本、环保和运输等各方面的巨大压力。如何减轻这些压力是推动高炉炼铁继续生存与向前发展的关键。因此, 大力发展喷煤技术, 提高喷煤量是高炉炼铁技术发展的必然趋势。而高炉喷煤对优化高炉生产, 提高其经济效益有很重要的意义, 它可以扩展风口前的回旋区, 缩小呆滞区; 增加煤气中的氢气含量, 改善还原过程; 增加矿石在炉内停留的时间, 提高一氧化炭的利用率; 有利于提高风温和采用富氧鼓风, 对降低焦比和提高高炉的产量有显著效果; 它可以大量代替价格较高的焦炭, 降低生铁成本, 同时富化高炉煤气, 改善钢铁联合企业的能源供应。 2 高炉喷煤的现状 我国高炉喷煤具有较长的历史。进入90年代后高炉喷煤技术有了快速发展, 主要表现在高炉喷煤的一些重要技术问题取得突破, 如: 大高炉喷煤粉分配技术、串联罐软连接连续计量技术、可调混合器调节喷煤量技术、风口单支管煤粉计量技术流化上出料浓相输送技术等。目前, 重点企业喷煤高炉有51座, 占78%, 地方骨干企业喷煤高炉33座, 占28%。全国高炉喷煤总量从1990年的218万t 增加到1997年的638万t, 重点企业高炉喷煤总量达到489万t, 喷煤比达到84Kg/ t, 地方骨干企业喷煤量达到149万t,通过理论研究和生产实践, 确定了所追求的喷吹煤粉的目标: 吨铁燃料消耗500kg以下, 其中焦炭250kg以下, 煤粉250kg以上, 喷煤率(煤比/燃料比100%)达到50%以上。目前, 上述目标只有个别高炉短期内达到过, 如宝钢1号高炉1999年9月月平均焦比达到249. 7kg/ ,t 煤比260. 6kg/,t但燃料比超过了 500kg/,t 为510. 3kg/ t。该高炉1999年全年平均焦比为264kg/ ,t 煤比238kg/,t燃料比502kg/t。目前, 全球还没有高炉能够达到年平均焦比低于250kg/ ,t 同时煤比高于250kg/t 的。 3 提高喷煤量的限制因素 3.1 炉缸热状态 理论和实践表明, 只要高炉下部热量充沛, 上升的煤气通过热交换就能够保证上部的冶炼过程所要求的温度和热量。因此, 炉缸热状态成为高炉生产的关键。表明炉缸热状态的指标有多种,如风口前燃料燃烧的火焰温度(也称理论燃烧温度T理)、焦炭进入燃烧带时的温度Tc、必要的临界炉缸热贮备量等。世界各国炼铁工作者都把T理作为评价炉缸热状态的参数, 并根据各自的原燃料等操作条件和生产业绩, 统计归纳出各种T理的计算式, 以指导生产。应当指出, 各国的生产条件不同, 操作习惯也不同, 因此经验计算式不是万能的, 不能不顾自身条件随意套用。

喷煤工艺流程图及概述

炼铁一厂喷煤系统工艺流程图及概述 中阳钢铁一体系升级改造项目高炉工程制粉喷吹系统,制粉、收粉系统全部利旧;干燥系统除热风炉废气管道需改造外,其他设施利旧;对喷吹系统进行局部改造。 制粉喷吹系统主要工艺现状:制粉喷吹站厂房为混凝土结构,全封闭。煤粉制备系统采用单系列全负压制粉工艺,喷吹系统采用1个煤粉仓、下部六罐并列(每三罐分别对应405m3高炉)。整个系统即1套干燥气发生炉系统、1套磨煤机制粉系统、1套煤粉收集系统、2套喷吹系统(一个煤粉仓,下部六罐并列)。 新建1780m3高炉投产后,2座405m3高炉拟全部拆除,现有制粉喷吹站只为新1780m3高炉供给煤粉。新建1780m3高炉主管及分配器设置方案为:2根喷吹主管(一个主管对应一个分配器)及2个炉前分配器(1#分配器对应奇数风口,2#分配器对应偶数风口)的直接喷吹工艺。 喷吹系统与原系统的交接界面为:喷吹罐输煤阀后的喷吹主管起点。喷吹煤粉主管及分配器平台为本工程设计围。 1、工艺条件及要求 1)原煤条件 单一煤种和混合煤均可喷吹,通常使用三种煤组成混合煤,安全措施上按强爆炸性烟煤设计。原煤的理化指标见表2.10-1。 表1 原煤的理化指标表 2)煤粉条件

煤粉质量要求见表2.10-2。 表2 煤粉质量要求表 3)制粉喷吹能力 按高炉正常日产铁水量4005吨,正常喷吹能力为160kg/t铁计,高炉正常喷吹所需煤粉量为26.7t/h;按高炉正常日产铁水量4005吨,喷吹能力为200kg/t 铁计,高炉最大喷吹所需煤粉量为33.4t/h。 2、主要工艺参数 制粉喷吹系统主要工艺参数见表2.10-3。 表3 喷吹系统工艺参数

