物联网定位技术实验报告书

物联网定位技术实验报告书
物联网定位技术实验报告书

中南大学

信息科学与工程学院

物联网定位技术实验报告书

实验名称:网络定位算法研究

成员:董嘉伟

指导老师:张士庚

完成时间:2013-6-1

目录

●实验目的

●实验设备

●实验要求

●实验背景

●实验原理

●实验实现(部分)

●实验结果展示及分析

●实现小结

一、实验目的

掌握常用网络定位算法,并能够独立完成和实现。

二、实验设备

硬件:计算机

软件:VS2012、C#4.0

三、实验要求

●在给定的两个网络中,编程实现前面所讲的定位算法

●选择至少两个定位算法进行实现

●计算所得的定位结果的误差

●对不同定位算法的效果进行分析比较

●撰写实验报告

●扩展:考虑距离测量有误差的情况?

四、实验背景

无线传感器网络(WSN)定位问题在军事、楼宇自动化、跟踪与监测等方面都有广泛的应用,一直是WSN的技术热点之一。尽管全球无线定位系统(GPS)提供了很好定位手段,并在很多方面发挥着重要的作用,但也存在着一些不足。比如:GPS不适合于室内环境定位,其能量消耗将减少传感器节点的生存寿命,GPS 及其天线增大了节点的体积等,

因此GPS并不适用于无线传感器网络。针对无线传感器网络开展专门的不依赖于GPS的定位研究(特别是分布式定位算法),具有重要的意义。

很多学者研究了无线传感器网络节点精确定位问题,提出了许多有效的算法。这些算法依据是否计算节点间的距离,可分为距离无关定位算法和距离相关定位算法。距离无关定位算法如最小包含圆算法、DV-Hop(distance vector-hop)算法、多向度量法(MDS)等。这些方法大多通过几何方法实现,依赖于网络的拓扑结构,从而影响了定位精度。距离相关定位算法一般先通过某种测距方法确定未知节点与初始锚节点的距离,然后根据这个距离利用三边关系、多边关系或边角关系等确定未知节点的位置。测距方法有到达时间法(TOA)、到达时间差法(TDOA)、接收信号强度法(RSSI)等。距离相关定位算法的定位精度依赖于测距的准确性,其测距误差可用测距的百分比来衡量。依据到初始锚节点的跳数可以分为单跳定位和多跳定位,单跳定位算法如APIT定位算法,到达角定位算法[10]等。多跳定位算法如DV-Hop(distance vector-hop)算法、迭代多边定位(iterative multilateration) 算法等。单跳定位早于无线传感器网络的出现,是多跳定位的基本技术。

五、实验原理

当网络的连通性较好时(每个节点至少有3个邻居节点),设盲节点(xi,Yi)的周围有k个参考节点 (x1,y1),(x2,y2),(x3,y3)…(x4,Y4),它们与盲节点(xi,yi)的之间的测距离为r,1,r2,r3,…,rk。设(Xi,yi)的估计值为(x0,y0)。参考节点到估计位置距离与测距之间的差异用fi(x0,y0)表示:

求解如下最小二乘估计来获得最优的位置估计(x0, y0):

当矩阵A 是列满秩时可以得到如式所示的最小二乘解。

迭代多边定位过程如下:首先由预定的锚节点( 坐标给定) 通过式估计盲节点的坐标,然后将这些已定位的盲节点当作参考节点参与其他盲节点的定位,下一轮得到坐标的盲节点又可以做为参考节点参与其他盲节点的定位。依次类推,式层层迭代运行,对网络中的所有盲节点进行定位( 如图1 所示) 。

图1 多边定位迭代运行

在图1 中初始锚节点1 ,节点2 ,节点3可用来估计节点4 的位置,初始锚节点3 ,节点5 ,节点6 可用来估计节点7 的位置,节点 4 和节点7 当做参考节点,和节点 6 一起估计节点8 的位置。当然节点8 可以当作参考节点去参与其他盲节点的定位。

六、实验实现

本次使用C#语言来实现,详细源码看压缩包中工程文件。

节点类Node:

using System;

using System.Collections;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace网络定位算法比较

{

class Node//节点类

{

//节点属性

private int NodeID;//节点ID号

private double realX;//节点的真实经度

private double realY;//节点的真实纬度

private bool IsBasic;//是否为锚节点

private ArrayList arNode = new ArrayList();//索引器数组

public void setID(int id)

{

this.NodeID=id;

}

public int getID()

{

return this.NodeID;

}

public void setRealX(double realX)

{

this.realX = realX;

}

public double getRealX()

{

return this.realX;

}

public void setRealY(double realY)

{

this.realY = realY;

}

public double getRealY()

{

return this.realY;

}

public void setIsBasic(int a)

