讲义 - 光的波动性和粒子性

讲义 - 光的波动性和粒子性
讲义 - 光的波动性和粒子性

龙文教育学科教师辅导讲义

教师:______ 学生:______ 时间:_____年_____月____日____段 1929年,德布罗意因对实物粒子波动性的揭示而获得诺贝尔物理学奖.在授奖仪式上,瑞典物理学家卡尔·乌辛把德布罗意介绍给全体与会者,并发表了如下的讲话:

“有一首每个瑞典人都很熟悉的诗是这样开头的:‘我的生活——就是波’.诗人也可以这样来表达他的思想:‘我——就是波’.他最好这样表达,这样,他的诗句也将包含着对物质性质最深刻认识的先觉.从现在起,这样的认识已是我们都能接受的了……”

3年高考平台

一、选择题

1.研究光电效应规律的实验装置如图16-1所示,以频率为ν的光照射光电管阴极K 时,有光电子产生.由于光电管K 、A 间加的是反向电压,光电子从阴极K 发射后将向阳极A 作减速运动.光电流i 由图中电流计G 测出,反向电压U 由电压表V 测出.当电流计的示数恰好为零时,电压表的示数称为反向截止电压U 0.在下列表示光电效应实验规律的图像中,错误的是( )

图16-1

图16-2

答案:B

2.现有a 、b 、c 三束单色光,其波长关系为λa >λb >λc .用b 光束照射某种金属时,恰能发生光电效应.若分别用a 光束和c 光束照射该金属,则可以断定( )

A.a 光束照射时,不能发生光电效应

B.c 光束照射时,不能发生光电效应

C.a 光束照射时,释放出的光电子数目最多

D.c 光束照射时,释放出的光电子的最大初动能最小 答案:A

二、非选择题

3.(1)人们发现光电效应具有瞬时性和对各种金属都存在极限频率的规律.请问谁提出了何种学说很好地解释了上述规律?已知锌的逸出功为3.34 eV ,用某单色紫外线照射锌板时,逸出光电子的最大速度为106 m/s ,求该紫外线的波长λ(电子质量m e =9.11×10-31 kg ,普朗克常量h=6.63×10-34 J ·s,1 eV=1.60×10-19 J ).

(2)风力发电是一种环保的电能获取方式.图16-3为某风力发电站外观图.设计每台风力发电机的功率为40 kW.实验测得风的动能转化为电能的效率约为20%,空气的密度是1.29 kg/m 3,当地水平风速约为10 m/s ,问风力发电机的叶片长度约为多少才能满足设计要求?

图16-3

答案:(1)2.01×10-7 m (2)10 m

解析:(1)爱因斯坦提出了光子学说很好地解释了光电效应. ① 根据爱因斯坦光电效应方程hc/λ=W+22

1v m e ② 所以λ=2.01×10-7 m. ③

(2)风的动能:E k =22

1mv ① 风t 时间内通过叶片为半径圆的质量:m=ρV=ρπl 2vt ② ηρπη322

1v l t E P k

== ③ 由①②③得:l ≈10 m.

高考题 一、选择题

1.在下列各组的两个现象中都表现出光具有波动性的是( )

A.光的折射现象、色散现象

B.光的反射现象、干涉现象

C.光的衍射现象、偏振现象

D.光的直线传播现象、光电效应现象

答案:C

2.有关红、蓝两束单色光,下述说法正确的是( )

A.在空气中的波长λ红<λ蓝

B.在水中的光速v 红<v 蓝

C.在同一介质中的折射率n 红>n 蓝

D.蓝光光子的能量大于红光光子的能量

答案:D

3. 2005年被联合国定为“世界物理年”,以表彰爱因斯坦对科学的贡献.爱因斯坦对物理学的贡献有( )

A.创立“相对论”

B.发现“X 射线”

C.提出“光子说”

D.建立“原子核式模型”

答案:AC

5.(2005江苏高考综合,22)光电效应现象证明了光具有( )

A.粒子性

B.波动性

C.衍射的特性

D.干涉的特性

答案:A

7.(2005广东高考综合,29)硅光电池是利用光电效应将光辐射的能量转化为电能.若有N 个频率为ν的光子打在光电池极板上,这些光子的总能量为(h 为普朗克常量)( )

A.h ν

B.

hv 2

1 C.Nh ν D.2Nh ν 答案:C

二、非选择题

8. 1801年,托马斯·杨用双缝干涉实验研究了光波的性质.1834年,洛埃利用单面镜同样得到了杨氏干涉的结果(称洛埃镜实验).

图16-4

(1)洛埃镜实验的基本装置如图16-4所示,S 为单色光源,M 为一平面镜.试用平面镜成像作图法画出S 经平面镜反射后的光与直接发出的光在光屏上相交的区域.

(2)设光源S 到平面镜的垂直距离和到光屏的垂直距离分别为a 和L,光的波长为λ,在光屏上形成干涉条纹.写出相邻两条亮纹(或暗纹)间距离Δx 的表达式.

答案:略

解析:(1)

(2)λd

L x =? 因为d=2a,所以.2λa L x =

? 题源探究

1.已知能使某金属产生光电效应的极限频率为ν0( )

A.当用频率为2ν0的单色光照射该金属时,一定能产生光电子

B.当用频率为2ν0的单色光照射该金属时,所产生光电子的最大初动能为h ν0

C.当照射光的频率ν大于ν0时,若ν增大,则逸出功增大

D.当照射光的频率ν大于ν0时,若ν增大一倍,则光电子的最大初动能也增大一倍

答案:AB

2.某光电管的阴极是用金属钾制成的,它的逸出功为2.21 eV ,用波长为2.5×10-7 m 的紫外线照射阴极,已知真空中光速为

3.0×108 m/s ,元电荷为1.6×10-19 C,普朗克常量为6.63×10-34 J ·s ,求得钾的极限频率和该光电管发射的光电子的最大动能应分别是( )

A.5.3×1014 Hz,2.2 J

B.5.3×1014 Hz,4.4×10-19 J

C.3.3×1033 Hz,2.2 J

D.3.3×1033 Hz,4.4×10-19 J

答案:B

考点:光电效应

在光的照射下物体发射电子的现象,叫做光电效应,发射出的电子叫做光电子.

光电效应的规律:每种金属都存在发生光电效应的极限频率;光电子的最大初动能与入射光的强度无关,随入射光的频率增大而增大;光电效应的瞬时性,一般不超过10-9 s ;当入射光的频率大于极限频率时,光电流的

强度与入射光的强度成正比.

爱因斯坦的光子说:空间传播的光是不连续的,而是一份一份的,每一份叫做一个光子,每个光子的能量为E=h ν.

爱因斯坦光电效应方程:E k =h ν-W.

方法点击 (1)光电效应是光的粒子性的一个有力证据,是光量子说的实验基础.对光电效应的规律不要机械地记忆,一定要理解好.爱因斯坦的光子说就可以很好地解释光电效应:光子的能量被金属中的某个电子吸收后,能量增加,如果能量足够大,电子就能克服金属内正电荷对它的引力,离开金属表面逃逸出来,成为光电子.且入射光的能量越大,光电子的最大初动能也越大.不同金属对电子的束缚程度不同,如果光子的能量小于使电子逃逸出来所需的最小值,无论光多么强,照射时间多么长,也不能使电子从金属中逃逸出来,因而每种金属都存在极限频率.电子对光子的吸收十分迅速,因此光电效应的发生几乎是瞬时的.对光电流的强度与入射光的强度成正比,只对同种金属才是成立的,若不同色光照射同种金属,或同种色光照射不同的金属,则失去了比较的意义.

(2)光电效应的实际应用之一就是光电管,由于高考命题非常注重应用型、能力型试题,要引起重视.

【例】 在如图16-6所示的光电管实验中,发现用一定频率的A 单色光照射光电管时,电流表指针会发生偏转,而用另一频率的B 单色光照射时不发生光电效应,那么( )

图16-

A.A 光的频率大于B 光的频率

B.B 光的频率大于A 光的频率

C.用A 光照射光电管时流过电流表G 的电流方向是a 流向b

D.用A 光照射光电管时流过电流表G 的电流方向是b 流向a

解析:根据光电效应发生的条件可知,A 光的频率大于极限频率,B 光的频率小于极限频率,故A 光的频率大于B 光的频率,A 项正确.光电管工作时光电子从右侧的阴极飞向左侧的阳极(对阴极),故电路中的电流为a →b ,C 项正确.电源的作用是在阳极和阴极之间形成电场,用来加速从阴极发出的光电子,因而电源的左侧应为正极.光电管中电流与单位时间内到达阳极的光电子的数目有关,在电源电压一定的情况下,入射光的强度越大,单位时间内发出的光电子数目就越多,光电管中的电流就越大.

