抗震计算—桥墩墩身及桩基抗震计算

抗震计算—桥墩墩身及桩基抗震计算
抗震计算—桥墩墩身及桩基抗震计算

桥墩抗震计算

选用最不利的空心板处的独柱墩进行抗震计算

(一)设计资料

1、上部构造:3孔25m连续桥面简支空心板,25m预制后张预应力空心板,计算跨径为24.26m,每跨横向设6块板。桥面现浇10cm厚50号混凝土,7cm沥青混凝土。

2、桥面宽度(单幅):0.5(防撞护栏)+净7.0(行车道)+0.5m(护栏)=8.0m。

3、设计荷载:公路Ⅱ级。

4、支座:墩顶每块板板端设GYZ250x52mm板式橡胶支座2个。

5、地震动峰值加速度:0.10g。

6、下部构造:巨型独柱墩,1.3 x 1.5m;钻孔桩直径1.5m,均值长40m。墩柱为30号混凝土,桩基础为30号混凝土,HRB335钢筋。桥墩一般构造如下:

(二)恒载计算

1、上部恒载反力(单孔)

空心板:4.7843×25×26=3109.8kN 桥面铺装(包括50号混凝土和沥青混凝土): 7×25×0.1×26+7×25×0.07×24=749kN 防撞护栏:0.351×25×25×2=438.8kN 合计:3109.8+749+438.8=4297.6kN 2、下部恒载计算 1) 盖梁加防震挡块重力

P G =23.358×26=607.3kN 2) 墩身重力

P d =3.23×13×26=1091.7kN 3) 单桩自重力

P z =4

π×1.52×40×25=1767.1kN (三)水平地震力计算 1、顺桥向水平地震力计算

1)上部结构对板式橡胶支座顶面处产生的水平地震荷载 E ihs =

sp h z i n

i itp

itp

G K C C K

K 11

β∑=

式中:C i =1.7,C z =0.3,K h =0.2

根据地质资料分析,桥位所在地土层属Ⅲ类场地,所以有 β1=2.25×(

1

45.0T )0.95

对于板式橡胶支座的梁桥

T 1=1

2ωπ

其中:

ω1

2=tp

sp sp tp sp tp sp tp G G K K G G G K K K G G K K K G g

2}4])({[)(2

/1212211211-++-++

K 1=∑=n

i is K 1

计算采用3孔×25m 为一联,故n =2 K is =∑

∑=s

n i r

d t

A G 1

其中:n s =2×12=24,G d =1200kN/m 2 由橡胶支座计算知

A r =4

π×0.252=0.0491m 2 ∑t =0.032m ∴ K is =24×

032

.00491

.01200?=44190kN/m

K 1=44190kN/m K 2=∑=n

i ip K 1

K ip =

3

113i

l E I

其中:墩柱采用30号混凝土,则 E c =3.00×104MPa

E 1=0.8×3.00×104×103=2.4×107kN/m 2 按墩高H =13+2=15m 控制设计,

支座垫石+支座厚度=0.1+0.052=0.152m

l i =15+0.142=15.152m 柱惯矩: I 1=0.4531m 4

K ip =3

7

152

.15104.24531.03???=9378.1kN/m K 2=9378.1kN/m

G sp =3×4297.6÷2=6446.4kN G tp =G cp +ηG p

其中: G cp =607.3kN G p =1091.7kN

η=0.16(2f X +222

1f X +2

1f

f X X +2

1f X +1)

顺桥向作用于支座顶面的单位水平力在支座顶面处的水平位移为: X d =X 0-φ0l 0+X Q 其中: l 0=l i =15.152m

X Q =1

13

03I E l =4531.0104.23152.157

3

???=0.000107 桩的计算宽度:b 1=0.9(d+1)=0.9×(1.5+1)=2.25m 桩在土中的变形系数:α=51

EI

m b m =20000kN/m 4 其中:桩采用30号混凝土,则 E c =3.0×104MPa

EI =0.8×3.0×107×

64π

×1.54=5.964×106 ∴ α=5

6

10964.525

.220000??=0.3763

桩长h =40m ,

∴ αh =0.3763×40=15.052m >2.5m 取αh =4.0,故K h =0 从而有 X 0=

3

44334432

03443344331

B A B A

C B C B EI l B A B A

D B D B EI --?+--?αα φ0=)1(

3

44334430344334432

B A B A

C A C A EI l B A B A

D A D A EI --?+--?-αα 由公路桥涵地基与基础设计规范(JTJ 024-85)附表6.11查得 3

4433

443B A B A D B D B --=2.441

34433443B A B A C B C B --=34433443B A B A D

A D A --=1.625

3

4433

443B A B A C A C A --=1.751

故 X 0=

EI

l EI 20

3

625.1441.2αα+ =

6

26310964.53763.0152

.15625.110964.53763.0441.2???+??

=0.00002328

φ0=)751.1625.1(02

EI l EI

αα+- =)10964.53763.0152

.15751.110964.53763.0625.1(

6

62???+??-

=-0.000009116

X d =0.00002328+0.000009116×15.152+0.000107 =0.0002684

X f =

d

X X 0=0.00026840.00002328

=0.0867

X H/2=X 0-φ0l 0/2+X Q/2=X 0-φ0l 0/2+1

13

0485I E l

=0.00002328+0.0000091×2152.15+4531

.0104.248152.1557

3

???? =0.0001255 X f/2=

d

H X X 2/=0002684.00001255

.0=0.4676 ∴ η=0.16×(0.08672+2×0.46762+0.0867×0.4676+0.4676+1) =0.3125

G tp =607.3+0.3125×1091.7=948.5kN

∴ω12

=tp

sp sp tp sp tp sp tp G G K K G G G K K K G G K K K G g

2}4])({[)(2

/1212211211-++-++

=4

.64465.9482}1.9378441904.64465.9484]4.6446)1.937844190(44190

5.948{[4.6446)1.937844190(441905.9488.92

/12??????-?++?-?++??

