轴强度校核例题与方法

轴强度校核例题与方法
轴强度校核例题与方法

1.2 轴类零件的分类

根据承受载荷的不同分为:

1)转轴:定义:既能承受弯矩又承受扭矩的轴

2)心轴:定义:只承受弯矩而不承受扭矩的轴

3)传送轴:定义:只承受扭矩而不承受弯矩的轴

4)根据轴的外形,可以将直轴分为光轴和阶梯轴;

5)根据轴内部状况,又可以将直轴分为实心轴和空。

1.3轴类零件的设计要求

1.3.1、轴的设计概要

⑴轴的工作能力设计。

主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。

⑵轴的结构设计。

根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。

一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。

1.3.2、轴的材料

轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:

碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。

常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。

45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。

合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较

敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。

轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。

精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性,是目前工业中应用最广泛的氮化钢。

铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。

1.3.3、轴的结构设计

根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。

1). 轴的组成

轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。

轴主要由三部分组成。轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。

2). 结构设计步骤

设计中常采用以下的设计步骤:

1.分析所设计轴的工作状况,拟定轴上零件的装配方案和轴在机器中的安装情况。

2.根据已知的轴上近似载荷,初估轴的直径或根据经验确定轴的某径向尺寸。

3.根据轴上零件受力情况、安装、固定及装配时对轴的表面要求等确定轴的径向(直径)尺寸。

4.根据轴上零件的位置、配合长度、支承结构和形式确定轴的轴向尺寸。

5.考虑加工和装配的工艺性,使轴的结构更合理。

3). 零件在轴上的安装

保证轴上零件可靠工作,需要零件在工作过程中有准确的位置,即零件在轴上必须有准确的定位和固定。零件在轴上的准确位置包括轴向和周向两个方面。

⑴零件在轴上的轴向定位和固定

常见的轴向定位和固定的方法采用轴肩、各种挡圈、套筒、圆螺母、锥端轴头等的多种组合结构。

轴肩分为定位轴肩和非定位轴肩两种。利用轴肩定位结构简单、可靠,但轴的直径加大,轴肩处出现应力集中;轴肩过多也不利于加工。因此,定位轴肩多在不致过多地增加轴的阶梯数和轴向力较大的情况下使用,定位轴肩的高度一般取3-6mm,滚动轴承定位轴肩的高度需按照滚动轴承的安装尺寸确定。非定位轴肩多是为了装配合理方便和径向尺寸过度时采用,轴肩高度无严格限制,一般取为1-2mm。套筒定位可以避免轴肩定位引起的轴径增大和应力集中,但受到套筒长度和与轴的配合因素的影响,不宜用在使套筒过长和高速旋转的场合。

挡圈的种类较多,且多为标准件,设计中需按照各种挡圈的用途和国标来选用。

⑵零件在轴上的周向定位和固定

常见的周向定位和固定的方法采用键、花键、过盈配合、成形联结、销等多种结构。

键是采用最多的方法。同一轴上的键槽设计中应布置在一条直线上,如轴径尺寸相差不过大时,同一轴上的键最好选用相同的键宽。

4)、轴的结构工艺性

⑴从装配来考虑:应合理的设计非定位轴肩,使轴上不同零件在安装过程中尽量减少不必要的配合面;为了装配方便,轴端应设计45°的倒角;在装键的轴段,应使键槽靠近轴与轮毂先接触的直径变化处,便于在安装时零件上的键槽与轴上的键容易对准;采用过盈配合时,为了便于装配,直径变化可用锥面过渡等。

⑵从加工来考虑:当轴的某段须磨削加工或有螺纹时,须设计砂轮越程槽或退刀槽;根据表面安装零件的配合需要,合理确定表面粗糙度和加工方法;为改善轴的抗疲劳强度,减小轴径变化处的应力集中,应适当增大其过渡圆角半径,但同时要保证零件的可靠定位,过渡圆角半径又必须小于与之相配的零件的圆角半径或倒角尺寸。轴的设计时应考虑多方面因素和要求,需要解决的问题是轴的选材、结构、强度和刚度。因此轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。

合理的进行轴的强度校核是轴设计的主要内容,也是评定轴的设计成败得先决条件。校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。

1.4课题研究意义

在科学技术高速发展的今天,轴是机械设备中最常见的一种零件,也是机械传动系统中重要的零件。对于不同类型的轴,在工作中常常受到多个载荷作用,这些载荷产生的应力计算是轴的强度计算中的重要内容。

轴的强度校核在材料力学和机械零件等课程中具有重要的地位。例如转轴一般都是工作在弯曲与扭转共同作用的复合应力状态下,对它的强度校核,一般是采用当量应力法或疲劳安全裕度的方法。这些强度校核计算方法的理论依据是塑性材料屈服失效理论(最大切应力理论与歪形能理论),并且考虑轴危险剖面上的弯曲正应力

与扭转切应力的循环特性,以及轴的绝对尺寸、表面质量和应力集中等因素对疲劳强度的影响。研究轴的强度校核方法对于提高机械设备可靠性具有重要意义。

随着计算机技术的广泛应用,轴类零件的设计正逐步从手工走向计算机自动化设计,不仅提高了设计质量,减少了设计工作量,同时为现代高速、多变、小批量生产的设计提供了必要的保障手段。研究轴的强度校核方法有助于我们更好的掌握轴的强度校核原理,并进一步与计算机应用技术相结合,提高设计水平。

第二章 轴的强度校核方法 2.1强度校核的定义

在机械系统中,金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标。强度是机械零部件首先应满足的基本要求。