考点2光的波粒二象性、物质波

光是一种波,同时也是一种粒子,光具有波粒二象性. 任何一个运动着的物体,都有一种物质波与它对应,波长p

h =λ. 方法点击 既不可把光当成宏观观念中的波,也不可把光当成宏观观念中的粒子.大量光子产生的效果往往显示出波动性,个别光子产生的效果往往显示出粒子性.光在传播过程中往往显示波动性,在与物质作用时往往显示粒子性.

2年模拟题阵

基础巩固

一、选择题

1.(2006甘肃诊断理综)夏天,在黄河边散步时,发现水面上有油污,在阳光的照射下会看到彩色的花纹,这属于( )

A.光的色散现象

B.光的衍射现象

C.光的干涉现象

D.光的全反射现象

答案:C

解析:油膜在阳光下会看到彩色花纹,这是光在膜的前、后表面发射回来后干涉的结果,故选项C 正确.

2.(2006北京东城一模)下列实际的例子中,应用的物理原理表明光是波动的是( )

A.在磨制各种镜面或其他光学平面时应用干涉法检查平面的平整程度

B.拍摄水面下的物体时,在照相机镜头前装一片偏振滤光片,可以使景象清晰

C.一窄束白光通过三棱镜色散得到彩色的光带

D.利用光照射到光电管上产生光电流,进行自动控制

答案:AB

解析:选项A 为光的干涉,是利用了光的波动性.选项B 为光的偏振,也属于光的波动性.选项C 是光的折射现象.选项D 利用了光的粒子性.

3.(2005湖北一模)白光通过双缝在屏上观察到干涉条纹,除中央为白色明纹外,两侧还出现彩色条纹,它的原因是 ( )

A.各色光的波长不同

B.各色光的速度不同

C.各色光的色散不同

D.各色光的强度不同

答案:A

解析:根据双缝干涉的条纹间距规律λd

l x =?,得到波长越长,间距越大,白光中的七种单色光波长不同,所以间距不同.本题的正确选项为A.

4.(2005江苏启东一模)抽制高强度纤维细丝时可用激光监控其粗细,如图16-7所示,观察激光束经过细丝时在光屏上所产生的条纹即可判断细丝粗细的变化.下列说法正确的是( )

图16-7

A.这主要是光的干涉现象

B.这主要是光的衍射现象

C.如果屏上条纹变宽,表明抽制的丝变粗

D.如果屏上条纹变宽,表明抽制的丝变细

答案:BD

解析:由题意知,激光束经过细丝时在光屏上所产生的条纹,所以本装置是光的衍射,选项A 错误,选项B 正确.根据衍射规律得:细丝越细,会使条纹更宽,所以选项C 错误,选项D 正确.所以,本题的正确选项为BD.

5.(2006云南质量检测)关于光电效应,下列说法正确的是( )

A.发生光电效应时,一般来说,照射光频率一定,被照射的金属不同,则逸出的光电子的最大初动能不同

B.发生光电效应时,不同频率的单色光照射同一种金属表面,逸出的光电子的最大初动能并不相同

C.发生光电效应时,逸出的光电子的最大初动能的最小值等于金属的逸出功

D.用某单色光照射某金属表面时,没发生光电效应.若用多束这样的单色光同时照射该金属表面,可能发生光电效应

答案:AB

解析:由E k =h ν-W 可知,当金属的逸出功不同时,则逸出的光电子的最大初动能不同,而不同的金属具有不同的逸出功,所以选项A 正确.发生光电效应时,不同频率的单色光照射同一种金属表面,逸出的光电子的最大初动能并不相同,且最小值可以为零,所以选项B 正确,选项C 错误.能否发生光电效应是由入射光的频率决定的,与入射光的强度无关,所以选项D 错误.

6.(2006四川一模)如图16-8所示是伦琴射线管的装置示意图,关于该装置,下列说法中正确的是 ( )

图16-8

A.E1可用低压交流电源,也可用直流电源(蓄电池)

B.E2是高压直流电源,且E2的右端为电源的正极

C.射线a、b均是电子流

D.射线a是电子流、射线b是X射线

答案:ABD

解析:电源E1的作用是使阴极发出电子,可用低压交流电源,也可用直流电源(蓄电池),射线a是电子流.电源E2的作用为加速电子,让电子获得很高的能量去轰击对阴极,使对阴极发出X射线,即射线b,因而电源E2应为高压直流电源,且右端为电源的正极.故选项ABD正确.

7.(2006江苏南京一模)太阳表面的温度约为6 000 K,所辐射的电磁波中辐射强度最大的在可见光波段;人体的温度约为310 K,所辐射的电磁波中辐射强度最大的在红外线波段.宇宙空间内的电磁辐射相当于温度约为3 K的物体所发出的,这种辐射称为“3 K背景辐射”.若要对“3 K背景辐射”进行观测研究,则应选择的观测波段为()A.无线电波 B.紫外线 C.X射线 D.γ射线

答案:A

解析:由题意6 000 K时所辐射的电磁波中辐射强度最大的在可见光波段,310 K时所辐射的电磁波中辐射强度最大的在红外线波段.由此可知,温度越低所辐射的电磁波的频率越小,所以“3 K背景辐射”的电磁波波段应为无线电波,故选项A正确.

8.(2005上海二模)如图16-9所示,一验电器与锌板相连,现用一弧光灯照射锌板一段时间,关灯后,指针保持一定偏角()

图16-9

A.用一带负电的金属小球与锌板接触,则验电器指针偏角将增大

B.用一带负电的金属小球与锌板接触,则验电器指针偏角将减小

C.使验电器指针回到零,改用强度更大的弧光灯照射锌板相同的时间,验电器指针偏角将增大

D.使验电器指针回到零,改用强度更大的红外线灯照射锌板,验电器的指针一定偏转

答案:BC

解析:由光电效应知识得,跑出了光电子,锌板带正电,当关灯后,锌板和验电器带正电,所以用一带负电的金属小球与锌板接触,验电器的指针偏角将减小,所以选项A错误,选项B正确.再由光电流与光的强度有关,所以改用强度更大的弧光灯照射锌板相同的时间,跑出的光电子更多,验电器指针偏角将增大,所以选项C正确.因为红外线的频率小,所以不一定能让锌板发生光电效应,所以选项D错误.综上所述,本题的正确选项为BC.

9.(2006湖北武汉二模)下列说法正确的是()

A.如果地球表面没有大气层,太阳照亮地球的范围要比有大气层时略大些

B.激光是一种人工产生的相干光,因此可对它进行调制来传递信息

C.激光雷达能根据多普勒效应测出目标的运动速度,从而对目标进行跟踪

D.从本质上说激光是横波

答案:BCD

解析:如果地球表面没有大气层,太阳照亮地球的范围要比有大气层时略小些.激光是一种人工产生的相干光,因此可对它进行调制来传递信息.激光雷达能根据多普勒效应测出目标的运动速度,从而对目标进行跟踪,激光是横波.

10.(2006河南郑州一模)如图16-10所示,是用干涉法检查某块厚玻璃块的上表面是否平的装置,所用单色光是用普通光源加滤光片产生的,检查中所观察到的干涉条纹是由下列哪两个表面反射的光线叠加而成的( )

图16-10

A.a 的上表面和b 的下表面

B.a 的上表面和b 的上表面

C.a 的下表面和b 的上表面

D.a 的下表面和b 的下表面

答案:C

解析:该题主要考查对薄膜干涉的认识和理解.样板和厚玻璃之间存在楔形空气薄层,用单色光从这个空气薄层上表面照射,入射光从空气薄层的上、下表面反射回两列光波形成干涉条纹.空气薄层的上、下表面就是a 的下表面和b 的上表面.

二、非选择题

11.(2005山西二模)已知每秒钟从太阳辐射到地球表面上垂直于太阳光方向的每平方米面积上的辐射能为1.4×103 J ,其中可见光部分约占45%.假设可见光的波长均为0.55 μm ,太阳向各个方向的辐射是均匀的,日地间距离为

1.5×1011 m ,取普朗克常量为h=6.6×10-34 J ·s ,由此估算太阳每秒钟辐射出的可见光光子数约为多少个?(答案保留两位有效数字)

答案:4.9×1044

解析:设地球上每秒钟单位面积上得到的光子数目为N ,P ×45%=,λc

Nh 所以得到太阳每秒钟辐射出的可见光光

子数n=N ×4πr 2,代入数据计算得n=4.9×1044.