高炉喷煤喷吹自动化控制系统软件设计

河北理工大学轻工学院本科毕业论文开题报告 题目:高炉喷煤喷吹自动化控制 系统软件设计 学部:工程教育部 专业:机械设计制造及其自动化班级:05级机械1班 姓名:刘建中 学号:200515160401 指导教师:玄兆燕 2009年 3 月23 日

一、题目来源背景(现状、前景) 1 高炉喷煤技术背景 高炉喷煤技术始于1840年S.M.Banks关于喷吹焦炭和无烟煤的设想;世界最早的工业应用即是根据这一设想于1840~1845年间在法国博洛涅附近的马恩省炼铁厂实现的。但此后的一百多年,发展却相对缓慢,基本无进展;直至20世纪60年代初,欧洲、中国、美国的一些工厂才陆续开始在高炉上试验喷煤。 7O年代末,第二次石油危机的出现,加快了高炉喷煤技术的研究和发展,特别是欧洲和日本更是在实际应用上取得了重大突破。到90年代初,欧洲和日本已有小部分高炉月均吨铁喷煤超过了200kg大关,如:1991年l0月英国钢铁公司斯肯索普工厂维多利亚女王号高炉201kg(粒煤),1992年11月德国蒂森公司施韦尔根1号高炉200.6kg,1992年11月荷兰霍戈文公司艾莫依登厂6号高炉205kg,1993年11月日本新日铁君津厂3号高炉200kg、1994年l0月NKK公司福山厂4号高炉218kg等指标均已是当时的世界一流水平。 2 高炉喷煤的意义 高炉喷煤对现在高炉炼铁技术来说是一项重要的技术革命。所谓高炉喷煤,就是指从高炉风口向炉内直接喷吹磨细了的煤粉(无烟煤、烟煤或两者的混合煤粉以及褐煤),以代替焦炭向高炉提供热量和还原剂。它的意义在于: A.以低价的煤代替了日趋贫乏且价格昂贵的冶金焦,降低了焦化,使高炉炼铁的成本大幅下降。 B.高炉喷煤可以作为一种调剂炉况的手段。 C.高炉喷煤可以改善炉缸工作状态,是高炉稳定顺行。 D.为高炉提高风温和富氧鼓风创造条件。 因为喷吹煤粉会使风口前理论燃烧温度降低,导致理论燃烧温度降低的主要原因有: 1)高炉喷吹煤粉后煤气量增加,加热煤气需要消耗热量; 2)喷吹煤粉带入的热量少,而焦炭进入风口区时已被充分加热,温度高达1450~1500℃,而喷吹的煤粉温度不超过100℃; 3)煤粉中的碳氢化合物分解需要热量。 E.喷吹煤粉中的氢含量比焦炭带入的多,氢气提高了煤气的还原能力和穿透扩散能力,有利于矿石的还原和高炉操作指标的改善。 F.喷吹煤粉代替了部分焦炭,不仅缓解了焦煤的供需紧张状况,也减少了对炼焦设施的投资和建设,更降低了炼焦生产对环境的污染。 2 高炉喷煤基本流程 根据制粉装置到高炉距离的远近、煤粉仓,喷吹罐安放位置的差异、喷吹管

高炉喷煤方案及概算

1、概述 1.1现状 高炉喷煤是冶金企业节焦降耗行之有效的重要途径。我厂目前有750m3高炉两座,120m3高炉四座,均已有喷煤设施。750m3高炉目前平均喷煤量160㎏/t铁,120m3高炉平均喷煤量70㎏/t铁。喷煤车间现有ZGM95型中速磨煤机一台,制粉铭牌出力为36t/h,刚好满足上述高炉喷煤。 2#750m3高炉易地大修投产后,一台ZGM95型中速磨煤机的生产能力已不能满足所有高炉的喷煤要求,须新上制粉设备。喷吹系统也不能满足新高炉的喷煤需要。同时,煤场实际贮煤量只有3640t,当喷吹量都为最大时,煤场贮煤量只能满足2.8 d生产,若都按目前正常喷吹量,则煤场贮煤量能满足3.5 d生产。显然煤场太小,需要扩建。烟气炉的能力也需进一步加大。 1.2设计依据 莱芜钢铁股份有限公司规划部[2001]96号文《关于下达2#750m3高炉大修设计任务计划的通知》。 1.3设计原则 (1)优化设计,做到先进、适用、经济、顺行、高效。 (2)设计中做到总体考虑,合理布局,兼顾将来的进一步发展;尽量不影响现有设施的生产;尽量减少占地、拆迁和工程量。 (3)按照喷吹烟煤设计,制粉系统设气氛保护。 (4)制粉系统采用短流程,用高浓度布袋收粉器作为一级收粉设备,不设旋风收粉器。为减少危险点,布袋与煤粉仓之间不设螺旋输 送机。 (5)喷吹采用浓相输送技术。 (6)考虑检修、备品备件方便,制粉采用ZGM95型中速磨煤机。