=10.67

ω1=3.267

T 1=

267

.32π

=1.92 β1=2.25×(92

.145.0)0.95

=0.567

K itp =

ip

is ip is K K K K +=

1

.9378441901

.937844190+?=7736.3kN/m

则 E ihs =4.6446567.02.03.07.11?????=372.82kN 2)墩身自重在板式支座顶面的水平地震荷载

E hp =tp h z i G K C C 1β=5.948567.02.03.07.1????=54.86kN 支座顶面的水平地震力总和为

E ihs +E hp =372.82+54.86=427.68kN

(四)墩柱截面内力及配筋计算(柱底截面) 1、荷载计算

上部恒载反力:4297.6kN

下部恒载重力:1091.7+607.3=1699kN 作用于墩柱底面的恒载垂直力为

N 恒=4297.6+1699=5996.6kN

水平地震力:H =427.68kN

水平地震力对柱底截面产生的弯矩为 M =427.68×15.152=6480.2kN ?m 2、荷载组合

1)垂直力:N =5996.6kN 2)水平力:H =427.68kN 3)弯矩: M =6480.2kN ?m 3、截面配筋计算

偏心矩: e 0=M d /N d =6480.2/5996.6=1.081m 构件计算长度:l 0=2l =2×13=26m

i =

A I =23

.34531.0=0.3745 l 0/i =26/0.3745=69.43>17.5 ∴应考虑偏心矩增大系数η η=1+

212000)(/14001

ξξh

l h e

h 0=1.24m ,h =1.3m

ξ1=0.2+2.7

0h e =0.2+2.7×24.1455.1=3.368>1.0

∴取 ξ1=1.0

ξ2=1.15-0.01h l

0=1.15-0.01×

3

.126

=0.95<1.0 ∴取 ξ2=0.95

η=1+

95.00.1)3

.126

(24.1/455.1140012???=1.231

ηe 0=1.231×1.455=1.791m

选用双侧50φ25HRB335钢筋,A s =0.0245m 2>0.5%A= 0.01615m 2 (五)桩身截面内力及配筋计算 1、内力计算

作用于地面处桩顶的外力为 承台重=6.3×2.5×2×25=787.5

N 0=(5996.6+787.5)÷2=3392.1kN ,H 0=427.68÷2=213.84kN , M 0=213.84×(15.152+2)=3667.8kN ?m 1) 桩身弯矩

利用单桩内力计算,最大弯矩在y =0.8m 处,M y =3779.2 kN ?m 垂直力: N d =3392.1+4

π×1.52×0.8×25=3427.4kN 2、截面配筋计算

偏心矩: e 0=M d /N d =3779.2/3427.4=1.103m 构件计算长度:l 0=0.7×α

4

=0.7×

3763

.04

=7.441m i =A I =4

/5.164/5.12

4??ππ=0.375 l 0/i =7.441/0.375=19.84>17.5

∴应考虑偏心矩增大系数η η=1+

212000)(/14001

ξξh

l h e

h 0=r +r s =0.75+0.66=1.41m h =2r =2×0.75=1.5m ξ1=0.2+2.7

0h e =0.2+2.7×41.1793.0=1.72>1.0

∴取 ξ1=1.0

ξ2=1.15-0.01h l

0=1.15-0.01×

5

.1441

.7=1.1>1.0 ∴取 ξ2=1.0

η=1+

0.10.1)5

.1441.7(41.1/793.0140012

???=1.031

ηe 0=1.031×1.103=1.137m

由公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)附录C 有 配筋率 ρ=

Dgr

Ce Ae Br f f sd cd --?

00

' f cd =13.8MPa ,f sd ’ =280MPa

g =r s /r =0.66/0.75=0.88 假定ξ=0.34,

A =0.6915,

B =0.4699,

C =-0.7657,

D =1.8071 ρ=

75

.088.08071.1137.17657.0137

.16915.075.04699.02808.13??-?-?-??=0.00987 N d ≤Ar 2f cd +C ρr 2f sd ’

Ar 2f cd +C ρr 2f sd ’=0.6915×0.752×13.8×103-0.7657×

0.00987×0.752×280×103=4162kN>N d=3427.4Kn

∴纵向钢筋面积

A s=ρπr2=0.00987×π×0.752=0.0174m2 选用36φ25HRB335钢筋,A=0.0177m2> A s=0.0174m2

桥墩模板及支架的设计与计算

桥墩模板及支架的设计与计算 一、计算说明 广州新客站站房桥的桥墩根据双线和单线轨道梁分别设计为二类型结构,其中每类结构又因站房出站层的观赏作用分别设计的截面形状为长方形和椭圆形两种形状,且墩帽1m 下均为流线喇叭状,故也可称其为“花瓶”型。又因为桥墩的美观要求,支模时不得采用对拉螺栓。故根据混凝土的侧压力和无螺栓支模,特作如下设计。 二、模板设计与计算 1、材料选择及要求。 ①采用“U ”形(含喇叭形:正立面流线长6m 至上口,侧立面流线长2m 至上口); ②模板尺寸:共分七段,高分别为2.1m 、2m 、1m ;宽分别为12b ×2+侧面宽(+9.10m 上的两段,“U ”形模宽为±0.00m 处的12b ×2+侧面宽,正面两边中间添加一块宽2.9m 的矩形模)。 图1 正立图(a) 侧立图(b)