12.(2006陕西一模)如图16-11所示,相距为d 的两平行金属板A 、B 足够大,板间电压恒为U ,有一波长为λ的细激光束照射到B 板中央,使B 板发生光电效应,已知普朗克常量为h ,金属板B 的逸出功为W ,电子质量为m ,电荷量e ,求:

图16-11

(1)从B 板运动到A 板所需时间最短的光电子,到达A 板时的动能;

(2)光电子从B 板运动到A 板时所需的最长时间.

答案:(1)W hc

eU -+λ (2)eU

m d t 2= 解析:(1)根据爱因斯坦光电效应方程E k =h ν-W ,光子的频率为:λνc =.所以,光电子的最大初动能为

.W hc

E k -=λ能以最短时间到达A 板的光电子,是初动能最大且垂直于板面离开B 板的电子,设到达A 板的动

能为E k1,由动能定理,得eU=E k1-E k ,所以λhc eU E k +=1

.W -

(2)能以最长时间到达A 板的光电子,是离开B 板时的初速度为零或运动方向平行于B 板的光电子.则,22122dm eUt at d ==得.2eU

m d t = 综合提升

一、选择题

13.(2005江苏南京二模)下列有关光现象的应用技术中,正确的说法是( )

A.无影灯是应用光的衍射现象

B.增透膜是应用光的干涉现象

C.分光镜是应用光的色散现象

D.光导纤维是应用光的全反射现象

答案:BCD

解析:根据光的直线传播规律和光的波动理论,选项A 是利用光的直线传播原理,所以选项A 错误.增透膜是利用薄膜干涉的原理,所以选项B 正确.分光镜是应用光的折射而产生色散的原理,所以选项C 正确.选项D 是应用光的全反射原理.综上所述,本题的正确选项为BCD.

14.(2006陕西西安八校联考)用某单色光照射金属表面,金属表面有光电子飞出.如果照射光的频率增大,强度减弱则单位时间内飞出金属表面的光电子数和光电子的最大初动能的变化是( )

A.光电子数增多,最大初动能减少

B.光电子数增多,最大初动能增加

C.光电子数减少,最大初动能减少

D.光电子数减少,最大初动能增加

答案:D

解析:由E k =h ν-W 知,照射光的频率增大,光电子的最大初动能增加,与光的强度无关,而照射光的强度减弱会使单位时间内飞出金属表面的光电子数目减少,故D 对.

15.(2005山东一模)利用金属晶格(大小约10-10 m)作为障碍物观察电子的衍射图样,方法是让电子通过电场加速,然后让电子束照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m ,电荷量为e ,初速度为0,加速电压为U ,普朗克常量为h ,则下述说法中正确的是( )

A.该实验说明了电子具有波动性

B.实验中电子束的德布罗意波的波长为meU h

2=λ

C.加速电压U 越大,电子的衍射现象越明显

D.若用相同动能的质子替代电子,衍射现象将更加明显

答案:AB

解析:由题意知,观察到电子的衍射图样,所以该实验说明了电子具有波动性,选项A 正确.根据德布罗意波的波长p h =λ,再由,22meU mE p k ==代入得到:meU h 2=λ,选项B 正确.如果加速电压越大,则电子波长越短,衍射就越不明显,选项C 错误.同理选项D 错误.所以,本题的正确选项为AB.

二、非选择题

16.(2006北京东城模拟)德布罗意认为,任何一个运动着的物体,都有一种波与它对应,波长是p h =λ,式中p

是运动物体的动量,h 是普朗克常量.已知某种紫光的波长是440 nm ,若将电子加速,使它的德布罗意波长是这种紫光波长的10-4倍.求:

(1)电子的动量的大小.

(2)试推导加速电压跟德布罗意波长的关系,并计算加速电压的大小.电子质量m=9.1×10-31 kg ,电子电荷量e=1.6×10-19 C ,普朗克常量h=6.6×10-34 J ·s ,加速电压的计算结果取一位有效数字.

答案:(1)1.5×10-23

kg ·m/s (2)22

2λm e h U = 8×102 V 解析:(1)由p

h =λ得电子的动量大小s m kg h p /1010440106.64934????==---λ=1.5×10-23 kg ·m/s . (2)设加速电压为U ,由动能定理得eU=221mv ,而,22122m

p mv =所以.2222

2λem h em p U ==代入数据得加速电压的大小U=8×102 V .

17.(2006北京西城二模)光子具有动量,每个光子的动量λh

mv =(式中h 为普朗克常量,λ为光子的波长),当

光照射到物体表面上时,不论光被物体吸收还是被物体表面反射,光子的动量都会发生改变,因而对物体表面产生一种压力,称为光压.上图是列别捷夫设计的用来测量光压的仪器.图中两个圆片中,a 是涂黑的,而b 是光亮的,当光线照射到a 上时,可以认为光子全部被吸收,而当光线照射到b 上时,可以认为光子全部被反射.分别用光线照射在a 或b 上,由于光压的作用,都可以引起悬丝的旋转,旋转的角度可以借助于和悬丝一起旋转的小平面镜M 进行观察.

图16-12

(1)如果用两束光强相同的光同时分别照射两个圆片a 、b ,光线的入射方向都跟圆片表面垂直,悬丝将向哪个方向偏转?为什么?

(2)已知两个圆片a 、b 的半径都为r ,两圆心间的距离是d ,现用频率为ν的激光束同时照射a 、b 两个圆片,设入射光与圆面垂直,单位时间内垂直于光传播方向的单位面积上通过的光子个数为n ,光速为c.求:由于光压而产生的作用力分别是多大.

答案:(1)a 向外b 向里转动(从上向下看逆时针转动) 原因略

(2)c

h r n F c h r n F b a νπνπ22,== 解析:(1)a 向外b 向里转动(从上向下看逆时针转动).其原因是:对时间t 内照到圆片上的光子用动量定理Ft=ntS Δmv ,照到a 上的每个光子的动量变化是mv ,而照到b 上的每个光子的动量变化是2mv ;因此光子对b 的光压大.

(2)光子的动量.c h h mv ν

λ==分别对单位时间内照射到a 、b 上的光子用动量定理,有.222,222c

h r n t mv ntS F c h r n t mv ntS F b a νπνπ=??==??=

挑战创新

18.在实验室做了一个这样的光学实验,即在一个密闭的暗箱里依次放上小灯泡(紧靠暗箱的左内壁)、烟熏黑的玻璃、狭缝、针尖、感光胶片(紧靠暗箱的右内壁),整个装置如图16-13所示,小灯泡发出的光通过熏黑的玻璃后变得十分微弱,经过三个月的曝光,在感光胶片上针头影子周围才出现非常清晰的衍射条纹.对感光胶片进行了光能量测量,得出每秒到达感光胶片的光能量是5×10-13 J.假如起作用的光波波长约为500 nm ,且当时实验测得暗箱的长度为1.2 m ,若光子依次通过狭缝,普朗克常量h =6.63×10-34 J ·s.求:

图16-13

(1)每秒钟到达感光胶片的光子数;

(2)光束中相邻两光子到达感光胶片相隔的时间和相邻两光子之间的平均距离;

(3)根据第(2)问的计算结果,能否找到支持光是概率波的证据?请简要说明理由.

答案:(1)1.25×106个

(2)Δt=8.0×10-7 s s=2.4×102 m

(3)能,理由略

解析:(1)设每秒到达感光胶片的光能量为E 0,对于λ=500 nm 的光子能量为λhc E =

,因此每秒达到感光胶片的光子数为E

E n 0=,由两式及代入数据得 n=1.25×106个. (2)光子是依次到达感光胶片的,光束中相邻两光子到达感光胶片的时间间隔s n t 7100.81-?==

?,相邻两光子间的平均距离为s=c ·Δt=2.4×102 m .

(3)由第(2)问的计算结果可知,两光子间距有2.4×102 m .而小灯泡到感光胶片之间的距离只有1.2 m ,所

以在熏黑玻璃右侧的暗箱里一般不可能有两个光子同时同向在运动.这样就排除了衍射条纹是由于光子相互作用产生的波动行为的可能性.因此,衍射图形的出现是许多光子各自独立行为积累的结果,在衍射条纹的亮区是光子到达可能性较大的区域,而暗区是光子到达可能性较小的区域.这个实验支持了光波是概率波的观点.