{

if (a == 1)

this.IsBasic = true;

else

this.IsBasic = false;

}

public bool getIsBasic()

{

return this.IsBasic;

}

public double X { set; get; }

public double Y { set; get; }

//索引器

public Node this[int index]

{

get { return (Node)arNode[index];}

set { arNode.Insert(index, value); }

}

}

}

迭代计算方法Calc():

public void Calc(int id, int num)

{

//Node[] node = NodeList.ToArray();

double[] nodeX= new double[num];//存放锚节点X坐标信息

double[] nodeY= new double[num];//存放锚节点Y坐标信息

double[] dist=new double[num];//存放距离信息

int nodesum=0;//参与计算的节点数量,最大值为num-1

for (int i = 1; i < 321; i++)

{

if (distance[id, i] > 0 && NodeList[i - 1].getIsBasic() == true)

{

nodeX[nodesum] = NodeList[i - 1].getRealX();

nodeY[nodesum] = NodeList[i - 1].getRealY();

dist[nodesum] =distance[id,i];

nodesum++;

}

}

Matrix MatrixA = new Matrix(num,2);//矩阵A

Matrix Matrixb = new Matrix(num,1);//矩阵b

for (int s = 0; s < nodesum; s++)

{

MatrixA[s,0]=2*(nodeX[nodesum-1]-nodeX[s]);

MatrixA[s,1]=2*(nodeY[nodesum-1]-nodeY[s]);

Matrixb[s, 0] = dist[s] * dist[s] - dist[nodesum-1] * dist[nodesum-1] - (nodeX[s] * nodeX[s] - nodeX[nodesum-1] * nodeX[nodesum-1]) - (nodeY[s] * nodeY[s] - nodeY[nodesum-1] * nodeY[nodesum-1]);

}

Matrix temp1 = MatrixA.Transpose();

Matrix temp2 = temp1 * MatrixA;

Matrix temp3 = temp2.Inverse();

Matrix temp4 = temp3 * temp1;

Matrix temp5 = temp4 * Matrixb;

NodeList[id - 1].X = temp5[0, 0];

NodeList[id - 1].Y = temp5[1, 0];

NodeList[id - 1].setIsBasic(1);

}

迭代过程:

bool flag=true;

int tid, tcnt, cnt;

while (flag)

{

flag = false;

tid = -1;

tcnt = 0;

for (int i = 1; i <= 320; i++)

{

if (NodeList[i - 1].getIsBasic() == true)//||i!=124)

continue;

cnt = 0;

for (int s = 1; s <= 320; s++)

if (distance[i, s] > 0 && NodeList[s - 1].getIsBasic() == true)

{

cnt++;

//MessageBox.Show("1");

}

if (cnt > tcnt)

{

tid = i;

tcnt = cnt;

}

}

if (tcnt >= 3)

{

flag = true;

Calc(tid, tcnt);

}

}

七、实验结果展示及分析

程序主界面展示

导入节点信息

误差计算

如上图展示过程中一样,该程序初步完成实验要求。在误差计算及分析模块中,可以看到在输入非锚节点124后,通过迭代多边式定位计算得出节点124的位置,存在误差但误差及其微小,可以忽略不计。

之所以取得较好的实验效果,是因为导入的节点信息和拓扑信息较全,未知节点周围存在较多的锚节点和计算后升级成的锚节点,误差较小。

实际生活过程中,锚节点分布并非均匀,而且迭代计算中计算量较大,当节点数目庞大时,会带来巨大的计算问题。所以迭代式多边定位适合节点数目较少且节点拓扑信息完整的网络中。

八、实验小结

通过本次试验,我掌握了多种网络定位算法,对迭代多边式定位算法有了更深入的了解。除此之外,我还复习了部分线性代数的知识,矩阵运算方面借助网上查找到CMatrix.dll得以完成,极大地缩减了工作量。本次实验中采用了我最熟悉的语言C#,重温了C#语言中的文件操作、匿名类型、索引器、自动属性等高级语言特性,使我的编程能力得到了提升。

实验过程中遇到的问题在同学和老师的帮助下都得以解决,感谢张士庚老师的无私指导,感谢杨曦源同学在语言语法方面的帮助,感谢陈兴同学在算法和单元测试方面的帮助,没有大家的帮助,此次实验也无法完成。谢谢大家!