③考虑长方形四角的45o直边转化成流线型,故横肋采用14mm及12mm厚×100mm高的扁钢,主要用于拐角定型。14mm厚扁钢均用于模板上下接口边,而12mm厚扁钢均用于模板内横肋,间距400mm。 ④竖肋采用[10槽钢,间距400mm。 ⑤横面板采用6mm厚钢板。 ⑥要求竖横肋间距的焊缝饱满,肋与横面板的焊接牢固可靠。 2、模板分段(块)简图(图1.a,b) 3、设计计算。 考虑混凝土掺减水剂,故K=1.2;并考虑流线形侧模的压力最大。则: ①荷载组合: a.使用内部振捣器,浇筑速度在1m/h内,其算式Pm=K?γ?h 设广州市的平均气温为28℃,则1 =0.036>0.035 28 =1.53+3.8×0.036=1.67 h=1.53+3.8v T 所以Pm1=1.2×24×1.67=48.1KPa v b.泵送混凝土时,其计算式Pm=4.6?14 Pm2=4.6×14 1.67=5.23KPa c.流线形模板外倾α>55o,则Pm=K?r?h,但考虑浇筑2m以上时,已过去2小时,底层混凝土已初凝,侧压力减弱或消失,故仅取h=2.5m计算: Pm3=1.2×24×2.5=72KPa d.倾倒混凝土的压力: 4KPa 由以上c条就不考虑a条,故 Pm max=5.23+72+4=81.23KPa ②不考虑荷载效应组合,统一按1.3倍安全系数: Pm max =81.23×1.3=105.6KPa ③“U”型模结构简图:(图2) 图2

某桥梁桩基础设计计算

第一章桩基础设计 一、设计资料 1、地址及水文 河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。 2、土质指标 表一、土质指标 3、桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.0m 。拟定采用四根桩,设计直径 1.0m 。桩身混凝土用20号,其受压弹性模量h E =2.6×104MPa 4、荷载情况 上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时: 5659.4N KN =∑、 298.8H KN =∑、 3847.7M KN m =∑ 恒载及二孔活载时: 6498.2N KN =∑。桩(直径 1.0m )自重每延米为: 2 1.01511.78/4 q KN m π?= ?= 故,作用在承台底面中心的荷载力为:

5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN =+???===+?=∑∑∑ 恒载及二孔活载时: 6498.2(7.0 4.5 2.025)8073.4N KN =+???=∑ 桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度 为3h ,则:002221 []{[](3)}2 h i i N p U l m A k h τλσγ==++-∑ 当两跨活载时: 8073.213.311.7811.7842 h N h =+?+? 计算[P]时取以下数据: 桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长 2 22 02021211.15 3.6,0.485,0.7 4 0.9, 6.0,[]550,12/40,120, a a a u m A m m K Kp KN m Kp Kp ππλσγττ?=?== ======== 1 [] 3.16[2.740( 2.7)120]0.700.90.7852 [550 6.012( 3.33)]2057.17 5.898.78k p h h N h m =??+-?+??? +??+-==+∴= 现取h=9m ,桩底标高为26.2m 。桩的轴向承载力符合要求。具体见如图1所示。

桥梁抗震计算书讲解

工程编号:SZ2012-38 海口市海口湾灯塔酒店景观桥工程 桥梁抗震计算书 设计人: 校核人: 审核人: 海口市市政工程设计研究院 HAIKOU MUNICIPAL ENGINEERING DESIGN & RESEARCH INSTITUTE 2012年09月

目录 1工程概况 ........................................................................................................... - 1 -2地质状况 ........................................................................................................... - 1 -3技术标准 ........................................................................................................... - 2 -4计算资料 ........................................................................................................... - 2 -5作用效应组合 ................................................................................................... - 3 -6设防水准及性能目标 ....................................................................................... - 3 -7地震输入 ........................................................................................................... - 4 -8动力特性分析 ................................................................................................... - 5 - 8.1 动力分析模型 (5) 8.2 动力特性 (6) 9地震反应分析及结果 ....................................................................................... - 6 - 9.1 反应谱分析 (6) 9.1.1E1水准结构地震反应 ........................................................................................ - 6 - 9.1.2E2水准结构地震反应 ........................................................................................ - 7 -10地震响应验算................................................................................................ - 8 - 10.1 墩身延性验算 (10) 10.2 桩基延性验算 (10) 10.3 支座位移验算 (11) 11结论.............................................................................................................. - 11 - 12抗震构造措施.............................................................................................. - 11 - 12.1 墩柱构造措施 (12) 12.2 结点构造措施 (12)

桥墩计算

一、桥墩计算 (2007-01-11 13:11:09) 转载 桥墩按偏心受压构件考虑进行计算,先必须确定桥墩的计算长度,按《桥规》表5.3.1取值。 桥墩外力应考虑纵向水平力及其弯矩、横向风力(高墩)、地震力(纵横向、7级设防)、竖直力及其弯矩。 纵向水平力包括制动力引起的水平力、温度引起的水平力、收缩徐变引起的水平力、地震力引起的水平力、支座摩阻力。 一般情况下(无地震力),纵向水平力对桥墩截面影响较大,横向水平力影响较小。水平制动力、温度力,收缩徐变力均按支座和桥墩合成刚度在各墩台分配,然后组合后与摩阻力组合比较,取最不利情况为桥墩水平力。一般情况下取支座产生的摩阻力为最不利情况,此时计算出的配筋较为保守,偏于安全。(关于摩阻力组合的问题,新规范没有进行明确规定,桥梁通新版对摩阻力进行判断组合或者强制组合,当按判断组合进行计算的时候,取制动力、温度力、收缩徐变力进行组合与摩阻力进行比较,取较小者进行配筋,当按强行组合进行计算的时候,取摩阻力为水平力。) 桥墩截面按偏心受压构件必须验算正截面强度,按《桥规》5.3.5~5.3.9条公式进行计算。同时必须按轴心受压构件进行稳定性验算。 当计算桩柱式桥墩时,柱顶受板式橡胶支座弹性约束。桩柱可换算为两端铰接的轴心受压等截面直杆,计算可参考《连续桥面简支梁墩台计算实例》第一节第九款。 关于墩台下部构造验算时的荷载组合问题,新版《地基规范》总则里面对荷载组合进行了明确规定,摘录如下,仅供参考: 1.0.5条基础结构按承载能力极限状态设计时,结构重要性系数γ0,不低于主体结构的采用值,且不小于1.0;偶然组合时取1.0。 1.0.6条基础结构进行强度验算时,作用效应按承载能力极限状态两种组合进行(JTGD60-20044.1.6条)