光的波动性和粒子性

专题二光的波动性和粒子性 考情动态分析 该专题内容,以对光的本性的认识过程为线索,介绍了近代物理光学的一些初步理论,以及建立这些理论的实验基础和一些重要的物理现象.由于该部分知识和大学物理内容有千丝万缕的联系,且涉及较多物理学的研究方法,因此该部分知识是高考必考内容之一.难度适中.常见的题型是选择题,其中命题率最高的是光的干涉和光电效应,其次是波长、波速和频率.有时与几何光学中的折射现象、原子物理中的玻尔理论相结合,考查学生的分析综合能力.此外对光的偏振降低了要求,不必在知识的深度上去挖掘. 考点核心整合 1.光的波动性 光的干涉、衍射现象说明光具有波动性,光的偏振现象说明光波为横波,光的电磁说则揭示了光波的本质——光是电磁波. (1)光的干涉 ①光的干涉及条件 由频率相同(相差恒定)的两光源——相干光源发出的光在空间相遇,才会发生干涉,形成稳定的干涉图样.由于发光过程的量子特性,任何两个独立的光源发出的光都不可能发生干涉现象.只有采用特殊的“分光”方法——将一束光分为两束,才能获得相干光.如双缝干涉中通过双缝将一束光分为两束,薄膜干涉中通过薄膜两个表面的反射将一束光分为两束而形成相干光. ②双缝干涉 在双缝干涉中,若用单色光,则在屏上形成等间距的、明暗相间的干涉条纹,条纹间距 L Δx和光波的波长λ成正比,和屏到双缝的距离L成正比,和双缝间距d成反比,即Δx= d λ.若用白光做双缝干涉实验,除中央亮条纹为白色外,两侧为彩色条纹,它是不同波长的光干涉条纹的间距不同而形成的. ③薄膜干涉 在薄膜干涉中,薄膜的两个表面反射光的路程差(严格地说应为光程差)与膜的厚度有关,故同一级明条纹(或暗条纹)应出现在膜的厚度相同的地方.利用这一特点可以检测平面的平整度.另外适当调整薄膜厚度.可使反射光干涉相消,增强透射光,即得增透膜. (2)光的衍射 ①条件 光在传播过程中遇到障碍物时,偏离原来的直线传播路径,绕到障碍物后面继续传播的现象叫光的衍射.在任何情况下,光的衍射现象都是存在的,但发生明显的衍射现象的条件应是障碍物或孔的尺寸与光波的波长相差不多. ②特点 在单缝衍射现象中,若入射光为单色光,则中央为亮且宽的条纹,两侧为亮度逐渐衰减的明暗相间条纹;若入射光为白光,则除中央出现亮且宽的白色条纹外,两侧出现亮度逐渐衰减的彩色条纹. (3)光的偏振 在与光波传播方向垂直的平面内,光振动沿各个方向均匀分布的光称为自然光,光振动沿着特定方向的光即为偏振光. 自然光通过偏振片(起偏器)之后就成为偏振光.光以特定的入射角射到两种介质界面上时,反射光和折射光也都是偏振光. 偏振现象是横波特有的现象,所以光的偏振现象表明光波为横波.

知识讲解粒子的波动性不确定关系2

粒子的波动性、不确定编稿:张金虎审稿:吴嘉峰 【学习目标】 1.知道康普顿效应及其理论解释; 2.知道光具有波粒二象性,从微观角度理解光的波动性和粒子性; 3.了解概率波的含义,了解光是一种概率波. 4.知道微观粒子和光子一样具有波粒二象性; 5.掌握波长hp??的应用; 6.知道“不确定性关系”以及氢原子中“电子云”的具体含义. 【要点梳理】 要点一、粒子的波动性 1.光的散射 光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射.2.康普顿效应 (1)美国物理学家康普顿在研究X射线通过金属、石墨等物质的散射时,发现在散射的X射线中,除了有与入射波长0?相同的成分外,还有波长大于0?的成分.人们 把这种波长变长的现象叫做康普顿效应. (2)经典电磁理论的困难:散射前后光的频率不变,因而散射光的波长与入射光的波长应该相同,不应出现0??>的散射光. (3)爱因斯坦的光子说:光子不仅具有能量Eh??,而且光子具有动量hhpc????. (4)康普顿用光子说成功解释了康普顿效应:他认为散射后X射线波长改变,是X射线光子和物质中电子碰撞的结果.由于光子的速度是光速,非常大,而物质中的电子速度相对很小,因此可以看做电子静止.碰撞前后动量和能量都守恒.碰撞后电子动量和能量增加,光子的动量和能量减小,故散射后光子的频率要减小,光子的波长变长. (5)康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性.3.光的波粒二象性

(1)光电效应和康普顿效应表明光具有粒子性,光的干涉、衍射、偏振现象表明光具有波动性.光既有波动性又有粒子性,单独使用任何一种都无法完整地描述光的所有性质,把这种性质叫做光的波粒二象性. (2)光波是一种慨率波. 光子在空间各点出现的可能性大小(概率),可以用波动规律来描述.如单个光子通过双缝后的落点无法预测,但光子遵循的分布规律可预测,(通过双缝后)产生干涉条纹,亮纹处光子到达的机会大,暗纹处光子到达的机会小. 4.光的波动性与粒子性的统一 (1)光子和电子、质子等实物粒子一样,具有能量和动量.和其他物质相互作用时,粒子性起主导作用,在光的传播过程中,光子在空间各点出现的可能性的大小(概率)由波动性起主导作用,因此称光波为概率波. (2)光子的能量跟其对应的频率成正比,而频率是波动性特征的物理量,因此Eh??揭示了光的粒子性和波动性之间的密切联系. (3)对不同频率的光,频率低、波长长的光,波动性特征显著;而频率高、波长短的光,粒子性特征显著. 要点诠释:光子是能量为h?的微粒,表现出粒子性,而光子的能量与频率?有关,体现了波动性,所以光子是统一了波粒二象性的微粒,但是,在不同的条件下的表现不同,大量光子表现出波动性,个别光子表现出粒子性;光在传播时表现出波动性,光和其他物质相互作用时表现出粒子性;频率低的光波动性更强,频率高的光粒子性更强.综上所述,光的粒子性和波动性组成一个有机的统一体,相互间并不是独立存在.5.再探光的双缝干涉实验 物理学家做了图甲所示的实验,帮助我们认识光的波动性和粒子性的统一.在双缝干涉的屏处放上照相底片,如果让光子一个一个通过双缝,在曝光量很小时,底片上出现如图乙所示的不规则分布的点,表现出光的粒子性.如果曝光量很大,底片上出现规则的干涉条纹反映光子分布规律,遵循波的规律,如图中丙、丁所示.要点诠释:实验表明个别光子的行为无法预测,表现出粒子性;大量光子的行为表现出波动性,在干涉条纹中,光波强度大的地方,即光子出现概率大的地方;光波强度小的地方,是光子到达机会少的地方,即光子出现概率小的地方.因此,光波是一种概率波. 要点诠释:曝光量很小时可以清楚地看出光的粒子性,曝光量很大时可以看出粒子的分

课时跟踪检测(六) 粒子的波动性

课时跟踪检测(六)粒子的波动性 1.[多选]实物粒子和光都具有波粒二象性,下列事实中突出体现波动性的是() A.电子束通过双缝实验后可以形成干涉图样 B.人们利用慢中子衍射来研究晶体的结构 C.人们利用电子显微镜观测物质的微观结构 D.光电效应实验中,光电子的最大初动能与入射光的频率有关,与入射光的强度无关解析:选ABC干涉是波具有的特性,电子束通过双缝实验装置后可以形成干涉图样,说明电子具有波动性,A正确;利用慢中子衍射来研究晶体的微观结构,说明中子可以产生衍射现象,具有波动性,B正确;利用电子显微镜观测物质的微观结构,说明电子可以产生衍射现象,具有波动性,C正确;光电效应现象体现的是光的粒子性,D错误。 2.[多选]下列说法中正确的是() A.光的干涉和衍射现象说明光具有波动性 B.光的频率越大,波长越长 C.光的波长越长,光子的能量越大 D.光在真空中的传播速度为3.0×108 m/s 解析:选AD光既具有波动性又具有粒子性,A正确。由v=λν知B错。由爱因斯坦光子理论ε=hν,v=λν,知波长越长,光频率越小,光子能量越小,C错。任何光在真空中传播速度均为3.0×108 m/s,D正确。 3.(2017·北京高考)2017年年初,我国研制的“大连光源”——极紫外自由电子激光装置,发出了波长在100 nm(1 nm=10-9 m)附近连续可调的世界上最强的极紫外激光脉冲。“大连光源”因其光子的能量大、密度高,可在能源利用、光刻技术、雾霾治理等领域的研究中发挥重要作用。一个处于极紫外波段的光子所具有的能量可以电离一个分子,但又不会把分子打碎。据此判断,能够电离一个分子的能量约为(取普朗克常量h=6.6×10-34 J·s,真空光速c=3×108 m/s)() A.10-21 J B.10-18 J C.10-15 J D.10-12 J 解析:选B光子的能量E=hν,c=λν,联立解得E≈2×10-18 J,B项正确。 4.对波粒二象性的理解,下列说法错误的是() A.光电效应揭示了光的粒子性,而康普顿效应从动量方面进一步揭示了光的粒子性B.德布罗意提出:实物粒子也具有波动性,而且粒子的能量和动量跟它所对应的波的