强度校核就是对材料或设备的力学性能进行检测并调节的一种方式,如抗冲击强度,抗弯曲强度等,并且这种方式以不破坏材料或设备性能为前提。

强度的校核研究是综合性的研究,主要是通过其应力状态来研究零部件的受力状况以及预测破坏失效的条件和时机。

2.2常用的轴的强度校核计算方法

进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。

对于传动轴应按扭转强度条件计算。

对于心轴应按弯曲强度条件计算。

对于转轴应按弯扭合成强度条件计算。

2.2.1按扭转强度条件计算:

这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。

实心轴的扭转强度条件为:

由上式可得轴的直径为

为扭转切应力,MPa 式中: T τn

P A d 0≥[]T

T T d n P W T ττ≤2.09550000≈3=

T 为轴多受的扭矩,N ·mm

T W 为轴的抗扭截面系数,3mm

n 为轴的转速,r/min

P 为轴传递的功率,KW

d 为计算截面处轴的直径,mm

为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表:

表1 轴的材料和许用扭转切应力

空心轴扭转强度条件为:

d

d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6

这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则

mm n P A d 36.15960

475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则:

mm d d 43.16%)71(36.15%)71(min '

min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适

[]T τ

的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则:

mm d d 4.3038*8.08.0'

min ===电动机轴 综合考虑,可取mm d 32'min =

通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。

2.2.2按弯曲强度条件计算:

由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。

则 其中:

M 为轴所受的弯矩,N ·mm

W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册B19.3-15~17.

][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册B19.1-1

2.2.3按弯扭合成强度条件计算

由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。

一般计算步骤如下:

(1)做出轴的计算简图:即力学模型

通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况:

][7.1][≤1-0σσσ==W M ca

图1 轴承的布置方式

当L e d L 5.0,1≤/ ,d e d L 5.0,1/=>但不小于(0.25~0.35)L ,对于调心轴承e=0.5L

在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。

(2)做出弯矩图

在进行轴的校核过程中最大的难度就是求剪力和弯矩,画出剪力图和弯矩图,因此在此简单介绍下求剪力和弯矩的简便方法。

横截面上的剪力在数值上等于此横截面的左侧或右侧梁段上所有竖向外力(包括斜向外力的竖向分力)的代数和 。外力正负号的规定与剪力正负号的规定相同。剪力符号:当截面上的剪力使考虑的脱离体有顺时针转动趋势时的剪力为正;反之为负。

横截面上的弯矩在数值上等于此横截面的左侧或右侧梁段上的外力(包括外力偶)对该截面形心的力矩之代数和 。外力矩的正负号规定与弯矩的正负号规定相同。弯矩符号:当横截面上的弯矩使考虑的脱离体凹向上弯曲(下半部受拉,上半部受压)时,横截面上的弯矩为正;反之凹向下弯曲(上半部受拉,下半部受压)为负。

不论在截面的左侧或右侧向上的外力均将引起正值的弯矩,而向下的外力则引起负值的弯矩。

利用上述结论来计算某一截面上的内力是非常简便的,此时不

需画脱离体的受力图和列平衡方程,只要梁上的外力已知,任一截面上的内力均可根据梁上的外力逐项写出。因此,这种求解内力的方法称为简便法。

1、列剪力方程和弯矩方程 ,画剪力图和弯矩图

①梁的不同截面上的内力是不同的,即剪力和弯矩是随截面的位置而变化。

② 为了便于形象的看到内力的变化规律,通常是将剪力和弯矩沿梁长的变化情况用图形来表示—剪力图和弯矩图。

③剪力图和弯矩图都是函数图形,其横坐标表示梁的截面位置,纵坐标表示相应的剪力和弯矩。

④剪力图和弯矩图的画法是:先列出剪力和弯矩随截面位置变化的函数式,再由函数式画出函数图形。

剪力方程和弯矩方程 :以梁的左端点为坐标原点,x 轴与梁的

轴线重合, 找出横截面上剪力和弯矩与横截面位置的关系 , 这种关系称为剪力方程和弯矩方程。)(x Fs Fs ,M=M(x);

2、剪力图和弯矩图的绘制方向的判定:

剪力 : 正值剪力画在x 轴上侧,负值剪力画在x 轴下侧。 弯矩 : 正值弯矩画在x 轴的下侧;负值弯矩画在x 轴上侧。

3、绘剪力图和弯矩图的基本方法:首先分别写出梁的剪力方程和弯矩方程,然后根据它们作图。

4、作剪力图和弯矩图的几条规律

取梁的左端点为坐标原点,x 轴向右为正;剪力图向上为正;弯矩图向下为正。以集中力、集中力偶作用处,分布荷载开始或结束处,及支座截面处为界点将梁分段。分段写出剪力方程和弯矩方程,然后绘出剪力图和弯矩图。

梁上集中力作用处左、右两侧横截面上,剪力值(图)有突变,其突变值等于集中力的数值。在此处弯矩图则形成一个尖角。梁上集中力偶作用处左、右两侧横截面上的弯矩值也有突变,其突变值等于集中力偶矩的数值。但在此处剪力图没有变化。

梁上的最大剪力发生在全梁或各梁段的边界截面处;梁上的最大弯矩发生在全梁或各梁段的边界截面,或 F= 0的截面处。

22V

H M M M +=

5、求各分力的弯矩合成:

轴的载荷分析图如下:

图2 轴的载荷分析图

(3)校核轴的强度

通过以上计算得到得弯矩M 和扭矩T 后,可针对某些危险截面(即弯矩和扭矩大而轴径小可能断的截面)做弯扭合成强度的校核计算。

按第三强度理论的计算应力公式: σ为对称循环变应力

224τσσ

+=ca

τ为扭转切应力

为了考虑两者循环特性不同的影响,引入折合系数α,则

若扭转切应力为静应力时: 取α=0.3

若扭转切应力为脉动循环应力时: 取α=0.6

若扭转切应力为对称循环应力时: 取α=1.0

对于直径为d 的圆轴:

弯曲应力

扭转切应力

代入与得:

式中: ][1σ为对称循环变应力的轴的许用弯曲应力 (MPa),具体数值查机械设计手册B19.1-1

ca σ 为轴的计算应力 Mpa M 为轴所受的弯矩 N ·mm

T 为轴所受的扭矩N ·mm

W 为轴的抗弯截面系数 (3mm )具体数值查机械设计手册B19.3-15-17

下面本文以一级圆柱齿轮减速器的输出轴为例详细介绍按弯扭合成强度条件对轴进行强度校核的计算方法。

图3 一级圆柱齿轮减速器输出轴零件图

首先,作出轴的扭矩图如下:

2

2)(4ατσσ+=ca W T 2=τW

T M W T W M ca 2222)()2(4)(αασ+=+=W

M =σ

机械设计-键考试复习与练习题

考试复习与练习题 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 为了不过于严重削弱轴和轮毂的强度,两个切向键最好布置成。 A.在轴的同一母线上 B. 180° C. 120°~ 130° D. 90° 2 平键B20×80 GB/T1096—1979中,20×80是表示。 A. 键宽×轴径 B. 键高×轴径 C. 键宽×键长 D. 键宽×键高 3 能构成紧连接的两种键是。 A. 楔键和半圆键 B. 半圆键和切向键 C. 楔键和切向键 D. 平键和楔键 4 一般采用加工B型普通平键的键槽。 A. 指状铣刀 B. 盘形铣刀 C. 插刀 D. 车刀 5 设计键连接时,键的截面尺寸b×h通常根据由标准中选择。 A. 传递转矩的大小 B. 传递功率的大小 C. 轴的直径 D. 轴的长度 6 平键连接能传递的最大扭矩T,现要传递的扭矩为1.5T,则应。 A. 安装一对平键 B. 键宽b增大到1.5倍 C. 键长L增大到1.5倍 D. 键高h增大到1.5倍 7 如需在轴上安装一对半圆键,则应将它们布置在。 A. 相隔90° B. 相隔120°位置 C.轴的同一母线上 D. 相隔180° 8 花键连接的主要缺点是。 A. 应力集中 B. 成本高 C. 对中性与导向性差 D. 对轴削弱 二、填空题 9 在平键联接中,静联接应校核强度;动联接应校核强度。 10 在平键联接工作时,是靠和侧面的挤压传递转矩的。 11 花键联接的主要失效形式,对静联接是,对动联接是。 12 键联接,既可传递转矩,又可承受单向轴向载荷,但容易破坏轴与轮毂的对中性。 13 平键联接中的静联接的主要失效形式为,动联接的主要失效形式为;所以通常只进行键联接的强度或计算。 14 半圆键的为工作面,当需要用两个半圆键时,一般布置在轴的。 三、简答题 15 试述普通平键的类型、特点和应用。 16 平键连接有哪些失效形式? 17 试述平键联接和楔键联接的工作原理及特点。 18 试按顺序叙述设计键联接的主要步骤。 四、设计题 19 一齿轮装在轴上,采用A型普通平键连接。齿轮、轴、键均用45钢,轴径d=80mm,轮毂

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 纸箱抗压强度一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 ①凯里卡特(K.Q.Kellicutt)公式 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/0.152m) Rmn ——瓦楞芯纸环压强度测试值(N/0.152m) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 纸箱抗压强度公式中的15.2(cm)为测定原纸环压强度时的试样长度。 Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表

b.06 类纸箱抗压强度计算公式: P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数, 凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式

P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 纸箱抗压强度Dx——瓦楞纸板纵向挺度(MN·m)Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式: 包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数 纸箱抗压强度⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。

试按第三和第四强度理论计算单元体的相当应力。图中应力

一、从低碳钢零件中某点取出一单元体,其应力状态如图所示,试按第三和第四强度理论计算单元体的相当应力。图中应力单位是MPa 。 (1)、40=ασ,40090=+ασ,60=ατ (2)、60=ασ,80090-=+ασ,40-=ατ (1) max min 123r313r41004040MPa 202σ=100MPa,σ=0MPa,σ=-20MPa σσσ120MPa σ111.3MPa σ+= ±=-=-== (2) max min 123r313r470.66080MPa 90.6σ=70.6MPa,σ=0MPa,σ=-90.6MPa σσσ161.2MPa σ140.0MPa σ=-±=-=-== 二、上题中若材料为铸铁,试按第一和第二强度理论计算单元体的相当应力。图中应力单位是MPa ,泊松比3.0=μ。 (1) r11r2123σσ100MPa σσ(σσ)106.0MPa μ===-+= (2) r11r2123σσ70.6MPa σσ(σσ)97.8MPa μ===-+= α σ

三、图示短柱受载荷kN 251=F 和kN 52=F 的作用,试求固定端截面上角点A 、B 、C 及D 的正应力,并确定其中性轴的位置。 121i 33 121260025100150150100101012121.66106.750F F y F z Z y z σ---??=++????=-++ 1.668.0 2.58.84MPa 1.668.0 2.5 3.84MPa 1.668.0 2.512.16MPa 1.668.0 2.57.16MPa A B C D σσσσ=-++==-+-==---=-=--+=- -1.66+106.7y +50z =0 当z =0时,31.66 1015.5mm 106.70y -=?= 当y =0时,31.66 1033.3mm 50 y -=?=