桥墩抗震验算

计算书 计算: XXX 校核: XXX 审核: XXX 二零一五年三月

1. 设计规范 1.1. 公路工程技术标准(JTG B01-2003) 1.2. 公路桥涵设计通用规范(JTG D60-2004) 1.3. 公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004) 1.4. 公路桥涵地基与基础设计规范(JTG D63-2007) 1.5. 公路桥梁抗震设计细则(JTG/TB 02-01-2008) 1.6. 城市桥梁抗震设计规范(CJJ 166-2011) 2. 设计资料 2.1. 使用程序: MIDAS/Civil, Civil 2006 ( Release No. 1 ) 2.2. 截面设计内力: 3D 2.3. 构件类型: 普通混凝土桥梁 2.4. 地震作用等级: E2弹塑性作用 3. 模型简介 3.1. 单元数量: 单元39 个 3.2. 节点数量: 1162 个 3.3. 边界条件数量: 8 个 4. 荷载组合说明 4.1. 荷载工况说明

4.2. 荷载组合说明 4.2.2. 荷载组合 5. 验算结果表格 5.1. 桥墩单元强度验算 名称激活弹性描述 cLCB3承载能力极限状态No 偶然组合: E(SRSS)cLCB4承载能力极限状态No 偶然组合: 1.0D+1.0cLCB3cLCB5承载能力极限状态No 偶然组合: 1.0D-1.0cLCB3cLCB8承载能力极限状态No 偶然组合: E(SRSS)cLCB9承载能力极限状态No 偶然组合: 1.0D+1.0cLCB8cLCB10承载能力极限状态No 偶然组合: 1.0D-1.0cLCB8cLCB13承载能力极限状态No 偶然组合: E(SRSS)cLCB14承载能力极限状态No 偶然组合: 1.0D+1.0cLCB13cLCB15承载能力极限状态No 偶然组合: 1.0D-1.0cLCB13cLCB18承载能力极限状态No 偶然组合: E(SRSS)cLCB19承载能力极限状态No 偶然组合: 1.0D+1.0cLCB18cLCB20 承载能力极限状态 No 偶然组合: 1.0D-1.0cLCB18 单元位置组合名称类型验算x (mm)rNd (kN) e (mm)e' (mm)Nn (kN)1I cLCB19轴心-Fxmin OK 0.0002568.0110.0000.00010880.5261I cLCB19偏心-Fxmin(My)OK 0.0002568.011620.309-359.69113708.7001I cLCB19偏心-Mymax OK 0.0002568.011620.309-359.69113708.7001I cLCB20偏心-Mymin OK 0.0002706.468626.516-353.48413419.3871J cLCB19轴心-Fxmin OK 0.0002543.3030.0000.00010880.526

桩柱式桥台计算

无锡至张家港高速公路 桩柱式桥台台帽位移计算书 中交第二公路勘察设计研究院 年月日

一、基础资料 台后填土内摩擦角φ=30°,台帽长B =17.54m (计算宽度b 1=17.24m ),桩间距为6.1m , 桩径d =1.5m ,耳墙宽0.3m ,台后填土高H=5.0m 。填土容重r =18.0 km/m 3,台帽背墙高为h1=1.2+1.83=3.03m ,桥台帽梁截面尺寸为b ×h =1.8×1.2m 。桥跨上部构造为25m 小箱梁,上构恒载、桥跨活载产生的弯矩与台后土压力产生的弯矩方向相反,其值越小对结果越为不利,桥台位移计算时未考虑上述荷载产生的弯矩(最不利计算)。 搭板及台后活载产生的弯矩需计算,方法为由汽车荷载换算成等代均布土层厚度: h =r bl G 0∑ 式中,0l 为破坏棱体长度,b 为台帽长, 当台背竖直时,0l =Htg θ,H=5.0m 。 由tg θ=-tg ω+))((αωω?tg tg tg ctg -+=0.653,其中045=++=αδ?ω 得 0l =5×0.653=3.265m 在破坏棱体长度范围内并排放三辆重车,车后轮重为2×140=280,三辆车并排折减系数为0.78,得∑G =3×280×0.78=655.2KN 搭板产生的重力∑G =0.35×3.265×14.25×25=407.1KN 所以 得:活载h =655.2/(17.24×3.265×18)=0.647m 搭板h =407.1/(17.24×3.265×18)/2=0.201m 计算时,把活载h 和搭板h 合计到p 1、p 2即考虑了搭板和台后活载引起对桥台的主动土压力。 二、计算 桩径d =1.5m (台后填土高H=5.0m ) 土压力系数: 台后填土内摩擦夹角φ=30° 填土表面与水平面的夹角β=0°(台后填土水平) 桥台背墙与垂直面的夹角α=0°(背墙竖直) 台背或背墙与填土的夹角 δ= φ/2 =15°

墩柱模板计算书

武汉美高钢模板有限公司
项目名称:中铁六局合福铁路工程
墩柱模板计算书
工程编号:GLTL-DZ-110328
设 计:
王奎
审 核:
批 准:
武汉美高钢模板有限公司
2011 年 3 月 28 日
1