电子技术实验报告—实验单级放大电路

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

测试技术试验指导书

《机械工程测试技术》实验指导书 编者:郑华文刘畅 昆明理工大学机电学院实验中心 2014年5月

说明和评分 1学生按照实验预约表进行实验;在实验前,需对理论教学中相关内容做做复习并对实验指导书进行预习,熟悉实验内容和要求后才能进入实验室进行实验。在实验中,不允许大声喧哗和进行与实验不相关的事情。 2进入实验室后,应遵守实验室守则,学生自己应发挥主动性和独立性,按小组进行实验,在操作时应对实验仪器和设备的使用方法有所了解,避免盲目操作引起设备损坏,在动手操作时,应注意观察和记录。 3根据内容和要求进行试验,应掌握开关及的顺序和步骤:1)不允许带负荷开机。输出设备不允许有短路,输入设备量程处于最大,输出设备衰减应处于较小。2)在实验系统上电以后,实验模块和实验箱,接入或拔出元件,不允许带电操作,在插拔前要确认不带电,插接完成后,才对实验模块和试验箱上电。3)试验箱上元件的插拔所用连线,在插拔式用手拿住插头插拔,不允许直接拉线插拔。4)实验中,按组进行试验,实验元件也需按组取用,不允许几组混用元件和设备。 4在实验过程中,在计算机上,按组建立相关实验文件,实验中的过程、数据、图表和实验结果,按组记录后,各位同学拷贝实验相关数据文件等,在实验报告中应有反应。对实验中的现象和数据进行观察和记录。 实验评分标准: 1)实验成绩评分按实验实作和实验报告综合评分:实验实作以学生在实验室中完成实验表现和实验结果记录文件评定,评定为合格和不合格;实验报告成绩:按照学生完成实验报告的要求,对实验现象的观察、思考和实验结果的分析等情况评定成绩。初评百分制评定。 2)综合实验成绩评定按百分制。

机械测试技术实验报告

《机械测试技术》 实验报告 学院:机械工程与自动化学院专业:机械设计制造及其自动化 学号:姓名 中北大学机械工程系 2012年5月15

实验一:用应变仪测量电阻应变片的灵敏度 一、实验目的 1.掌握电阻应变片的粘贴工艺技术; 2.掌握选择应变片的原则及粘贴质量的检查; 3. 掌握在静载荷下使用电阻应变仪测量方法; 1.掌握桥路连接和电阻应变仪工作原理; 5. 了解影响测量误差产生的因素; 6.为后续电阻应变测量的实验做好在试件上粘贴应变片、接线、防潮、检查等准备工作。 二、实验仪器及设备 常温用电阻应变片;等强度梁试件; 天平秤;砝码;INV1861应变调理器; 千分尺(0~25㎜);INV3018C信号采集分析仪; 防潮用硅胶;游标卡尺; 电烙铁、镊子、砂纸等工具;小台钳、钢尺、划针; 502粘结剂(氰基丙烯酸酯粘结剂);丙酮、乙醇、药棉等清洗器材等。 三、实验原理 电测法的基本原理是:将电阻应变片粘贴在被测构件的表面,当构件发生变形时,应变片随着构件一起变形(ΔL/L),应变片的电阻值将发生相应的变化,通过电阻应变仪,可测量出应变片中电阻值的变化(ΔR/R),并换算成应变值,或输出与应变成正比的模拟电信号(电压或电流),用记录仪记录下来,也可用计算机按预定的要求进行数据处理,得到所需要的应变或应力值。电阻应变片的灵敏度是构件单位应变所引起应变片电阻值的变化量,用S来表示。 本实验中用到的是单臂电桥,即四分之一桥,工作中只有一个桥臂电阻随着被测量的变化而变化,设改电阻为R1,产生的电阻变化量为ΔR,原理如下图所示:

个 则输出电压0U 的值为: 01 4 e u u S =ε 式中, 0u 为输出电压,ε为应变值,e u 为供桥电压,0u 和ε可从分析仪中直接读出, e u 在应变仪中读出,S 为实验所求。 四、实验方法与实验步骤 1.选片。目测电阻应变片有无折痕、断丝、霉点、锈点等缺陷,缺陷应变片不能粘贴,必须更换。 2.测片。用数字万用表或电桥精确测量应变片电阻值的大小。注意:不要用手或不干净的物品直接接触应变片基底。测量时应放在干净的书面上,不能使其受力,应保持平直。记录各个应变片的阻值,要求应变片阻值精确到小数点后一位数字。对于标称电阻为120Ω的应变片,测量时数字万用表必须打到200Ω档位上,所测电阻值为原始电阻。要求同一电桥中各应变片之间阻值相差均不得大于0.5Ω,否则需要更换。 3.试件表面处理。实验所用试件为等强度梁,为使粘贴牢固,必须对试件表面进行处理,处理过程如下: (1)用细砂纸在等强度梁表面需贴片处打磨,打磨方向与贴片轴线位置成45度交叉。如等强度梁上有以前贴好的应变片,先用小刀铲掉。应变片为一次性消耗材料,粘贴后再起下来不能再用。 (2)用棉花球蘸丙酮、乙醇擦洗表面的油污和锈斑,直到干净再自行晾干。 (3)然后用划针在贴片处划出十字线,作为贴片坐标,再用棉球擦一下。 (4)打磨好的表面,如暂时不贴片,可涂以凡士林等防止氧化。 4.贴片。贴片过程如下: R1+δR R2 R4 R3 U e B D R2 A B C D R1 R4 R3 C 0