光的波动性和微粒性

光的波动性和微粒性 1、光本性学说的发展简史 (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象. (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象. 2、光的干涉 光的干涉的条件:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。 形成相干波源的方法有两种: (1) 用激光(因为激光发出的是单色性极好的光)。 (2)设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。 3、干涉区域内产生的亮、暗纹 亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ= n λ(n=0,1,2,……) 暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即δ=)12(2-n λ (n=0,1,2,……) 相邻亮纹(暗纹)间的距离:λλ∝=?d l x (此公式可以测定单色光的波长)。 用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。 4、衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。 (1)各种不同形状的障碍物都能使光发生衍射。 (2)发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm 时,有明显衍射现象。) (3)在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。 5、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。 6、光的电磁说 (1)光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。) (2)电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X 射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。 S S b

2019届高中物理第十七章波粒二象性第3节粒子的波动性讲义含解析

粒子的波动性 1.光的波粒二象性 光既具有波动性,又具有粒子性,即光具有波粒二象性。2.光子的能量和动量 (1)能量:ε=hν。 (2)动量:p=h λ 。 (3)意义:能量ε和动量p是描述物质的粒子性的重要物理量;波长λ和频率ν是描 述物质的波动性的典型物理量。因此ε=hν和p=h λ 揭示了光的粒子性和波动性之间的密切 关系,普朗克常量h架起了粒子性与波动性之间的桥梁。 [辨是非](对的划“√”,错的划“×”) 1.光既具有粒子性,又具有波动性。(√) 2.光的干涉说明光具有波动性,光的多普勒效应说明光具有粒子性。(√) [释疑难·对点练] 对光的波粒二象性的理解 (1)光既表现出波动性又表现出粒子性,要从微观的角度建立光的行为图案,认识光的波粒二象性。

(2)大量光子易显示波动性,而少量光子易显示出粒子性;波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。 (3)要明确光的波动性和粒子性在不同现象中的分析方法。 [试身手] 1.(多选)对光的认识,以下说法中正确的是( ) A .个别光子的行为易表现为粒子性,大量光子的行为易表现为波动性 B .光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C .光表现出波动性时,就不具有粒子性了,光表现出粒子性时,就不具有波动性了 D .光的波粒二象性应理解为:在某种场合下光的波动性表现明显,在另外某种场合下,光的粒子性表现明显 解析:选ABD 个别光子的行为易表现为粒子性,大量光子的行为易表现为波动性。光与物质相互作用,表现为粒子性,光的传播表现为波动性,光的波动性与粒子性都是光的本质属性,故A 、B 、D 正确。 1.粒子的波动性 (1)德布罗意波: 每一个运动的粒子都与一个对应的波相联系,这种与实物粒子相联系的波称为德布罗意波,也叫物质波。 (2)物质波的波长、频率关系式: 波长:λ=h p ;频率:ν=ε h 。 2.物质波的实验验证 (1)实验探究思路: 干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象。 (2)实验验证: 1927年戴维孙和汤姆孙分别利用晶体做了电子束衍射实验,得到了电子的衍射图样,证实了电子的波动性。 (3)说明: ①人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=εh 和λ=h p 关系同样正确; ②宏观物体的质量比微观粒子的质量大得多,运动时的动量很大,对应的德布罗意波的

高中物理光的波动性和微粒性知识点总结

高中物理光的波动性和微粒性知识点总结 高中物理中光的波动性和微粒性是每年高考的必考的知识点,可见其是很重要的,下面为同学们详细的介绍了光本性学说的发展简史、光的电磁说等知识点。 1.光本性学说的发展简史 (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象. (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象. 光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。 ⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。 2.干涉区域内产生的亮、暗纹 ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ= nλ(n=0,1,2,……) ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即

δ= (n=0,1,2,……) 页 1 第 相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。 3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。 ⑴各种不同形状的障碍物都能使光发生衍射。 ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm 时,有明显衍射现象。) ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。 4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。 光的电磁说5.⑴光是电磁波(麦克斯韦预言、赫兹用实验证 明了正确性。) ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。

浅谈光的粒子性

一、浅谈光的粒子性 序 人类的认识往往是在曲折中前进的,对光的认识也是如此。最初,人们对光的本质的认识有两种观点,一种认为光是一种波,而另一种观点认为光是一种粒子,即有光的粒子说和波动说两种说法并存。牛顿认为光是一种匀质硬性小球,这种观点能够较好地解释光的反射、折射及光的直线传播现象。但随着光的干涉、衍射现象的发现,使光的波动说又占了上风;而光电效应的发现,使光的粒子说又重新登上了历史的舞台。但麻烦随之而来,因为光的粒子说无法解释干涉、衍射现象,而光的波动说也无法解释光电效应。于是,有聪明人把波动性和粒子性这两种截然不同的特性揉在一起,创造出了所谓的光的波粒二象性,并且自以为对物质的认识又前进了一大步,这还不算,他们又进而推广认为一切物质都有波粒二象性,这恐怕也是没有办法的办法。就在人们为波粒二象性这种新提法而洋洋自得的时候,殊不知,却丧失了一次认识光子内部结构的极好机会。而此后,人们若要揭示光的本性,就要承受更大的压力,排除更多的干扰,做更多不必要的工作。本文将从光的干涉、衍射现象入手,全面揭示光的本性--粒子性…… 1、光的本性――粒子性 光的本性是什么?这个问题似乎无需讨论。物理学家会告诉你,光具有波粒二象性,是一种物质波;实际上一切物体都具有波动性,只不过宏观物质的物质波较短,更多时候其表现出粒子性而已。这样

的回答不禁使人想起一个幽默: 有人问:“地球为什么是圆的?” 答曰:“因为它在转” 又问:“地球为什么在转?” 答曰:“因为它是圆的” 光是什么?━━光是一种物质波。 光为什么是物质波?━━因为它有波粒二象性。 光为什么有波粒二象性呢?━━因为它是一种物质波。 我们痛心地发现,这个简单的近乎无聊的逻辑被人滥用到了令人吃惊的程度,在当今物理学中,似乎不谈物质波、相对论就显得落伍、水平不高什么的。那么,物质波是什么东西呢?恐怕只有极少数的聪明人才知道!我从来就认为光是一种粒子。这种观点可以解释光的直线传播、反射等等现象,但是光子说的确“无法解释光的干涉、衍射现象”。长久以来,我一直在思考如何解释这个问题,而光的干涉现象、衍射现象无疑是建立光子说的最大障碍。所以要想建立光子说,必须首先突破干涉现象、衍射现象的瓶颈。如何认识光的干涉现象、衍射现象呢?我们认为需要从两个方面入手,一方面是光子内部结构问题,另一方面是引力场的问题,这两方面要统筹考虑。。牛顿的光子说仅仅把光子看作一种简单的匀质硬性小球,这实际上是对光子的内部复杂结构认识不足,我们认为,光子并不是“匀质硬性小球”,它有极其复杂的内部结构,而光的干涉现象和衍射现象实际上是我们通过引力场认识光子内部结构的极好机会。

科学家同时观察到光的粒子性与波动性

科学家同时观察到光的粒子性与波动性(图) 上面的想象图演示的是单光子穿过干涉仪时的情景,干涉仪的输出端装有量子分光镜。图中远处可以看到正弦振荡的波形,表示的是单光子干涉,是一种波动现象。而在图片近处,观察不到振荡,说明只表现出粒子的特性。在两种极端之间,单光子的行为连续不断地从波的形式向粒子形式转变,图中显示了这两种状态 的重叠。 受艺术家毛里茨·科内利斯·埃舍尔作品的启发绘制的艺术图,显示了光在粒子态和波形态之间的连续变 化。