压力容器强度校核公式

压力容器强度校核 筒体壁厚校核公式 软件模板 计算公式:' 22[]c i t c P D C P δσφ=+-筒校核 备注: c P :校核压力 i D :容器最大内径 []t σ:设计温度下的许用应力 φ :焊缝系数 若双面焊全焊头对接接头 100%无损检测,φ= 局部无损检测, φ= 若为单面焊对接接头 100%无损检测,φ= 局部无损检测, φ= ' 2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用。 封头壁厚校核公式 1.椭圆形封头软件模板 计算公式:' 22[]0.5c i t c P D C P δσφ=+-封校核 备注: c P :校核压力 i D :容器最大内径 [ ]t σ:设计温度下的许

用应力 φ :焊缝系数: 若双面焊全焊头对接接头 100%无损检测,φ= 局部无损检测, φ= 若为单面焊对接接头 100%无损检测,φ= 局部无损检测, φ= ' 2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用 2.球形封头软件模板 计算公式:' 24[]c i t c P D C P δσφ=+-封校核 备注: c P :校核压力 i D :容器最大内径 [ ]t σ:设计温度下的许用应力 φ :焊缝系数: 若双面焊全焊头对接接头 100%无损检测,φ= 局部无损检测, φ= 若为单面焊对接接头 100%无损检测,φ= 局部无损检测, φ=

'2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3 =[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

机械设计题库05_键、花键、销联接

键、花键、销联接 一选择题 (1) 图6-1所示零件1和2采用了 B 联接。 A. 平键 B. 楔键 C. 切向键 图6-1 (2) 传递轴向力可用 C 联接。 A. 普通平键 B. 半圆键 C. 楔键 D. 切向键 (3) 与平键联接相比,楔键联接的主要缺点是 D 。 A. 键的斜面加工困难 B. 楔紧后在轮毂中产生初应力 C. 键安装时易损坏键 D. 轴和轴上零件对中性差 (4) 轴上键槽用盘铣刀加工的优点是 C ,这种键槽应采用 F 键。 A. 装配方便 B. 对中性好 C. 减小应力集中 D. 圆头 E. 单圆头 F. 方头 (5) 型面曲线为摆线或等距曲线的型面联接与平键联接相比,下列中不是型面联接的优点是 D 。 A. 对中性好 B. 轮毂孔的应力集中小 C. 装拆方便 D. 切削加工方便 (6) 当轮毂轴向移动距离较小时,可以采用C联接。 A. 普通平键 B. 半圆键 C. 导向平键 D. 滑键 (7) 普通平键联接的主要用途是使轴与轮毂之间 C 。 A. 沿轴向固定并传递轴向力 B. 沿轴向可作相对滑动并具有导向作用 C. 沿周向固定并传递转矩 D. 安装与拆卸方便 (8) 某变速齿轮需在轴上频繁移动,拟采用矩形花键联接,若两联接表面硬度均大于50HRC,该联接宜采用 B 定心方式。 A. 大径 B. 小径 C. 齿侧 D. 任意

(9) 键的长度主要是根据 B 来选择。 A. 传递转矩的大小 B. 轮毂的长度 C. 轴的直径 (10) 确定普通平键剖面尺寸h b ?的依据是 B 。 A. 轴的转矩 B. 轴的直径 C. 轴的材料 (11) 已知铸铁带轮与轴用平键联接,则该键联接的强度主要取决于 A 的挤压强度。 A. 带轮材料 B. 轴的材料 C. 键的材料 (12) 已知普通平键键宽为b ,键长为L ,其强度校核公式为][102p 3 p σσ≤?=kld T , 对于A 型平键式中l 为 B 。 A. L B. L –b C. L –b /2 (13) 平键是(由A 、B 中选1) A ,其剖面尺寸一般是根据(由C 、D 、E 、F 中选1) D 按标准选取的。 A. 标准件 B. 非标准件 C. 传递转矩大小 D. 轴的直径 E. 轮毂长度 F. 轴的材料 (14) 在下列轴一级联接中,定心精度最高的是 A 。 A. 平键联接 B. 半圆键联接 C. 楔键联接 D. 花键联接 (15) 半圆键联接当采用双键时两键应 D 布置。 A. 在周向相隔90 B. 在周向相隔120 C. 在周向相隔180 D. 在轴向沿同一直线 (16) 对于采用常见的组合和按标准选取尺寸的平键静联接,主要失效形式是 A ,动联接的主要 失效形式则是 B 。 A. 工作面的压溃 B. 工作面过度磨损 C. 键被剪断 D. 键被弯断 (17) 一般情况下平键联接的对中性精度 B 花键联接。 A. 相同于 B. 低于 C. 高于 D. 可能高于、低于或相同于 (18) 设平键联接原来传递的最大转矩为T ,现欲增为T 5.1,则应 A 。 A. 安装一对平键 B. 将轴直径增大到1.5倍 C. 将键宽增大到1.5倍 D. 将键高增大到1.5倍 (19) 设计键联接的几项主要内容是: 1) 按轮毂长度选择键长度; 2) 按使用要求选择键的类型; 3) 按轴的直径查标准选择键的剖面尺寸; 4) 对键进行必要的强度校核。具体设计时一般顺序是 B 。

材料力学B试题7应力状态_强度理论.docx

40 MPa .word 可编辑 . 应力状态强度理论 1. 图示单元体,试求60100 MPa (1)指定斜截面上的应力; (2)主应力大小及主平面位置,并将主平面标在单元体上。 解: (1) x y x y cos 2x sin 276.6 MPa 22 x y sin 2x cos232.7 MPa 2 3 1 (2)max xy( x y) 2xy281.98MPa39.35 min22121.98 181.98MPa,2 ,3121.98MPa 12 xy1200 0arctan()arctan39.35 2x y240 200 6060 2. 某点应力状态如图示。试求该点的主应力。129.9129.9解:取合适坐标轴令x25 MPa,x 由 120xy sin 2xy cos20 得 y 2 所以m ax x y ( xy ) 2xy 2 m in 22 129.9 MPa 2525 (MPa) 125MPa 50752( 129.9)250 150100 MPa 200 1 100 MPa,20 ,3200MPa 3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。 解:y150 MPa,x120 MPa