基于物联网的室内定位毕业论文

毕业设计综合文档设计题目基于物联网的室内定位系统学生姓名xxx 指导教师xxx 班级13级物联网班 学号 1333xxxxxxx 完成日期:2017 年 04 月

目录 第一章绪论----------------------------------- 错误!未指定书签。 1引言---------------------------------------------------- 1 1.1编写目的------------------------------------------ 1 1.2背景---------------------------------------------- 1 1.3定义---------------------------------------------- 2 2 Zigbee系统简介----------------------------------------- 2 2.1 Zigbee系统基本组成------------------------------- 2 2.2 Zigbee系统基本原理------------------------------- 4 2.3 Zigbee系统工作频率与相关协议--------------------- 5 3国内外研究现状------------------------------------------ 6 3.1 Zigbee的研究发展现状----------------------------- 6 3.2 室内定位的研究发展现状---------------------------- 7 3.3研究概况以及趋势-----------------------------------------------------------------------------8 4论文的选题意义和主要研究内容-------------------------------------------------------------------8 5其他系统的比较----------------------------------------------------------------------------------------9

测试技术实验指导书及实验报告2006级用汇总

矿压测试技术实验指导书 学号: 班级: 姓名: 安徽理工大学 能源与安全学院采矿工程实验室

实验一常用矿山压力仪器原理及使用方法 第一部分观测岩层移动的部分仪器 ☆深基点钻孔多点位移计 一、结构简介 深基点钻孔多点位移计是监测巷道在掘进和受采动影响的整个服务期间,围岩内部变形随时间变化情况的一种仪器。 深基点钻孔多点位移包括孔内固定装置、孔中连接钢丝绳、孔口测读装置组成。每套位移计内有5~6个测点。其结构及其安装如图1所示。 二、安装方法 1.在巷道两帮及顶板各钻出φ32的钻孔。 2.将带有连接钢丝绳的孔内固定装置,由远及近分别用安装圆管将其推至所要求的深度。(每个钻孔布置5~6个测点,分别为;6m、5m、4m、3m、2m、lm或12m、10m、8m、6m、4m、2m)。 3.将孔口测读装置,用水泥药圈或木条固定在孔口。 4。拉紧每个测点的钢丝绳,将孔口测读装置上的测尺推至l00mm左右的位置后,由螺丝将钢丝绳与测尺固定在一起。 三、测试方法 安装后先读出每个测点的初读数,以后每次读得的数值与初读数之差,即为测点的位移值。当读数将到零刻度时,松开螺丝,使测尺再回到l00mm左右的位置,重新读出初读数。 ☆顶板离层指示仪 一、结构简介: 顶板离层指示仪是监测顶板锚杆范围内及锚固范围外离层值大小的一种监测仪器,在顶板钻孔中布置两个测点,一个在围岩深部稳定处,一个在锚杆端部围岩中。离层值就是围岩中两测点之间以及锚杆端部围岩与巷道顶板表面间的相对位移值。顶板离层指示仪由孔内固定装置、测量钢丝绳及孔口显示装置组成如图1所示。

二、安装方法: 1.在巷道顶板钻出φ32的钻孔,孔深由要求而定。 2.将带有长钢丝绳的孔内固定装置用安装杆推到所要求的位置;抽出安装杆后再将带有短钢丝绳的孔内固定装置推到所要求的位置。 3.将孔口显示装置用木条固定在孔口(在显示装置与钻孔间要留有钢丝绳运动的间隙)。 4.将钢丝绳拉紧后,用螺丝将其分别与孔口显示装置中的圆管相连接,且使其显示读数超过零刻度线。 三、测读方法: 孔口测读装置上所显示的颜色,反映出顶板离层的范围及所处状态,显示数值表示顶板的离层量。☆DY—82型顶板动态仪 一、用途 DY-82型顶板动态仪是一种机械式高灵敏位移计。用于监测顶底板移近量、移近速度,进行采场“初次来压”和“周期来压”的预报,探测超前支撑压力高 峰位置,监测顶板活动及其它相对位移的测量。 二、技术特征 (1)灵敏度(mm) 0.01 (2)精度(%) 粗读±1,微读±2.5 (3)量程(mm) 0~200 (4)使用高度(mm) 1000~3000 三、原理、结构 其结构和安装见图。仪器的核心部件是齿条6、指针8 以及与指针相连的齿轮、微读数刻线盘9、齿条下端带有读 数横刻线的游标和粗读数刻度管11。 当动态仪安装在顶底板之间时,依靠压力弹簧7产生的 弹力而站立。安好后记下读数(初读数)并由手表读出时间。 粗读数由游标10的横刻线在刻度管11上的位置读出,每小 格2毫米,每大格(标有“1”、“22'’等)为10毫米,微读数 由指针8在刻线盘9的位置读出,每小格为0.01毫米(共200 小格,对应2毫米)。粗读数加微读数即为此时刻的读数。当 顶底板移近时,通过压杆3压缩压力弹簧7,推动齿条6下 移,带动齿轮,齿轮带动指针8顺时针方向旋转,顶底板每 移近0.01毫米,指针转过1小格;同时齿条下端游标随齿条 下移,读数增大。后次读数减去前次读数,即为这段时间内的顶底板移近量。除以经过的时间,即得