受艺术家毛里茨·科内利斯·埃舍尔作品的启发绘制的艺术图,显示了光在粒子态和波形态之间的连续变 化。 阿尔贝托·佩鲁佐(左)和彼得·夏伯特(右),研究论文的并列第一作者。 实验中用以检测波粒二象性的量子光子芯片。单光子通过光纤进入环路,在输出端被极其敏感的探测器检测到。

新浪科技讯北京时间11月8日消息,长久以来,人们都知道光既可以表现出粒子的形式,也可以呈现波动的特征,这取决于光子实验测定时的方法。但就在不久之前,光还从未同时表现出这两种状态。 关于光是粒子还是波的争论由来已久,甚至可以追溯到科学最初萌芽的时候。艾萨克·牛顿提出了光的粒子理论,而詹姆斯·克拉克·麦克斯韦的电磁学理论认为光是一种波。到了1905年,争论出现了戏剧性的变化。爱因斯坦提出光是由称为“光子”的粒子组成,借此解释了光电效应。他也因此获得了诺贝尔物理学奖。光电效应的发现对物理学影响深远,并为后来量子力学的发展作出了重大贡献。 量子力学在对微小粒子,如原子和光子的行为预测上,具有惊人的准确性。然而,这些预测非常违反直觉。比如,量子理论认为类似光子的粒子可以同时在不同的地方出现,甚至是同时在无穷多的地方出现,就像波的行为一样。这种被称为“波粒二象性”的概念,也适用于所有的亚原子粒子,如电子、夸克甚至希格斯玻色子等。波粒二象性是量子力学理论系统的基础,诺贝尔奖获得者理查德·费曼将其称为“量子力学中一个真正的奥秘”。 刊于《科学》杂志上的两组独立研究,利用不同的方法对光从波形态向粒子态的转变进行了测定,以揭示光的本质面貌。两组研究都来源于理论物理学家约翰·惠勒于上个世纪80年代进行

2019届高三物理二轮复习光的粒子性题型归纳

2019届高三物理二轮复习光的粒子性题型归纳 类型一、光的本性的认识 例1、关于光的本性,下列说法中正确的是() A、关于光的本性,牛顿提出微粒说,惠更斯提出波动说,爱因斯坦提出光子说,它们 都说明了光的本性 B、光具有波粒二象性是指:既可以把光看成宏观概念上的波,也可以看成微观概念上 的粒子 C、光的干涉、衍射现象说明光具有波动性,光电效应说明光具有粒子性 D、光的波粒二象性是将牛顿的波动说和惠更斯的粒子说真正有机地统一起来 【思路点拨】理解光的本性,波动性的特征及代表人物,粒子性的特征及代表人物。 【答案】C 【解析】光具有波粒二象性,这是现代物理学关于光的本性的认识,光的波粒二象性不同于牛顿提出的微粒说和惠更斯的波动说,是爱因斯坦的光子说和麦克斯韦的电磁说的统一。光的干涉、衍射现象说明光具有波动性,光电效应说明光具有粒子性,故ABD错误,C对。【总结升华】光既有波动性,又具有粒子性,即光具有波粒二象性,这就是光的本性。 举一反三 【变式1】根据爱因斯坦的“光子说”可知() A. “光子说”本质就是牛顿的“微粒说” B. 光的波长越大,光子的能量越小 C. 一束单色光的能量可以连续变化 D. 只有光子数很多时,光才具有粒子性 【答案】B 【解析】爱因斯坦的“光子说”与牛顿的“微粒说”本质不同,选项A错误。由 c E h λ =可 知选项B正确。一束单色光的能量不能是连续变化,只能是单个光子能量的整数倍,选项C 错误。光子不但具有波动性,而且具有粒子性,选项D错误。 【变式2】关于光的波粒二象性的说法中,正确的是() A. 有的光是波,有的光是粒子 B. 光子与电子是同样的一种粒子 C. 光的波长越长,其波动性就越显著;波长越短,其粒子性就越显著 D. 光子的数量越少波动性就越显著;光子的数量越多粒子性就越显著

讲义 - 光的波动性和粒子性

龙文教育学科教师辅导讲义 教师:______ 学生:______ 时间:_____年_____月____日____段 1929年,德布罗意因对实物粒子波动性的揭示而获得诺贝尔物理学奖.在授奖仪式上,瑞典物理学家卡尔·乌辛把德布罗意介绍给全体与会者,并发表了如下的讲话: “有一首每个瑞典人都很熟悉的诗是这样开头的:‘我的生活——就是波’.诗人也可以这样来表达他的思想:‘我——就是波’.他最好这样表达,这样,他的诗句也将包含着对物质性质最深刻认识的先觉.从现在起,这样的认识已是我们都能接受的了……” 3年高考平台 一、选择题 1.研究光电效应规律的实验装置如图16-1所示,以频率为ν的光照射光电管阴极K 时,有光电子产生.由于光电管K 、A 间加的是反向电压,光电子从阴极K 发射后将向阳极A 作减速运动.光电流i 由图中电流计G 测出,反向电压U 由电压表V 测出.当电流计的示数恰好为零时,电压表的示数称为反向截止电压U 0.在下列表示光电效应实验规律的图像中,错误的是( ) 图16-1 图16-2 答案:B 2.现有a 、b 、c 三束单色光,其波长关系为λa >λb >λc .用b 光束照射某种金属时,恰能发生光电效应.若分别用a 光束和c 光束照射该金属,则可以断定( ) A.a 光束照射时,不能发生光电效应 B.c 光束照射时,不能发生光电效应 C.a 光束照射时,释放出的光电子数目最多 D.c 光束照射时,释放出的光电子的最大初动能最小 答案:A 二、非选择题 3.(1)人们发现光电效应具有瞬时性和对各种金属都存在极限频率的规律.请问谁提出了何种学说很好地解释了上述规律?已知锌的逸出功为3.34 eV ,用某单色紫外线照射锌板时,逸出光电子的最大速度为106 m/s ,求该紫外线的波长λ(电子质量m e =9.11×10-31 kg ,普朗克常量h=6.63×10-34 J ·s,1 eV=1.60×10-19 J ). (2)风力发电是一种环保的电能获取方式.图16-3为某风力发电站外观图.设计每台风力发电机的功率为40 kW.实验测得风的动能转化为电能的效率约为20%,空气的密度是1.29 kg/m 3,当地水平风速约为10 m/s ,问风力发电机的叶片长度约为多少才能满足设计要求?

光的波动性和粒子性专题

A.光的折射现象、色散现象 B.光的反射现象、干涉现象 C.光的衍射现象、偏振现象 D.光的直线传播现象、光电效应现象 (2006)19.已知能使某金属产生光电效应的极限频率为υ0, A 当用频率为2υ0的单色光照射该金属时,一定能产生光电子 B 当用频率为2υ0的单色光照射该金属时,所产生的光电子的最大初动能为hυ0 C 当照射光的频率υ大于υ0时,若υ增大,则逸出功增大 D 当照射光的频率υ大于υ0时,若υ增大一倍,则光电子的最大初动能也增大一倍(2006)利用图中装置研究双缝干涉现象时,有下面几种说法:ABD A.将屏移近双缝,干涉条纹间距变窄 B.将滤光片由蓝色的换成红色的,干涉条纹间距变宽 C.将单缝向双缝移动一小段距离后,干涉条纹间距变宽 D.换一个两缝之间距离较大的双缝,干涉条纹间距变窄 E.去掉滤光片后,干涉现象消失 其中正确的是。 (2008年天津)16.下列有关光现象的说法正确的是A A.在光的双缝干涉实验中,若仅将入射光由紫光改为红光,则条纹间距一定变大 B.以相同入射角从水中射向空气,紫光能发生全反射,红光也一定能发生全反射 C.紫光照射某金属时有电子向外发射,红光照射该金属时也一定有电子向外发射 D.拍摄玻璃橱窗内的物品时,往往在镜头前加装一个偏振片以增加透射光的强度(2009 天津)7.已知某玻璃对蓝光的折射率比对红光的折射率大,则两种光C A.在该玻璃中传播时,蓝光的速度较大 B.以相同的入射角从空气斜射入该玻璃中,蓝光折射角较大 C.从该玻璃中射入空气发生反射时,红光临界角较大 D.用同一装置进行双缝干涉实验,蓝光的相邻条纹间距较大 (2009 重庆)21.用a、b、c、d表示四种单色光,若A ①a、b从同种玻璃射向空气,a的临界角小于b的临界角; ②用b、c和d在相同条件下分别做双缝干涉实验,c的条纹间距最大 ③用b、d照射某金属表面,只有b能使其发射电子。 则可推断a、b、c、d可能分别是 A.紫光、蓝光、红光、橙光 B. 蓝光、紫光、红光、橙光 C.紫光、蓝光、橙光、红光 D. 紫光、橙光、红光、蓝光 (2010 北京)14.对于红、黄、绿、蓝四种单色光,下列表述正确的是C A.在相同介质中,绿光的折射率最大B.红光的频率最高 C.在相同介质中,蓝光的波长最短D.黄光光子的能量最小