.word 可编辑 . 由得45x y sin 2xy cos 2x 15080 22 x10 MPa 所以max xy(x y) 22 22xy min y x 45 45 45 214.22 MPa 74.22 1214.22 MPa,20 , 45 374.22 MPa 4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。求靠圆筒内壁任一点处的主应力。 0.19210 3 解: xπ(0.104 40.14)0.05 5.75MPa t 32 x y pd MPa 50 4t pd MPa 100 2t M e p M e max x y(x y ) 2 xy2 min22100.7 MPa 49.35 1100.7 MPa,249.35 MPa,3 4 MPa 5.受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使 x 100 MPa,x 20MPa40 MPa100 MPa xy x y 12020 MPa 22cos2x sin 2

回弹法测砼强度值的计算方法和步骤

回弹法测砼强度值的计算方法和步骤在学习计算方法和步骤之前,先了解几个术语: 1、测区:检测结构或构件砼抗压强度时的一个检测单元。 2、测点:在测区内进行的一个检测点。 3、测区砼强度换算值:由测区的平均回弹值和碳化深度值通过测强度曲线或查表得到的该检测单元(测区)的现龄期砼抗压强度值。 回弹法检测砼强度试用于工程结构普通砼抗压强度的检测。砼强度值的确定分为如下几个步骤:1、回弹值测量2、碳化深度值测量3、回弹值计算4、砼强度的计算 一、回弹值测量 1、一般规定:结构或物件砼强度检测可采用下列两种方式,其适用范围及结构或构件数量应符合下列规定: (1)、单个检测:适用于单个结构或构件的检测。 (2)、批量检测:适用于相同的生产工艺条件下,砼强度等级相同,原材料、配合比、成型工艺、养护条件基本一致且龄期相近的同类结构或构件,按批进行检测的结构构件。抽检数量不得少于同批构件总数的30%且不得少于10件。 2、每一结构或构件的测区应符合下列规定: (1)、每一结构或构件测区数量应不少于10个。对某一方向尺寸小于4.5米,且另一方向尺寸小于0.3米的构件其测区数量可适当减少,但不应少于5个。 (2)、相邻两测区的间距应控制在2米以内。测区离构件端部或施

工缝边缘的距离不宜大于0.5米,且不宜小于0.2米。 (3)、测区应选在使回弹仪处于水平方向检测砼浇筑侧面,当不能满足这一要求时,可使回弹仪处于非水平方向检测砼强度浇筑侧面、表面或底面。但回弹值需修正。 (4)、测区宜选在构件的两个对称可测面上,也可选在一个可测面上,且应均匀分布。在构件的重要部位及薄弱部位必须布置测区,并应避开预埋件。 (5)、测区的面积不宜大于0.04㎡。 (6)、检测面应为砼表面,并应清洁平整,不应有疏松层、浮浆、油垢、涂层以及蜂窝、麻面。必要时可用砂轮清除疏松层和杂物,且不应有残留的粉末或碎屑。 3、回弹值测定 (1)、检测时,回弹仪的轴线应始终垂直于结构或构件的检测面。缓慢施压,准确读数,快速复位。 (2)、测点宜在测区范围内均匀分布。相邻两测点的净距不宜小于20mm。测点距外露钢筋、预埋件的距离不宜小于30mm。测点不应在气孔或外露石子上,同一测点只应弹一次,每一测区应取16个回弹值。 二、碳化深度测量值 1、回弹值测量完毕后,应在有代表性的位置上测量碳化深度值。 测点不应小于构件测区数的30%,取其平均值为该构件的每测区的碳化深度值,当碳化深度最大值与最小值之差大于2.0mm

键的强度计算

键的强度计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

键连接的选择和计算 1.键的选择 I 轴齿轮1处选择普通平头平键 键128,12,8,40b mm h mm L mm ?===; 联轴器处选择普通平头平键 键87,8,7,32b mm h mm L mm ?===; II 轴齿轮2处选择普通平头平键 键149,14,9,36b mm h mm L mm ?===; 齿轮3处选择普通平头平键 键149,14,9,70b mm h mm L mm ?===; III 轴齿轮4处选择普通平头平键 键2012,20,12,70b mm h mm L mm ?===; 联轴器处选择普通平头平键 键1610,16,10,70b mm h mm L mm ?===; 2.键的强度计算 假定载荷在键的工作面上均匀分布,普通平键联接的强度条件为 3 210[]P P T kld σσ?=≤ 查表6-2得,钢材料在轻微冲击下的许用挤压应力为100~120MPa ,所以取

[]120P MPa σ= (1) I 轴齿轮1上键的强度计算 1111170.180.50.58440T N m k h mm l L mm =?==?=== 所以 3 1270.181022[]44040 P P MPa σσ??==≤?? 满足强度条件 I 轴联轴器上键的强度计算 1111170.180.50.57 3.532T N m k h mm l L mm =?==?=== 所以 3 1270.181050[]3.53225 P P MPa σσ??==≤?? 满足强度条件 (2). II 轴上齿轮2处键的强度计算 22222317.70.50.59 4.536T N m k h mm l L mm =?==?=== 所以 32 2317.71087[]4.53645 P P MPa σσ??==≤?? 满足强度条件 II 轴上齿轮3处键的强度计算