软件测试技术实验指导书2016版

《软件测试技术》实验指导书 吴鸿韬

河北工业大学计算机科学与软件学院 2016年9月 目录

第一章实验要求 (1) 第二章白盒测试实践 (3) 第三章黑盒测试实践 (6) 第四章自动化单元测试实践 (7) 第五章自动化功能测试实践 (35) 第六章自动化性能测试实践 (56) 附录1实验报告封皮参考模版 (71) 附录2小组实验报告封皮参考模版 (72) 附录3软件测试计划参考模版 (73) 附录4 测试用例参考模版 (77) 附录5单元测试检查表参考模版 (81) 附录6测试报告参考模版 (82) 附录7软件测试分析报告参考模版 (87)

第一章实验要求 一、实验意义和目的 软件测试是软件工程专业的一门重要的专业课,本课程教学目的是通过实际的测试实验,使学生系统地理解软件测试的基本概念和基本理论,掌握软件测试和软件测试过程的基本方法和基本工具,熟练掌握软件测试的流程、会设计测试用例、书写测试报告,为学生将来从事实际软件测试工作和进一步深入研究打下坚实的理论基础和实践基础。 本实验指导书共设计了2个设计型、3个验证型实验和一个综合型实验,如表1所示。设计型实验包括白盒测试实践和黑盒测试实践,验证型实验包括自动化单元测试实践、自动化功能测试和自动化性能测试实践,主要目标是注重培养学生软件测试的实际动手能力,增强软件工程项目的质量管理意识。通过实践教学,使学生掌握软件测试的方法和技术,并能运用测试工具软件进行自动化测试。综合型实验以《软件设计与编程实践》课程相关实验题目为原型、在开发过程中进行测试设计与分析,实现软件开发过程中的测试管理,完成应用软件的测试工作,提高软件测试技能,进一步培养综合分析问题和解决问题的能力。 表1 实验内容安排 实验内容学时实验性质实验要求 实验一白盒测试实践 4 设计必做 实验二黑盒测试实践 4 设计必做 实验三自动化单元测试实践 4 验证必做 实验四自动化功能测试实践 4 验证必做 实验五自动化性能测试实践 4 验证必做 实验六、综合测试实践课外综合选做 二、实验环境 NUnit、JUnit、LoadRunner、Quick Test Professional、VC6.0、Visual

软件测试技术实验报告——图书管理系统测试报告

图书管理系统测试报告

1简介 1.1编写目的 本测试报告描述了对图书管理系统的压力测试和对登录和注册功能的黑盒 测试,根据测试结果指导开发人员对软件产品进行完善和优化,给用户提供一份 客观的软件质量报告。本方案的主要读者为软件开发项目管理者、软件工程师、系统维护工程师、测试工程师、客户代表等。 测试流程: 制定测试计划开发测试脚本创建测试场景分析测试结果监视性能指标运行场景测试1.2系统简介 项目名称:图书管理系统 项目简介:本项目探讨了一个基于J2的图书管理系统的设计和实现。基于 J2下的图书管理系统用语言开发处理程序,选择强大的作为开发工具,用交互式 网站界面设计技术( )开发前台界面,后台数据库选择。本系统实现了基本的对书 籍信息、读者信息、借阅信息、归还信息、查询信息进行管理和操作等功能,可 以满足普通用户、管理员的需求。

1.3术语和缩略词参考资料 1)响应时间:客户端从给服务器发送一个请求开始直到完全接受了服务器反馈信息为止,这期间所用的时间称为响应时间。 2)吞吐率:即应用系统在单位时间内完成的交易量,也就是在单位时间内,应用系统针对不同的负载压力,所能完成的交易数量。 3)点击率:每秒钟用户向服务器提交的请求数。 4)图书管理系统项目开发计划,需求规格说明书,概要设计说明书,详细设计说明书。 5)黑盒测试:英文是。又称功能测试或者数据驱动测试。 6)等价划分测试:等价划分测试是根据等价类设计测试用例的一种技术。