中铁六局合福铁路工程墩柱模板
武汉美高钢模板有限公司
计 算 书
一、编制依据: 编制依据: 依据 1、 《铁路桥涵设计基本规范》(TB10002.1-2005) 2、 《钢结构设计规范》(GB50017—2003) 3、 《建筑钢结构焊接技术规程》 JGJ81-2002
4、 《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、 《铁路组合钢模板技术规则》(TBJ211-86) 6、 《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、 《铁路桥涵施工规范》(TB10203-2002) 8、 《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 9、 《建筑结构静力计算手册》 ( 第二版 ) 10、 《预应力混凝土用螺纹钢筋》 (GB/T20065-2006) 二、计算参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝浇注入模温度:25℃; 3、混凝土塌落度:160~180mm; 4、混凝土外加剂影响系数取 1.2; 5、混凝土浇注速度:2m/h; 6、设计风力:8 级风; 7、模板整体安装完成后,混凝土泵送一次性浇注。
三、设计计算指标采用值 1、钢材物理性能指标 弹性模量 E=2.06×105N/mm ,质量密度ρ=7850kg/m ;
2 3
2

桩基础的设计计算

1 第四章桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的“m”法、就属此种方法,本节将主要介绍“m”法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法,“m”法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律 1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,

2 使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力zx σ,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 z zx Cx =σ (4-1) 式中: zx σ——横向土抗力,kN/m 2; C ——地基系数,kN/m 3; z x ——深度Z 处桩的横向位移,m 。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念 地基系数C 表示单位面积土在弹性限度内产生单位变形时所需施加的力,单位为kN/m 3或MN/m 3。 (2)确定方法 地基系数大小与地基土的类别、物理力学性质有关。 地基系数C 值是通过对试桩在不同类别土质及不同深度进行实测z x 及zx σ后反算得到。大量的试验表明,地基系数C 值不仅与土的类别及其性质有关,而且也随着深度而变化。由于实测的客观条件和分析方法不尽相同等原因,所采用的C 值随深度的分布规律也各有不同。常采用的地基系数分布规律有图下所示的几种形式,因此也就产生了与之相应的基桩内力和位移的计算方法。

抗震计算—桥墩抗震计算汇总

抗震计算 选用最不利的空心板处的独柱墩进行抗震计算 (一)设计资料 1、上部构造:3孔25m连续桥面简支空心板,25m预制后张预应力空心板,计算跨径为24.26m,每跨横向设6块板。桥面现浇10cm厚50号混凝土,7cm沥青混凝土。 2、桥面宽度(单幅):0.5(防撞护栏)+净7.0(行车道)+0.5m(护栏)=8.0m。 3、设计荷载:公路Ⅱ级。 4、支座:墩顶每块板板端设GYZ250x52mm板式橡胶支座2个。 5、地震动峰值加速度:0.10g。 6、下部构造:巨型独柱墩,1.3 x 1.5m;钻孔桩直径1.5m,均值长40m。墩柱为30号混凝土,桩基础为30号混凝土,HRB335钢筋。桥墩一般构造如下: (二)恒载计算

1、上部恒载反力(单孔) 空心板:4.7843×25×26=3109.8kN 桥面铺装(包括50号混凝土和沥青混凝土): 7×25×0.1×26+7×25×0.07×24=749kN 防撞护栏:0.351×25×25×2=438.8kN 合计:3109.8+749+438.8=4297.6kN 2、下部恒载计算 1) 盖梁加防震挡块重力 P G =23.358×26=607.3kN 2) 墩身重力 P d =3.23×13×26=1091.7kN 3) 单桩自重力 P z =4π ×1.52×40×25=1767.1kN (三)水平地震力计算 1、顺桥向水平地震力计算 1)上部结构对板式橡胶支座顶面处产生的水平地震荷载 E ihs =sp h z i n i itp itp G K C C K K 11 β∑= 式中:C i =1.7,C z =0.3,K h =0.2 根据地质资料分析,桥位所在地土层属Ⅲ类场地,所以有 β1=2.25×(1 45.0T )0.95 对于板式橡胶支座的梁桥

桥墩桩基础设计计算书

桥墩桩基础设计计算书 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

基础工程课程设计一.设计题目:00 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长,计算跨径,桥面宽13m (10+2×),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高,河床标高为,一般冲刷线标高,最大冲刷线标高处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN;

墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*=150KN (2)活载 一跨活载反力:N5=,在顺桥向引起的弯矩:M1= kN·m; 两跨活载反力:N6=+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩; 风力:H2= kN,对承台顶力矩 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋; 4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×。承台平面尺寸:长×宽=7×,厚度初定,承台底标高。拟采用4根钻孔灌注桩,设计直径,成孔直径,设计要求桩底沉渣厚度小于300mm。 5、其它参数 结构重要性系数γso=,荷载组合系数φ=,恒载分项系数γG=,活载分项系数γQ= 6、设计荷载 (1)桩、承台尺寸与材料 承台尺寸:××初步拟定采用四根桩,设计直径1m,成孔直径。桩身及承台

墩柱模板计算书midascivil

墩柱模板计算书 一、计算依据 1、《铁路桥涵设计基本规范》(TB10002.1-2005) 2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2001) 4、《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、《铁路组合钢模板技术规则》(TBJ211-86) 6、《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、《铁路桥涵施工规范》(TB10203-2002) 8、《京沪高速铁路设计暂行规定》(铁建设[2004]) 9、《钢结构设计规范》(GB50017—2003) 二、设计参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝土浇注速度:2m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取1.2; 6、最大墩高17.5m; 7、设计风力:8级风; 8、模板整体安装完成后,混凝土泵送一次性浇注。 三、荷载计算 1、新浇混凝土对模板侧向压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。新浇混凝土对模板侧向压力分布见图1。