四大强度理论

第10章强度理论 10.1 强度理论的概念 构件的强度问题是材料力学所研究的最基本问题之一。通常认为当构件承受的载荷达到一定大小时,其材料就会在应力状态最危险的一点处首先发生破坏。故为了保证构件能正常地工作,必须找出材料进入危险状态的原因,并根据一定的强度条件设计或校核构件的截面尺寸。 各种材料因强度不足而引起的失效现象是不同的。如以普通碳钢为代表的塑性材料,以发生屈服现象、出现塑性变形为失效的标志。对以铸铁为代表的脆性材料,失效现象则是突然断裂。在单向受力情 况下,出现塑性变形时的屈服点 σ和发生断裂时的强度极限bσ可由实 s 验测定。 σ和bσ统称为失效应力,以安全系数除失效应力得到许用应s 力[]σ,于是建立强度条件 可见,在单向应力状态下,强度条件都是以实验为基础的。 实际构件危险点的应力状态往往不是单向的。实现复杂应力状态下的实验,要比单向拉伸或压缩困难得多。常用的方法是把材料加工成薄壁圆筒(图10-1),在内压p作用下,筒壁为二向应力状态。如再配以轴向拉力F,可使两个主应力之比等于各种预定的数值。这种薄壁筒

试验除作用内压和轴力外,有时还在两端作用扭矩,这样还可得到更普遍的情况。此外,还有一些实现复杂应力状态的其他实验方法。尽管如此,要完全复现实际中遇到的各种复杂应力状态并不容易。况且复杂应力状态中应力组合的方式和比值又有各种可能。如果象单向拉伸一样,靠实验来确定失效状态,建立强度条件,则必须对各式各样的应力状态一一进行试验,确定失效应力,然后建立强度条件。由于技术上的困难和工作的繁重,往往是难以实现的。解决这类问题,经常是依据部分实验结果,经过推理,提出一些假说,推测材料失效的原因,从而建立强度条件。 图10-1 经过分析和归纳发现,尽管失效现象比较复杂,强度不足引起的失效现象主要还是屈服和断裂两种类型。同时,衡量受力和变形程度的量又有应力、应变和变形能等。人们在长期的生产活动中,综合分析材料的失效现象和资料,对强度失效提出各种假说。这类假说认为,材料之所以按某种方式(断裂或屈服)失效,是应力、应变或变形能等因素中某一因素引起的。按照这类假说,无论是简单应力状态还是复杂应力状态,引起失效的因素是相同的。也就是说,造成失效的原因与应力状态无关。这类假说称为强度理论。利用强度理论,便可由简单应力状态的实验结果,建立复杂应力状态下的强度条件。至于某种强

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

练习题四——强度理论

第四部分 应力分析和强度理论 一 选择题 1、所谓一点处的应力状态是指( ) A 、受力构件横截面上各点的应力情况; B 、受力构件各点横截面上的应力情况; C 、构件未受力之前,各质点之间的相互作用情况; D 、受力构件中某一点在不同方向截面上的应力情况。 2、对于图示各点应力状态,属于单向应力状态的是( ) A 、a 点 B 、b 点 C 、c 点 D 、d 点 3、对于单元体中max ,正确的答案是( ) A 、100MPa B 、0 MPa C 、50MPa D 、200 MPa 4、关于图示梁上a 点的应力状态,正确的是( ) 5、关于图示单元体属于哪种应力状态,正确的是( ) A 、单向应力状态 B 、二向应力状态 C 、三向应力状态 D 、纯剪切应力状态

6、对于图示悬臂梁中,A 点的应力状态正确的是( ) 7、单元体的应力状态如图,关于其主应力,正确的是( ) A 、1230,0σσσ>>= B 、321,0σσσ<<= C 、123130,0,0,||||σσσσσ>=<< D 、123130,0,0,||||σσσσσ>=<> 8、对于图示三种应力状态(a )、(b )、(c )之间的关系,正确的是( ) A 、三种应力状态均相同; B 、三种应力状态均不同 C 、(b )和(c )相同; D 、(a )和(c )相同 9、已知某点平面应力状态如图,1σ和2σ为主应力, 在下列关系正确的是( ) A 、12x y σσσσ+>+ B 、12x y σσσσ+=+ C 、12x y σσσσ+<+ D 、12x y σσσσ-=-

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

平键的选择和计算资料

平键的选择和计算

第六章:平键的选择和计算 6.1:高速轴与V 带轮用键连接 1、选用圆头普通平键(A 型) 按轴的直径d=45mm,及带轮宽mm 3552=B ,据文献得键的键 宽b ?键高h 为914?,长度mm 45=L 的键。 2、强度校核 键材料选择45钢,V 带轮材料为铸铁,查表得键联接的 许用应力[]MPa P 80~70=σ,键的工作长度 mm h k mm L l 5.495.05.0382 14452b -=?===-==, 挤压应力 []安全)(8.3845 385.4171.14920002000P I P MPa kld T σσ<=???== 6.2:低速轴与大齿轮用键连接 1、选用圆头普通平键(A 型) 按轴的直径d=64mm,据文献得键的键宽b ?键高h 为1118?,长度mm 63=L 的键。 2、强度校核 键材料选择45钢,大齿轮的材料也为45钢,查表得键联接的许用应力[]MPa P 150~120=σ,键的工作长度 mm h k mm L l 5.5115.05.0542 18632b -=?===-==, 挤压应力

[]安全)(77.7764 545.517.73920002000P II P MPa kld T σσ<=???== 6.3:低速轴与联轴器用键连接 1、选用圆头普通平键(A 型) 按轴的直径d=50mm ,据文献查得键的的键宽b ?键高h 为914?,长度mm 63=L 的键。 2、强度校核 键材料选择45钢,联轴器的材料为钢,查表得键联接的许用应力[]MPa P 150~120=σ,键的工作长度 mm h k mm L l 5.495.05.0562 14632b -=?===-==, 挤压应力 []安全)(33.11750 565.417.73920002000P II P MPa kld T σσ<=???==