高中物理-崭新的一页:粒子的波动性教案 (2)

高中物理-崭新的一页:粒子的波动性教案 ★新课标要求 (一)知识与技能 1.了解光既具有波动性,又具有粒子性。 2.知道实物粒子和光子一样具有波粒二象性。 3.知道德布罗意波的波长和粒子动量关系。 (二)过程与方法 1.了解物理真知形成的历史过程。 2.了解物理学研究的基础是实验事实以及实验对于物理研究的重要性。 3.知道某一物质在不同环境下所表现的不同规律特性。 (三)情感、态度与价值观 1.通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正。 2.通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度。 3.通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。 ★教学重点 实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。 ★教学难点实物粒子的波动性的理解。 ★教学方法学生阅读-讨论交流-教师讲解-归纳总结 ★教学用具: 课件:PP演示文稿(科学家介绍,本节知识结构)。多媒体教学设备。 ★课时安排 1 课时 ★教学过程 (一)引入新课 提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?请同时举出相应的事实基础。 学生阅读课本、思考后回答:光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性。(分别举出有关光的干涉衍射和光电效应等实验事实)。 点评:让学生阅读课本内容结合前面所学知识进行归纳总结,形成正确观点。 教师:原来我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗? 学生举例说明:例如哲学中对事物的辨正观点等。 点评:培养学生对事物或规律的全面把握,并与与其他学科进行横向渗透联系。

《粒子的波动性》优秀教学设计

《粒子的波动性》优秀教学设计 这是一篇由网络搜集整理的关于《粒子的波动性》优秀教学设计的文档,希望对你能有帮助。 本节教材涉及物质波概念的建立和物质波的实验检验等知识,突出科学家探索物质波的历程和类比思维方法的运用,是对学生进行科学思维教育的好题材,在教学中要使学生能从科学家的工作中感悟科学探究,特别是科学家如何向固有的观念、认识挑战,提出大胆的猜想和假说,如何寻找有效的方法加以验证。 学生已经学习了光的粒子性和波动性,但是实物粒子同时具有波动性和粒子性学生较难理解,在经典物理学中,物质的波动性和粒子性是互不相容的,二者是两种不同的研究对象,波和粒子这两个概念是互相排斥的,所以实物粒子波动性的理解是教学的难点。 二、教学目标 1.通过实验分析,了解光的波粒二象性的内容,感受微观粒子运动的复杂性。 2.知道实物粒子具有波动性,领会对称的研究方法,感悟科学家的探究精神。 3.通过对物质波的实验验证内容的学习,感受实验研究这一重要的研究方法。 4.通过对科学漫步的阅读,感受科学的成就推动了技术的进步。 三、教学过程 1.辩证统一——光的波粒二象性

围绕如下几个问题展开: 问题一:前面我们学习了许多关于光的知识,光到底是什幺?你的依据又是什幺? 学生回答后教师归纳:光有波的性质,我们称为光的波动性,光有粒子的性质,我们称为光的粒子性;光既有波动性,又有粒子性,即光具有波粒二象性。光真可谓“横看成岭侧成峰”! 问题二:光的这两种性质有无联系?它们的关系又是怎样? 上节学习中知道一份光子的动量、能量的基本关系式,如图1:左侧是描述物质的粒子性的重要物理量;右侧是描述物质的波动性的典型物理量。普朗克常数h架起了粒子性与波动性之间的桥梁。 问题三:光是那幺的熟悉,那幺的亲切,可人类对光的认识构成了一部科学史诗,揭开它的庐山真面目,认识它的波动性和粒子性真难!为什幺全面认识光的性质那幺难? 教师指出:光有波粒二象性是一种实验事实,但光不是经典意义上的粒子,也不是经典意义上的波,需要借助事实去想象。光有时表现出波动性,有时表现出粒子性,它们均反映了光的本质的一个侧面。这在宏观世界看是矛盾的现象,在微观世界,却是统一的,在光身上,我们看到了波动性与粒子性的统一、连续性与间断性的统一。 【设计意图】借助图片展示、结合实验事实的讨论,以及教师的启发性讲述,帮助学生根据事实去想象、理解和把握光的多面性。 2.类比假说——粒子波动性的提出 教师讲述:当时的许多科学家对光具有波粒二象性还持怀疑态度时,有一

最新-光的波动性和粒子性练习题 精品

光的波动性和粒子性练习题 一、选择题 1.红、橙、黄、绿四种单色光子,光子能量最小的是 [] A.红光 B.橙光 C.黄光 D.绿光 2.太阳光谱中有许多暗线,它们是对应着某些元素的特征谱线,产生这些暗线是由于 [ ] A.太阳表面大气层中缺少相应的元素 B.太阳内部缺少相应的元素 C.太阳表面大气层中存在着相应的元素 D.太阳内部存在着相应的元素 3.用绿光照射一光电管,能产生光电效应,欲使光电子从阴极射出时的最大初动能增大,应 [ ] A.改用红光照射 B.增大绿光的强度 C.增大光电管的加速电压 D.改用紫光照射 4.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开一个角度,如图4-4-3所示,这时 [ ] A.锌板带正电,指针带负电 B.锌板带正电,指针带正电

C.锌板带负电,指针带正电 D.锌板带负电,指针带负电 5.设λ1、λ2是两种单色光1、2在真空中的波长,若λ1>λ2,则这两种单色光线相比 [ ] A.单色光1的频率较小 B.玻璃对单色光1的折射率较大 C.在玻璃中,单色光1的传播速度较大 D.单色光1的光子能量较大 6.两种单色光A、B分别由垂直水平方向从水面射向水底,它们经历的时间t A>t B,下列判断正确的是 [ ] A.A色光的波长比B色光的波长大 B.A色光的波长比B色光的波长小 C.A色光的光子能量比B色光的光子能量大 D.A色光的光子能量比B色光的光子能量小 二、计算题 7.一单色光照在金属钠的表面上时有光电子射出,当所加反向电压为3V时,光电流恰好为零,已知钠的极限频率为5000Hz,求:该单色光的频率. 8.有一功率为500W的红外线电热器,如果它辐射的红外线的频率为3.0×1014Hz,求:(1)每秒发出的光子数;(2)在距离电热器2m远处,垂直于红外线传播方向的1cm2的面积上每分钟能接收到多少个光子?

第3节 粒子的波动性(教师版)

第3节粒子的波动性

一、光的波粒二象性 1.波粒二象性:光既具有波动性,又具有粒子性. 2.光子的能量和动量:光子的能量ε和动量p 可分别表示为:ε=hν,p =h λ.能量ε和动 量p 是描述物质粒子性的重要物理量;波长λ和频率ν是描述物质波动性的典型物理量.普朗克常量h 架起了粒子性与波动性之间的桥梁. 二、粒子的波动性及物质波的实验验证 1.粒子的波动性 (1)德布罗意波:每一个运动的粒子都与一个对应的波相联系,这种与实物粒子相联系的波称为德布罗意波,也叫物质波. (2)物质波的波长、频率关系式: 波长:λ=h p ,频率:ν=ε h . 2.物质波的实验验证 (1)实验探究思路:干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象. (2)实验验证:1927年戴维孙和汤姆孙分别利用晶体做了电子束衍射实验,得到了电子的衍射图样,证实了电子的波动性. (3)说明 ①人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=εh 和λ=h p 关系同样正确. ②宏观物体的质量比微观粒子的质量大得多,运动时的动量很大,对应的德布罗意波的波长很小,根本无法观察到它的波动性. 判一判 (1)光的干涉、洐射、偏振现象说明光具有波动性.( ) (2)光子数量越大,其粒子性越明显.( ) (3)光具有粒子性,但光子又不同于宏观观念的粒子.( ) (4)湖面上的水波就是物质波.( ) (5)电子的衍射现象证实了实物粒子具有波动性.( ) 提示:(1)√ (2)× (3)√ (4)× (5)√