(6)严格执行国家有关环保、安全、工业卫生和消防等规定。 1.4设计范围 本工程设计范围包括:原煤场扩建及贮运,烟气系统,制粉系统,喷吹系统。 1.5主要经济技术指标 1.6设计特点及采用的新技术 ⑴按照喷吹烟煤设计,系统设惰性气体保护措施。 ⑵制粉采用以中速磨煤机为核心的短流程工艺,用一级高浓度袋式煤粉收集器收粉。 ⑶节能,每吨煤粉耗电28度。 ⑷煤场的煤仓及圆盘给料机可以适应喷吹烟煤、无烟煤、混合煤各煤种的

高炉喷煤系统最佳操作法和常见故障(工程师培训)

高炉喷煤系统最佳操作法和常见故障 前言 一、工艺简述: 高炉喷煤就是把原煤(无烟煤、烟煤)经过烘干、磨细、用压缩空气(或氮 气)输送,通过喷煤枪从高炉风口直接喷入炉缸的生产工艺。 高炉喷吹燃料从风口直接把辅助燃料吹入炉缸,代替燃烧的焦炭增加热量,以降低焦比,强化冶炼。高炉可以喷吹的燃料分液体(重油、轻油、原油、焦油及沥青等)、固体(无烟煤、烟煤、焦粉等)和气体(天然气、焦炉煤气以及炉身喷吹用还原性气体等)三类。中国主要喷吹煤粉。高炉喷吹燃料产 生以下后果: ①焦比大幅度降低中国首都钢铁公司1号高炉1966年通过富氧和提高风温,油、煤喷吹量达入炉燃料量的45%,焦比月平均366公斤/吨铁,目前中国多数高炉每吨铁喷煤60~120公斤。焦比降低的主要原因是燃料中的碳代替了风口前燃烧焦炭的碳量;燃料中含有H2(如重油含H2达10~12%),促进高炉内的还原。 ②要求热补偿喷入高炉的燃料在风口前是冷的。在燃烧前汽化分解时要消耗部分热量,使炉缸温度降低(冷化作用),必须提高风温来补偿。此外,喷吹燃料可促进富氧鼓风。苏联喷吹天然气的高炉鼓风含氧可富化到30%以上。 ③促进高炉顺行可用来调节炉况高炉喷吹燃料后炉缸中心气流增强,温度提高,风口平面上沿半径温度梯度减小,炉缸工作更均匀。但如喷吹量超过一定限度,中心过吹,则会破坏顺行。遇此情况应采取上部调节,加重中心负荷;下部调节,扩大风口直径,缩短风口长度;以及富氧鼓风等措施。利用改变喷吹量可调节炉况:当炉况向凉时,加大喷吹量;炉况向热时,减少喷吹量。但炉况已凉或已热后则不宜采用。高炉刚开始喷吹燃料,由于“冷化作用”,炉温不高;几小时后,预还原的炉料进入炉缸,炉温又逐渐升高。这段凉热变化期称为“热滞后”时间,可作调节炉况的依据。 ④较高压差操作由于喷吹燃料产生的煤气量比被替代的焦炭产生的多,使煤气的浮力增加,加之喷吹燃料后焦比降低,料批中焦炭比例减少,都使料柱阻力增大,压差升高(在高炉顺行前提下,压差略高,仍可维持正常生产)。为了扩大喷吹量,防止压差过高,可提高矿石品位,改善炉料粒度组成,提高炉顶压力,采用富氧鼓风等措施。 ⑤改善生铁质量如喷入燃料含硫量低于焦炭,则生铁质量一般有所改善。另外,喷吹燃料后炉缸工作均匀,炉渣脱硫能力升高,也可改善生铁质量。喷吹煤粉时应注意选用低硫煤。中国高炉大部喷吹煤粉,有成熟的经验。喷吹量大,可利用多煤种。工艺上有高压和常压两种流程,前者是在喷吹罐内充以高压气体。喷吹煤粉时必须考虑防爆安全措施。喷煤系统一旦发生故障,必须及时处理,才能保证正常喷煤,减少对高炉操作的影响。防止喷煤系统出现故障,首先必须合理操作。正常喷吹过程中不易出故障,倒罐时极易发生一些故障。 二、主要设备配置: 1、原煤贮运:煤棚、卸煤、受煤斗(原煤采用皮带运输机上料) 2、上料系统通常设有2个原煤仓,煤仓下部用振动给料机给料,通过称重式皮带送入中速磨。

相关文档
最新文档