第3章机械零件强度习题

第三章 机械零件的强度 1.何谓静应力、变应力?静载荷能否产生变应力?作用在机械零件中的应力有哪几种类型? 2. 何谓材料的疲劳极限、疲劳曲线?指出疲劳曲线的有限寿命区和无限寿命区,并写出有限寿命区疲劳曲线方程,材料试件的有限寿命疲劳极限σrN 如何计算?说明寿命系数K N 的意义。 3. 影响机械零件疲劳强度的主要因素有哪些?零件的简化极限应力图与材料试件的简化极限应力图一样吗?有何不同? 4. 举例说明哪些零件工作应力的变化规律符合:a) r =常数;b) σm =常数;c) σmin = 常数。 5. 两个零件以点、线接触时应按何种强度进行计算?若为面接触时(如平键联接),又应按何种强度进行计算?零件的截面形状一定,当截面尺寸增大时,其疲劳极限值将如何变化? 6. 表面接触疲劳点蚀是如何产生的?根据赫兹公式(Hertz ),接触带上的最大接触应力应如何计算?说明赫兹公式中各参数的含义。 7. 某机械零件,疲劳极限1285M Pa σ-=,若其7 010=N ,m =6,当应力循环次数分 别为41105.2?=N ,52102?=N 时,求寿命系数N K 各为多少?疲劳极限又各为多少? 8. 有一机械零件,其1390M Pa σ-=,0600M Pa σ=,600M Pa s σ=,σ 2.5K =,求:(1)材料常数σψ; (2)画出零件的极限应力线图; (3)设工作应力为a 200M Pa σ=,m 300M Pa σ=,r =常数,试求安全系数ca S 。 9. 某合金钢制造的零件,其材料性能为:s 800M Pa σ=,1450M Pa σ-=,σ0.3ψ=。已知工作应力为m in 80M Pa σ=-,max 280M Pa σ=,应力变化规律为r =常数,弯曲疲劳极限的综合影响系数σ 1.62K =。若许用安全系数是 [S ] =1.3,并按无限寿命考虑,试校核该零件是否安全。 10. 有一钢制转轴,其危险截面上对称循环弯曲应力在单位时间t 内的变化如题10图.所示,总工作时间300h ,转速n 为150r/min 。若零件材料的疲劳极限1280M Pa σ-=,应 力集中系数σ2K =,7 010=N ,m =9,求此零件的安全系数ca S 。

轧辊强度校核习题详解

轧辊强度校核习题详解

验算Φ500×3三辊型钢开坯机第一机座的下轧辊强度。已知: 1)按轧制工艺,该辊K13、K9、K5三个道次同时走钢; 2)各道的轧制力:P13 =1100KN , P9=800KN , P5 =600 KN ; 3)各道的轧制力矩:M13 = 60.0KN .m , M9 = 30KN.m , M5= 20KN.m ,忽略摩擦力矩; 4)轧辊有关尺寸见图所示。其中各道次的辊身工作直径为:D13=340 mm , D9=384 mm , D5=425 mm 轧辊辊颈直径:d=300 mm 辊颈长度l =300 mm,轧辊梅花头外径d1=280 mm,其抗扭断面系数W n = 0.07d13 。 5)轧辊右侧为传动端; 6)轧辊材质为铸钢,其强度极限为 σb = 5 00 ~ 600 MPa; 7)轧辊安全系数取n =5; 8)许用应力[τ] = 0.6[σ]。 (要求画出轧辊的弯矩图和扭矩图)

1)由静力学平衡方程求得轧辊辊颈处的支反力: R1*(286+507+654+353)-P5*(507+654+353)- P9*(654+353)- P13 *(353)=0 即:R1=(600 *1514+ 800 *1007 + 1100*353)/(286+507+654+353)=1167.94 KN R2= (P5+P9+P13)- R1= (600+800+1100)-1167.94=1332.06KN 2)轧辊各位置点的弯矩值: Ma = R1*300/2/1000 = 1167.94 *0.15 =175.191KN.m Mb= R1* 286/1000 = 1167.94 *0.286 =334.03KN.m Mc= R1*(286+507)/1000- P5*507/1000 = 1167.94*0.793-600*0.507=621.98 KN.m 或(Mc= R2*(353+654)/1000- P13*654/1000 = 1332.06*1.007-1100*0.654=621.98 KN.m)Md = R2*353/1000 = 1332.06 *0.353 = 470.22KN.m Me = R2*300/2/1000 = 1332.06 *0.15 =

螺纹强度校核公式

计算公式计算值注释1.5设计给出517.5设计给出235260设计给出38设计给出4.23设计给出50设计给出11.8203309693h = 0.541p 2.28843 3227.60672.8899376194 345计算结果合格剪切强度计算公式计算值备注235260设计给出35.5设计给出41.78设计给出11.8203309693设计给出1.5设计给出4.23设计给出B = 0.75p 3.1725 517.5设计给出34556.280613618 207安全系数n材料屈服强度(MPA)轴向力F(n)螺距D2(mm)螺纹工作长度L(mm)连接螺纹齿Z螺纹工作高度h(mm)挤压面积a(mm2)挤压应力(MPA)的计算允许将挤压小直径D1(mm)用于外螺纹时使用的挤压直径(MPA)轴向力F(n),使用大直径D(mm)连接的螺纹数Z安全系数s间距P(mm)螺纹底宽b(mm)屈服强度(MPA)螺钉的允许拉伸应力(MPA),计算剪切应力(MPA)表示螺母,如果合格,则计算螺母(MPA)允许剪应力(MPA)的剪应力(MPA);否则,不合格。弯曲强度计算项目计算公式计算值的计算结果备注28.58 28.52 24.22 26.82 0.85 71.8724621016 B = 0.75p 2.38125 138112 3.175 H = 0.541p 1.717675 9.26 1.5517.5345 178.2251152336 151.0361193477计算结果自锁性能检查计算螺母大直径D(mm )当使