图1新浇混凝土对模板侧向压力分布图 在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算: 在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算: 新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2 Pmax =γh 式中: Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度; H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2; K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。 Pmax=0.22γt0K1K2V1/2=0.22×25×8×1.2×1.15×21/2=85.87 kN/m2 h= Pmax/γ =87.87/25=3.43m max 72722 40kPa 1.62 1.6P υυ?===++

第二章 桥墩计算

第二章桥墩计算 第一节重力式桥墩设计与计算 一、荷载及其组合 (一)桥墩计算中考虑的永久荷载 (1)上部构造的恒重对墩帽或拱座产生的支示反力,包括上部构造混凝土收缩,徐变影响; (2)桥墩自重,包括在基础襟边卜的土重; (3)预应力,例如对装配式预应力空心桥墩所施加的预应力; (4)基础变位影响力,对于奠基于非岩石地基上的超静定结构,应当考虑由于地基压密等引起的支座K期变位的影响,并根据最终位移量按弹性理论计算构件截面的附加内力; (5)水的浮力,位于透水性地基上的桥梁墩台,当验算稳定时,应计算设计水位时水的浮力;当验算地基应力时,仅考虑低水位时的浮力;基础嵌人不透水性地基的墩台,可以不计水的浮力;当不能肯定是否透水时,则分别按透水或不透水两种情况进行最不利的荷载组合。 (二)桥墩计算中考虑的可变荷载 1.基本可变荷载 (1)作用在上部构造上的汽车佝载,对于钢筋混凝土柱式墩台应计人冲击力,对于重力式墩台则不计冲击力; (2)作用于上部构造上的平板挂车或履带中荷载; (3)人群荷载。 2.其他可变荷载 (1)作用在上部构造和墩身上的纵、横向风力; (2)汽车荷载引起的制动力; (3)作用在墩身上的流水压力; (4)作用在墩身上的冰压力; (5)上部构造因温度变化对桥墩产生的水平力; (6)支座摩阻力。 (三)作用于桥墩上的偶然荷载为: 1.地震力; 2.船只或漂浮物的撞击力。 (四)荷载组合 1、梁桥重力式桥墩 1)第一种组合按在桥墩各截面上可能产生的最大竖向力的情况进行组合。

它是用来验算墩身强度和基底最大应力。因此,除了有关的永久而载外,应在相邻两跨满布基本可变荷载的一种或几种,即《桥规》中的组合Ⅰ或组合Ⅲ。 2)第二种组合按桥墩各截面在顺桥方向上可能产生的最大偏心和最大弯矩的情况进行组合。它是用来验算墩身强度、基底应力、偏心以及桥墩的稳定性。属于这一组合的除了有关的荷载外,应在相邻两孔的一孔上(当为不等跨桥梁时则在跨径较大的一孔上)布置基本可变载的一种或几种,以及可能产生的其他可变荷载,例如纵向风力、汽个制动力和支座摩阻力等,即《桥现》中的组合Ⅱ。 3)第三种组合按桥墩各截面在横桥方向上可能产生最大偏心和最大弯矩的情况进行组合。它是用来验算在横桥方向上墩身强度,基底应力、偏心以及桥墩的稳定性。属于这一组合的除了有关的永久荷载以外,要注意将基本可变荷载的一种或几种偏于桥面的一侧布置,此外还应考虑其他可变荷载(例如横向风力,流水压力或冰压力等)或者偶然荷载中的船只或漂浮物的撞击力等,这相当于《桥规》中的组合Ⅱ或组合Ⅳ。 2、拱桥重力式桥墩 1)顺桥方向的荷载及其组合 对于通桥墩应为相邻两孔的永久荷载在一孔或跨径较大的一孔满布基本可变荷载的一种或几种,其基可变荷载中的汽个制动力、纵向风力、温度影响力等,并由此对桥墩产生不平衡水平推力、竖向力和弯矩。 对于单向推力墩则只考虑相邻两孔中跨径较大一孔的永久荷载作用力。 符号意义如下:

桥墩模板计算

桥墩模板计算书 一、桥墩模板的工状说明: 墩身锥形实心墩上口直径为3400mm,坡度1:50,墩身高度6300mm,下口直径3652mm。 桥墩浇筑时采用全钢模板,模板由四块四分之一圆弧模板对接组成,面板为6㎜厚钢板;竖肋[14#,水平间距为L1=30cm;圆弧肋为【10#,竖向间距L2=50cm; 墩帽面板为6㎜厚钢板;竖肋[14#,水平间距为L1=30cm;圆弧肋为【10#,竖向间距L2=50cm;背楞为双根[22#槽钢,纵向间距为:100cm;外加双根[14#槽钢。砼最大浇筑高度8.35m。 1、材料的性能 根据《铁路桥涵施工技术规范TB10203-2002》和《铁路桥涵钢结构设计规范》的规定,暂取: 采用内部振捣器时新浇筑混凝土的侧压力标准值,可按照以下两个公式计算,取最小值: F=0.22rct0?2v 1/2或F=rch 公式中F——新浇注混凝土对模板侧面的最大压力; rc----混凝土的重力密度(25KN/m3) t0---新浇混凝土的初凝时间(h)(混凝土入模温度T=10摄氏度考虑,则t0=200/(T+15),则取值为8h) V----混凝土的浇筑速度(m/h)(浇注速度控制在2m/h) H----混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m)(按照最高10米计算) β1--------外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2 β2----混凝土塌落度影响修正系数,泵送混凝土一般取1.15 F=0.22*25*8*1.0*1.15*21/2=71.6KN/m2