2测试概要 2.1测试用例设计 2.1.1黑盒测试: 1)边界值法 用边界值法设计用户注册测试用例: a)先等价划分 b)边界值分析

物联网常见的6大定位方式

物联网常见的6大定位方式 物联网实现物物相连,意味着将有数以百亿计的设备将要接入网络,并且种类繁多,其中基于位置服务的物联网应用市场空前。定位技术,无论是传统的GPS定位技术还是借助于无线网络的定位技术或者短距离无线定位技术,都有其技术优势,本篇云里物里就来为大家介绍物联网大环境下常见的几种定位方式。 GPS定位,目前市场中GPS定位是最常见的,它信号好、定位精度高、使用范围广,几乎所有需要定位的设备都会优先使用GPS定位。缺点是,不能信号透过金属和钢筋水泥混合物,因而不能在室内如地下停车场、高桥下、密集的楼房下使用。而且GPS在首次启动定位时,搜星速度慢,大约需要2~3分钟,不过现在这个缺陷也得到很好的解决了,很多GPS定位的设备都有AGPS或EPO辅助定位功能,帮助在搜星时快速定位位置,一般只需要几秒就搞定了。 北斗定位,众所周知,北斗是我国全力发展的可以跟GPS定位抗衡的卫星定位方式,定位原理跟GPS是一样的,都是根据天上的卫星来确定当前的位置的。虽然原理都一样吧,但是目前在定位精度、使用范围上还是有一定的差距,现在还是主要用于军事上,民用范围正在大力推广,民用范围定位精度几米到几十米都有,北斗模块的定位芯片价格相较GPS模块要高。现在的北斗三号导航系统可以在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具有独特的短报文通信功能。相较于北斗二号卫星系统,除了覆盖区域由区域覆盖扩大到全球覆盖外,在性能上、系统可靠性上,都有很大的提高。 基站定位,基站定位也是很常见的定位方式了,它是基于三大通信运营商建立的基站来定位的,那么它的优缺点就很明显了,附近的基站点多,那么定位就准,如果站点少甚至没有,那就定位误差大,或者是无法定位。一般说来,不管基站点多少,基站的定位误差在几十米左右,误差大的有几百米。 WiFi定位,WiFi定位其实是室内定位方式的一种,但随着WiFi在室外的大范围覆盖,它也渐渐在室外定位技术上得到很好的应用。wifi定位的原理,这里就不细讲了,技术上的东西说深了其实更难理解,我们只要知道,一般情况下,wifi热点(也就是AP,或者无线路由器)的位置都是固定的,热点只要通电,不管它怎么加密的,都一定会向周围发射信号,只需设备能够扫到wifi,不需要连接wifi,定位端就能把检测到的热点的信息发送给服务器,服务器根据这些信息,查询、运算,就能知道客户端的具体位置了。WiFi定位的精度也是很高的,缺点是客户端必须能上网,而且附近必须有WiFi热点才行,离开大城市,这个功能就很难用到了。 蓝牙Beacon室内定位,简单来说,Beacon就是一个小型的信息基站,可以应用在室内导航、移动支付、店内导购、人流分析、物品跟踪等等所有与人在室内流动相关的活动之中。Beacon技术做到的是通过Bluetooth Smart(智能蓝牙)向通信覆盖范围内的移动设备捕捉和推送信息。 1.这些蓝牙beacon基站不断发送beacon广播报文

测试技术实验报告3-2017

测试技术实验报告3-2017

实验题目:《测试装置动态特性的测量》 实验报告 第 3 组姓名+学号: 胡孝义 2111701272 付青云 2111701146 黄飞 2111701306 黄光灿 2111701322 柯桂浩 2111701321 李婿 2111701346 邝祎程 2111701312 实验时间:2017年12月29日 实验班级: 实验教师:邹大鹏教授 成绩评定:_____ __ 教师签名:_____ __ 机电学院工程测试技术实验室 广东工业大学 广东工业大学实验报告