用大直径D(mm)螺丝外螺纹时,小直径D1(mm)外螺纹螺距直径D2(mm)弯曲臂L(mm)单圈外螺纹截面弯曲模数w(mm)螺纹底宽b (mm)轴向力F(n)螺距P(mm)螺纹工作高度h(mm)连接螺纹数Z安全系数s屈服强度(MPA)允许的拉应力(MPA)对于螺钉,请计算以下值的弯曲应力(MPA)螺母,计算弯曲应力(MPA),允许弯曲应力(MPA),如果螺钉和螺母合格,则为不合格。备注:设计给出s = NP 30齿廓角150.15,螺丝对的当量摩擦系数为-0.19744950019,螺旋上升角为1.5617735831,当量摩擦角为-0.1949419593计算结果不合格的自锁性能检查计算项目计算公式计算值备注2.59807621141.5669872981 1.3333333333节距P(mm)导程s(mm)节距直径D2(mm)螺钉对滑动摩擦系数f 0.13-0.17轴向力F(n)外螺纹小直径D1(mm)节距P (mm)原始三角形高度h(mm)用于外螺纹DC(mm)普通螺纹螺栓断裂部分的安全系数s 屈服强度(MPA)允许拉应力(MPA)= 33 = 60梯形螺纹:矩形螺纹:锯齿螺纹:普通螺纹:NP = atan,如果<,则为合格,否则为不合格。计算得出的拉应力为0.5187993114,计算结果合格。如果<,则为合格,否则为不合格

平键的选择和计算

第六章:平键的选择与计算 6、1:高速轴与V 带轮用键连接 1、选用圆头普通平键(A 型) 按轴的直径d=45mm,及带轮宽mm 3552=B ,据文献得键的键宽 b ?键高h 为914?,长度mm 45=L 的键。 2、强度校核 键材料选择45钢,V 带轮材料为铸铁,查表得键联接的 许用应力[]MPa P 80~70=σ,键的工作长度 mm h k mm L l 5.495.05.0382 14452b -=?===-==, 挤压应力 []安全)(8.3845 385.4171.14920002000P I P MPa kld T σσ<=???== 6、2:低速轴与大齿轮用键连接 1、选用圆头普通平键(A 型) 按轴的直径d=64mm,据文献得键的键宽b ?键高h 为1118?,长度mm 63=L 的键。 2、强度校核 键材料选择45钢,大齿轮的材料也为45钢,查表得键联接的许用应力[]MPa P 150~120=σ,键的工作长度 mm h k mm L l 5.5115.05.0542 18632b -=?===-==, 挤压应力

[]安全)(77.7764 545.517.73920002000P II P MPa kld T σσ<=???== 6、3:低速轴与联轴器用键连接 1、选用圆头普通平键(A 型) 按轴的直径d=50mm,据文献查得键的的键宽b ?键高h 为914?,长度mm 63=L 的键。 2、强度校核 键材料选择45钢,联轴器的材料为钢,查表得键联接的许用应力[]MPa P 150~120=σ,键的工作长度 mm h k mm L l 5.495.05.0562 14632b -=?===-==, 挤压应力 []安全)(33.11750565.417.73920002000P II P MPa kld T σσ<=???==

平键连接的选择与强度校核

平键连接的选择与强度校核传递较大转矩时,可采用由两个1:100 的上、下面互相平行.需两边打人。定心性差 Z、 的单边倾斜楔键组成的切向键连接。键 ,适用于不要求准确定心、低速运转的场 2.平键连接的选择与强度校核 1)健的选择 平键是标准件,其本身不需要设计,只需根据具体情况选择即可。选择键时应考虑类型和尺寸两个方面。键的类型选择应考虑键连接的结构特点、使用要求和工作条件;键的尺寸选择应考虑是否符合标准规格和强度要求。在尺寸选择中,考虑键的主要尺寸,即键的截面尺寸(一般以键宽bX键高h表示)和键长L,键的截面尺寸b Xh按轴的直径d由标准中选定;键的长度L一般应等于或略短于轮毅的长度。一 般轮毅的长度可取为L'=,-- (1.5-2)d,这里d为轴的直径.同时键长也应符合标准 规定的长度系列(见表7-1及附表7-1)重要的键连接在选出键的类型和尺寸后,还 应进行强度校核计算。 键的材料通常用45钢,如果强度不够,通常采用双键.两个平键最好沿周向相 隔1800布置;两个半圆键应布置在轴的同一母线上;两个楔键则应布置在沿周向相隔第7章粕毅连接 125 900---1200.考虑到载荷分布的不均匀性,在强度校核中可按].5个键计算. 3.花键连接 花键连接是由轴上加工出多个纵向键齿的花键轴和轮毅孔上加工出同样的键齿槽组成。工作时靠键齿的侧面互相挤压传递转矩.花键连接具有承载能力强、对轴 和毅的强度削弱程度小、定心精度高和导向性好等优点。其缺点是需要专用设备加工,成本较高。因此,花键连接适用于定心精度要求高和载荷较大的场合.在汽车、拖拉机、航空航天等工业中都获得广泛的应用。 花键已标准化,按齿廓的不同,可分矩形花键和渐开线花键。

相关文档
最新文档