侧向振捣压力为4 KN/m2水平振捣压力为2 KN/m2 Pmax=71.6+6=77.6KN/m2 混凝土有效压头高度H=F/rc=3.1; 2、模板用哪个料力学性能,用料选取及布置情况说明: 钢材的屈服点取215MPa 抗拉强度取350MPa W[14=87.1cm3 I[14=609.4cm4 W[22=234 cm3 I[22=2570cm4 W[10=39.7cm3 I[14=198.3cm4 面板取10cm半条简化为三等跨连续梁检算面板 W厚6=l/6bh2=0.6cm3 I厚6=l/12bh3=0.18cm4 二、面板的检算 厚6面板强度:q=77.6*0.1=7.76KN/m 弯矩=0.1ql2=0.1*7.76*0.32=0.069KNM 厚6面板应力=0.069/0.6=115Mpa<215Mpa 厚6面板刚度:形变 =0.677ql4/100EI=0.677*7760*0.34/100*2000*0.18=0.001m 三、竖肋检算([14荷载:0.3米宽,1m长) q=pmax*L=77.6*0.3=23.28KN/M 弯矩=0.125*ql2=2.91KNM 【14应力=2.91/87.1=33.4Mpa<215Mpa 形变=5ql4/384EI=5*232.8*1004/384*2.1*107*609=0.14mm 四、平板大肋检算(2*【22:2.6米长,1.4米宽) q= pmax*L=77.6*1.4=108.64kn/m 弯矩=0.125*ql2=0.125*108.64*2.62=91.8knm 支架应力=91.8/2*234=196Mpa<215Mpa 支架最大变形=5ql4/384EI=5*918*2604/384*2.1*107*2*2570 =0.05cm=0.5mm 最宽处强度保证,小面不在计算。

桥墩桩基础设计计算书

基础工程课程设计 一.设计题目: 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN; 墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN (2)活载 一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m; 两跨活载反力:N6=5030.04kN+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩6.5m; 风力:H2=2.7 kN,对承台顶力矩4.75m 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋;

4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m 3 。承台平面尺寸:长×宽 =7×4.5m 2 ,厚度初定2.5m ,承台底标高20.000m 。拟采用4根钻孔灌注桩,设计直径1.0m ,成孔直径1.1m ,设计要求桩底沉渣厚度小于300mm 。 5、其它参数 结构重要性系数γso =1.1,荷载组合系数φ=1.0,恒载分项系数γG =1.2,活载分项系数γQ =1.4 6、 设计荷载 (1) 桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.5m 初步拟定采用四根桩,设计直径1m ,成孔直径1.1m 。桩身及承台 混凝土用30号,其受压弹性模量h E =3×4 10MPa 。 (2) 荷载情况 上部为等跨30m 的预应力箱梁桥,混凝土桥墩,作用在承台底面中心的荷载为: 恒载及一孔活载时: 1.2(158054008009751507 4.5 2.515 1.42835.751571 3.55N KN =?+++-+???+?=∑) 1.4(300 2.7)42 3.78H KN =?+=∑ [3334.3300(2.5 6.5) 2.7 4.75 2.5 1.48475.425M KN =+?++? +?=∑()] 恒载及二孔活载时: 1.2(158054008009751507 4.5 2.515N =?+++-+????∑)+1.45830.04=19905.556KN 桩(直径1m )自重每延米为: q= 2 11511.781/4 KN m ??=π(已扣除浮力) 三、计算 1、根据《公路桥涵地基与基础设计规范》反算桩长 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度, 设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为h 2,则: [][]{} )3(2 1 22200-++==∑h k A m l U P N i i h γσλτ

Midas civil墩身模板计算书共8页word资料

墩身模板复核计算书 计算: 复核: 审核: 日期: 目录 第一章工程简介........................................................................ 错误!未定义书签。 一、工程概况 (1) 二、墩身模板结构介绍 (1) 第二章计算验算相关参数选定................................................ 错误!未定义书签。 一、参考资料 (1) 二、技术参数及相关荷载大小选定 (1) ⑴设计荷载 (1) ⑵材料性能 (2) ⑶符号规定 (3) ⑷荷载组合 (3) 第三章墩身模板结构验算 (4) 一、模型建立及分析 (4) ⑴模型建立 (4) ⑵荷载加载 (4) ⑶边界约束 (4) 二、墩身模板验算 (4) ⑴面板强度验算 (4) ⑵面板刚度验算 (4) ⑶横、竖肋强度验算 (4) ⑷横、竖肋刚度验算 (5)

⑸横楞强度验算.......................................................... 错误!未定义书签。 ⑹横楞刚度验算.......................................................... 错误!未定义书签。 ⑺对拉拉杆验算 (5) 第四章模板计算成果汇总及结论 (5) 一、计算成果汇总 (5) 二、计算结论 (6)

第一章工程简介 一、工程概况 本标段起讫里程范围XXXXXXXXXXXX。 墩身高度12m以下采用整体钢模一次灌注成型,高度12m以上墩身采用整体钢模分次浇筑。模板验算取高度12m 1:0墩身模板进行验算,墩身截面如下 图1.1:0墩身横断面图 二、墩身模板结构介绍 墩身截面见图1,为圆端形。墩身最大浇筑高度12m,采取大块钢模组拼进行模板浇筑完成。 模板规格为:高度为200cm模板、100cm模板、80mm模板、50mm模板、2000mm。详见模板图纸。 面板:采用厚度δ=6mm钢板。 横肋竖肋:采用]10槽钢,圆端形模板等分为8份,平模板间距350mm、400mm、400mm、350mm布置。详见模板构造图。 平模板边采用L100×10的角钢压边,螺栓孔间距为10cm。圆端形模板120×14加劲法兰压边,螺栓孔间距216.8mm。详见模板构造图 对拉拉杆:采用M20圆钢,双螺帽拧紧。 平模板龙骨采用2[12槽钢,布置于拉杆对应位置。圆端形模板采用[12槽钢。详见模板构造图。 竖向连接角钢采用L100×100角钢。 具体见图1-2~1-8。 图1-2 模板配置平面图 图1-3模板配置立面图 图1-4 模板大样图 第二章计算验算相关参数选定 一、参考资料 1.《路桥施工计算手册》人民交通出版社,2019; 二、技术参数及相关荷载大小选定 ⑴设计荷载 计算此模板时,外力主要有新浇混凝土产生的侧压力、振捣混凝土时对模板