做一做 (多选)对光的认识,下列说法中正确的是( ) A .个别光子的行为表现为粒子性,大量光子的行为表现为波动性 B .光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C .光表现出波动性时,就不具有粒子性了;光表现出粒子性时,就不具有波动性了 D .光的波粒二象性应理解为:在某种场合下光的波动性表现明显,在另外某种场合下,光的粒子性表现明显 提示:选ABD.个别光子的行为表现为粒子性,大量光子的行为表现为波动性;光与物质相互作用,表现为粒子性,光的传播表现为波动性;光的波动性与粒子性都是光的本质属性,因为波动性表现为粒子分布概率,光的粒子性表现明显时仍具有波动性,因为大量粒子的个别行为呈现出波动规律,故正确选项有A 、B 、 D. 对光的波粒二象性的理解 (多选)下列有关光的波粒二象性的说法中,正确的是 ( ) A .有的光是波,有的光是粒子 B .光子与电子是同样的一种粒子 C .光的波长越长,其波动性越显著;波长越短,其粒子性越显著 D .康普顿效应表明光具有粒子性

光的波动性和粒子性

光的波动性和光的粒子性 【教学结构】 光的波动性: 一.讲述人类对光的本性的认识过程。有益掌握教材内容的层次和系统,学生主动学习。 二. 光的干涉 1.复习机械波的叠加,干涉现象,干涉产生条件,干涉现象的成因。 2.做好双缝干涉实验,注意向学生介绍实验装置,观察实验现象。 3.光的干涉现象:用太阳光实验时光屏上有彩色条纹,中间为白色光,两侧由紫到红,用单色光实验时,屏上呈明暗相间条纹,中间为亮纹。干涉现象是波特有的现象,光的干涉现象说明光是波,但不是机械波。光的频率、波长、波速是描述光的特征量。 4.光的干涉条件:必须是相干光源产生的光叠加时才能出现 干涉现象。 杨氏相干光源:如图1所示,光线入射单缝S ,S 为光源, 双缝S 1、S 2相距很近且距离S 等距离,S 光源的光传播到S 1、 S 2时,S 1、S 2成为两个完全相同的光源,它们具有相同频率,恒 定相差。 5.光的干涉现象的成因:如图2所示。O 点距S 1、S 2距离相等,两束光到O 点时“振动”情况完全相同,叠加时互相加强, 应为明纹或白光。屏上任意一点A ,距S 1、S 2分别为L 1、 L 2,?L =L 1-L 2,?L 为光传播路程之差。 当?L n =λ时,两束光应相互加强,为明纹,n 为1、2、 3……,λ为波长。?L n =+())212λ时,两束光应相互减弱为暗纹。n 为0、1、2……。 6.薄膜干涉 演示实验:金属丝圆环蘸一下肥皂液,形成一层肥皂膜,用单色光照射肥皂膜,圆环肥皂膜上就产生明暗相间的干涉条纹。如何用光的干涉知识解释这一现象,是教学过程中的关键问题。(1)实验装置的特点,肥皂膜在重力作用下而成上薄下厚的楔形,我们虽然不能明显观察到上薄下厚,但是这样微小的厚度之差与光的波长相比还是相当大的。(2)前后膜对入射光线的反射的两列光波同频率。相差恒定满足光产生干涉的条件。(3)前后膜反射两列光波的路程不同,后膜反射光的路程与前膜反射光路之差正好为入射处膜厚度的2倍,对于不同的入射处膜厚度不同,某处膜厚度的2倍正好为波长整数倍时,该处两列光波互相加强,出现明纹,若正好半个波长的奇数倍,互相减弱则为暗纹。 薄膜干射的应用:检查精密零件表面质量,增透膜。认真阅读教科书,掌握书上的知识就可以了。关于增透膜的理解问题:只要从能量角度去分析即可顺当理解,两列反射光波互相低消,但不是能量消失,而减少反射光线,增加透过光的强度。 三.光的衍射

粒子的波动性 概率波 不确定性关系

粒子的波动性 概率波 不确定性关系 一、光是什么? 1、光是一种电磁波,有波长和频率 c =νλ 2、不同颜色的光在真空中传播速度都相同,等于c 3、不同颜色的光频率不同。光的颜色(频率)由光源来决定,在不同介质中传播时波速会变,但频率不变。 4、不同颜色的光在同一种介质中传播速度不相同,频率大的速度小。 二、光电效应 1、光电效应:当光线照射在金属表面时,金属中有电子逸出的现象,称为光电效应。逸出的电子称为光电子。 光电子定向移动形成的电流叫光电流. 2、光电效应实验规律 (1)存在饱和电流:光照不变,增大U AK ,G 表中电流达到某一值后 不再增大,即达到饱和值。 因为光照条件一定时,K 发射的电子数目一定。 实验表明:入射光越强,饱和电流越大,单位时间内发射的光电子数越 多。 (2)存在遏止电压和截止频率 存在遏止电压U C :使光电流减小到零的反向电压,若速度最大的是 v c ,则c 22 1eU v m c e = 实验表明:对于一定颜色(频率)的光,无论光的强弱如何,遏止电 压是一样的。光的频率改变,遏止电压也会改变。 存在截止频率c ν:经研究后发现,对于每种金属,都有相应确定的 截止频率c ν(极限频率)。 当入射光频率ν>c ν时,电子才能逸出金属表面; 当入射光频率ν< c ν时,无论光强多大也无电子逸出金属表面。 (3)具有瞬时性 实验结果:即使入射光的强度非常微弱,只要入射光频率大于被照金属的截止频率,电流表指针也几乎是随着入射光照射就立即偏转。 更精确的研究推知,光电子发射所经过的时间不超过10 -9秒(这个现象一般称作“光电子的瞬 时发射”)。

粒子的波动性 说课稿 教案

粒子的波动性 【教学目标】 (一)知识与能力 1.了解光既具有波动性,又具有粒子性。 2.知道实物粒子和光子一样具有波粒二象性。 3.知道德布罗意波的波长和粒子动量关系。 (二)过程与方法 1.了解物理真知形成的历史过程。 2.了解物理学研究的基础是实验事实以及实验对于物理研究的重要性。 3.知道某一物质在不同环境下所表现的不同规律特性。 (三)情感、态度与价值观 1.通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正。 2.通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度。 3.通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。 【教学重重点】 实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。 【教学重难点】 实物粒子的波动性的理解。 【教学方法】 学生阅读-讨论交流-教师讲解-归纳总结 【教学器材】 课件:PP演示文稿(科学家介绍,本节知识结构)。多媒体教学设备。 【课时安排】 1 课时 【教学过程】 ◆新课导入 光一直被认为是最小的物质,虽然它是个最特殊的物质,但可以说探索光的本性也就等于探索物质的本性。历史上,整个物理学正是围绕着物质究竟是波还是粒子而展开的。 从光的直线传播、反射定律看,光很象是一种弹性良好的粒子流(用惯性、动量守恒解释)。而且,从光的折射方面考察,它和粒子之间似乎也有某种共性(譬如,网球往水中的折射,也会满足一个入射角和折射角的正弦之比为恒量的规律),因此,十七世纪,人们提出光是实物粒子流(粒子足够小、弹性足够好),持这种观点的代表是牛顿。 但是,光在传播时,也有一些用微粒说不能解释的现象,如衍射、干涉、偏振等。这些都是波动的典型特征。于是,十七世纪中叶,就已经出现了光是一种波的学说,坚持波动说

高考物理知识点:光的波动性和微粒性

高考物理知识点:光的波动性和微粒性 1.光本性学说的发展简史 (1)牛顿的微粒说:认为光是高速粒子流。它能解释光的直进现象,光的反射现象。 (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播。它能解释光的干涉和衍射现象。 2.光的干涉 光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。 ⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。 3.干涉区域内产生的亮、暗纹 ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……) ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍, 相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。 4.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

⑴各种不同形状的障碍物都能使光发生衍射。 ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0。5mm时,有明显衍射现象。) ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。 5.光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。 6.光的电磁说 ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。) ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。 各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。 ⑶红外线、紫外线、X射线的主要性质及其应用举例。 ★★7.光电效应 ⑴在光的照射下物体发射电子的现象叫光电效应。(右图装置中,用弧光灯照射锌版,有电子从锌版表面飞出,使原来不带电的验电器带正电。)

相关文档
最新文档