一、预习报告:(进入实验室之前完成) 1.实验目的与要求: 目的: 1).了解差动变压器式位移传感器的工作原理 2).掌握测试装置动态特性的测试 3).掌握m-k-c 二阶系统动态特性参数的影响因素 要求: 1).差动变压器式位移传感器的标定 2).弹簧振子二阶系统的阻尼比和固有频率的测量 2.初定设计方案: 根据测量出的弹簧振子欠阻尼二阶系统的阶跃响应曲线来求系统的动态特性:固有频率ωn 和阻尼比ξ。 实验时确定的设计方案: 先将质量振子偏离平衡,具有一定的初始位移,然后松开。该二阶系统在初始位移的作用下,产生一定的输出,位移传感器采集到系统的输出并传输给计算机,生成阶跃响应曲线。该输出是由初始状态引起的,可称之为零输入响应,也可看作是由初始位置到零的阶跃响应。 (1)求有阻尼固有频率ωd ωd =2π/T d (2)求阻尼比ξ 利用任意两个超调量M 和M 可求出其阻尼比,n 是该两个峰值相隔的某一整周期数。计算公式为 ξ=2222n 4n n πδδ+ (3)求无阻尼固有频率ωn 计算出有阻尼固有频率ωd ,阻尼比ξ之后,根据公式可求出系统的固有频率ωn ωd = 2 1ξ ω-d (4)求弹簧的刚度和振子组件的质量 振子组件主要由振子、滑杆、振子位置调节器、阻尼片、传感器连接杆等组成。

实验报告实验心得

实验心得体会 在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样,做完实验,然后两下 子就将实验报告做完.直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度 成正比,使我受益匪浅. 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就 会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如做光伏的实验,你要 清楚光伏的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事 倍功半.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,实验后,还 要复习,思考,这样,你的印象才深刻,记得才牢固,否则,过后不久你就会忘得一干二净,这还 不如不做.做实验时,老师还会根据自己的亲身体会,将一些课本上没有的知识教给我们,拓宽 我们的眼界,使我们认识到这门课程在生活中的应用是那么的广泛. 通过这次测试技术的实验,使我学到了不少实用的知识,更重要的是,做实验的过程,思考 问题的方法,这与做其他的实验是通用的,真正使我们受益匪浅. 实验心得体会 这个学期我们学习了测试技术这门课程,它是一门综合应用相关课程的知识和内容来解 决科研、生产、国防建设乃至人类生活所面临的测试问题的课程。测试技术是测量和实验的 技术,涉及到测试方法的分类和选择,传感器的选择、标定、安装及信号获取,信号调理、 变换、信号分析和特征识别、诊断等,涉及到测试系统静动态性能、测试动力学方面的考虑 和自动化程度的提高,涉及到计算机技术基础和基于labview的虚拟测试技术的运用等。 课程知识的实用性很强,因此实验就显得非常重要,我们做了金属箔式应变片:单臂、 半桥、全桥比较, 回转机构振动测量及谱分析, 悬臂梁一阶固有频率及阻尼系数测试三个实 验。刚开始做实验的时候,由于自己的理论知识基础不好,在实验过程遇到了许多的难题, 也使我感到理论知识的重要性。但是我并没有气垒,在实验中发现问题,自己看书,独立思 考,最终解决问题,从而也就加深我对课本理论知识的理解,达到了“双赢”的效果。 实验中我学会了单臂单桥、半桥、全桥的性能的验证;用振动测试的方法,识别一小阻 尼结构的(悬臂梁)一阶固有频率和阻尼系数;掌握压电加速度传感器的性能与使用方法; 了解并掌握机械振动信号测量的基本方法;掌握测试信号的频率域分析方法;还有了解虚拟 仪器的使用方法等等。实验过程中培养了我在实践中研究问题,分析问题和解决问 题的能力以及培养了良好的工程素质和科学道德,例如团队精神、交流能力、独立思考、 测试前沿信息的捕获能力等;提高了自己动手能力,培养理论联系实际的作风,增强创新意 识。 实验体会 这次的实验一共做了三个,包括:金属箔式应变片:单臂、半桥、全桥比较;回转机构 振动测量及谱分析;悬臂梁一阶固有频率及阻尼系数测试。各有特点。 通过这次实验,我大开眼界,因为这次实验特别是回转机构振动测量及谱分析和悬臂梁 一阶固有频率及阻尼系数测试,需要用软件编程,并且用电脑显示输出。可以说是半自动化。 因此在实验过程中我受易非浅:它让我深刻体会到实验前的理论知识准备,也就是要事前了 解将要做的实验的有关质料,如:实验要求,实验内容,实验步骤,最重要的是要记录什么 数据和怎样做数据处理,等等。虽然做实验时,指导老师会讲解一下实验步骤和怎样记录数 据,但是如果自己没有一些基础知识,那时是很难作得下去的,惟有胡乱按老师指使做,其 实自己也不知道做什么。 在这次实验中,我学到很多东西,加强了我的动手能力,并且培养了我的独立思考能力。 特别是在做实验报告时,因为在做数据处理时出现很多问题,如果不解决的话,将会很难的 继续下去。例如:数据处理时,遇到要进行数据获取,这就要求懂得labview软件一些基本