土木5桥梁桩基础课程设计word文档

桥梁桩基础课程设计任务书

1、桥墩组成:该桥墩基础由两根钻孔灌注桩组成。桩径采用φ=1.2m ,墩柱直径采用φ=1.0m 。桩底沉淀土厚度t = (0.2~0.4)d 。局部冲刷线处设置横系梁。 2、地质资料:标高25m 以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%21=ω,液限 %7.22=l ω,塑限%3.16=p ω。标高25m 以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量 %8.17=ω,液限%7.22=l ω,塑限%3.16=p ω。 3、桩身材料:桩身采用25号混凝土浇注,混凝土弹性模量 αMP E h 41085.2?=,所供钢筋有Ⅰ级钢和Ⅱ级纲。 4、计算荷载 ⑴ 一跨上部结构自重G=2350kN ; ⑵ 盖梁自重G 2=350kN ⑶ 局部冲刷线以上一根柱重G 3应分别考虑最低水位及常水位情况; ⑷公路Ⅱ级 : 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 支座对桥墩的纵向偏心距为3.0=b m (见图2)。计算汽车荷载时考虑冲击力。 ⑸ 人群荷载: 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 ⑹ 水平荷载(见图3) 制动力:H 1=22.5kN (4.5); 盖梁风力:W 1=8kN (5); 柱风力:W 2=10kN (8)。采用常水位并考虑波浪影响0.5m ,常水位按45m 计,以产生较大的桩身弯矩。W 2的力臂为11.25m 。

图4 5、设计要求 ⑴确定桩的长度,进行单桩承载力验算。 ⑵桩身强度验算:求出桩身弯矩图(用座标纸画),定出桩身最大弯矩值及其相应截面位置和相应轴力,配置钢筋,验算截面强度(采用最不利荷载组合及常水位)。 ⑶计算主筋长度、螺旋钢筋长度及钢筋总用量。 ⑷用A3纸绘出桩的钢筋布置图。 二、应交资料 1、桩基础计算书 2、桩基础配筋图 3、桩基础钢筋数量表

桥墩身模板计算书(不错的资料)

主墩墩身模板计算书 一、模板设计概况: 1、2号主墩身钢模构造为,面板采用6mm钢板,尺寸为H×L=2500mm ×3500mm,竖向小肋采用扁钢-80mm×8mm和[8槽钢交错布置,间距s=450 mm,横肋采用[8型钢,间距h=400mm,h1=450mm,竖向纵肋采用2根[8型钢组合而成,间距l=600mm,a=250mm,横背梢拟采用2[20B,采用φ32精轧螺纹粗钢筋作穿墩身的对拉拉杆。根据以上资料验算大块钢模的强度与刚度。模板图见下:

二、墩身模板承受荷载计算: 砼采用拌和站集中拌和,罐车运输,根据其供应能力每小时能供应40m3,犍为岷江大桥主墩墩身断面积S为: S = 3.14×1.252+7×2.5 =22.406m2 故砼浇筑速度V为: V = 40÷(22.406×1) =1.79 m/h 按采用内部振捣器时大块模板承受的最大侧压力计算: 对竖直模板,新浇筑的砼的侧压力是它的主要荷载。当砼浇筑速度在6m/h以下时,作用于侧面模板的最大压力可按下式计算: P m = K·γ·h 当v/T≤0.035时 h = 0.22+24.9v/T 当v/T≥0.035时: h =1.53+3.8 V/T 式中:Pm —新浇砼对侧模板的最大压力,单位Kpa; h—有效压头高度,单位m; T—砼入模时的温度,单位0C K—外加剂影响修正系数,不加时,K=1;掺缓凝剂时,K=1.2; V—砼的浇筑速度,单位m/h; H—砼浇筑层(在水泥初凝时间以内)的高度,单位m; γ—砼的容重,单位KN/m3

根据工期安排,墩身施工时间在三月中旬至四月底,按最不利时的温度考虑(如阴雨天),施工气温为150C,砼的浇筑速度V=1.79m/h。根据上述公式可得混凝土最大侧压力为: V/T=1.79/15=0.119>0.035 h=1.53+3.8V/T=1.53+3.8×1.79/15=1.98m P m = K·γ·h =1.2×25 1.98 =59.5Kpa 考虑振动荷载P1=4Kpa,则砼对模板的最大侧压力为: P =59.4+4 = 63.4Kpa 三、面板计算: 1、强度验算: 选模板区格中三面固结、一面简支的最不利受力情况进行计算。 Ly/lx=400/450=0.888,根据《路桥施工计算手册》附表二查Ly/lx=0.85和Ly/lx=0.90表中系数,内插可得Ly/lx=0.888时的内力及变形系数,具体计算为: 当Ly/lx=0.85时,Km x0=-0.0683,Km y0=-0.0711,K Mx=0.0225,K MY=0.0255,K f=0.00233。 当Ly/lx=0.90时,Km x0=-0.0656,Km y0=-0.0653,K Mx=0.0228,K MY=0.0223,K f=0.00206。 故当Ly/lx=0.888时有, Km x0=-0.0663,Km y0=-0.0667,K Mx=0.0227,K MY=0.0231,K f=0.00212。 取1mm宽的板条作为计算单元,荷载q为:

相关文档
最新文档