传感器与自动检测技术实验指导书

传感器与自动检测技术实验指导书 张毅李学勤编著 重庆邮电学院自动化学院 2004年9月

目录 C S Y-2000型传感器系统实验仪介绍 (1) 实验一金属箔式应变片测力实验(单臂单桥) (3) 实验二金属箔式应变片测力实验(交流全桥) (6) 实验三差动式电容传感器实验 (9) 实验四热敏电阻测温实验 (12) 实验五差动变压器性能测试 (14) 实验六霍尔传感器的特性研究 (17) 实验七光纤位移传感器实验 (21)

CSY-2000型传感器系统实验仪介绍 本仪器是专为《传感器与自动检测技术》课程的实验而设计的,系统包括差动变压器、电涡流位移传感器、霍尔式传感器、热电偶、电容式传感器、热敏电阻、光纤传感器、压阻式压力传感器、压电加速度计、压变式传感器、PN结温度传感器、磁电式传感器等传感器件,以及低频振荡器、音频震荡器、差动放大器、相敏检波器、移相器、低通滤波器、涡流变换器等信号和变换器件,可根据需要自行组织大量的相关实验。 为了更好地使用本仪器,必须对实验中使用涉及到的传感器、处理电路、激励源有一定了解,并对仪器本身结构、功能有明确认识,做到心中有数。 在仪器使用过程中有以下注意事项: 1、必须在确保接线正确无误后才能开启电源。 2、迭插式插头使用中应注意避免拉扯,防止插头折断。 3、对从各电源、振荡器引出的线应特别注意,防止它们通过机壳造成短路,并 禁止将这些引出线到处乱插,否则很可能引起一起损坏。 4、使用激振器时注意低频振荡器的激励信号不要开得太大,尤其是在梁的自振 频率附近,以免梁振幅过大或发生共振,引起损坏。 5、尽管各电路单元都有保护措施,但也应避免长时间的短路。 6、仪器使用完毕后,应将双平行梁用附件支撑好,并将实验台上不用的附件撤 去。 7、本仪器如作为稳压电源使用时,±15V和0~±10V两组电源的输出电流之和 不能超过1.5A,否则内部保护电路将起作用,电源将不再稳定。 8、音频振荡器接小于100Ω的低阻负载时,应从LV插口输出,不能从另外两个 电压输出插口输出。

机械工程测试技术基础实验报告

《机械工程测试技术基础》实验报告 专业 班级学号 姓名 成绩 沈阳理工大学机械工程学院 机械工程实验教学中心 2015年4月

目录 实验一金属箔式应变片——电桥性能实验1 1.1实验内容1 1.2实验目的1 1.3实验仪器、设备1 1.4简单原理1 1.5实验步骤2 1.6实验结果2 1.7思考题4 实验二状态滤波器动态特性实验4 2.1实验内容4 2.2实验目的4 2.3实验仪器、设备5 2.4简单原理5 2.5实验步骤5 2.6实验结果6 2.7思考题11 实验三电机动平衡综合测试实验11 3.1实验内容11 3.2实验目的11 3.3实验仪器、设备11 3.4简单原理12

3.5实验步骤12 3.6实验结果13 3.7思考题15 实验四光栅传感器测距实验15 4.1实验内容15 4.2实验目的16 4.3实验仪器、设备16 4.4简单原理16 4.5实验步骤16 4.6实验结果17 4.5思考题19 实验五 PSD位置传感器位置测量实验19 5.1实验内容19 5.2实验目的19 5.3实验仪器、设备19 5.4简单原理19 5.5实验步骤20 5.6实验结果20 5.7思考题23 -

实验一金属箔式应变片——电桥性能实验指导教师日期 1.1实验内容 1.2实验目的 1.3实验仪器、设备 1.4简单原理

1.5实验步骤 1.6实验结果 表1.1 应变片单臂电桥实验数据表

表1.2 应变片半桥实验数据表 根据实验结果计算单臂和半桥的灵敏度、线性误差、回程误差,在座标纸上分别画出单臂、板桥的输入及输出关系曲线,并在曲线上标出线性误差、回城误差位置:

电气测试技术-实验指导书

电气测试技术 实 验 指 导 书 河北科技师范学院 机械电子系电气工程教研室 二00六年十月

实验台组成及技术指标 CSY2000系列传感器与检测技术实验台由主控台、三源板(温度源、转动源、振动源)、15个(基本型)传感器和相应的实验模板、数据采集卡及处理软件、实验台桌六部分组成。 1、主控台部分:提供高稳定的±15V、+5V、±2V~±1OV可调、+2V~+24V可调四种直流稳压电源;主控台面板上还装有电压、频率、转速的3位半数显表。音频信号源(音频振荡器)0.4KHz~10KHz可调);低频信号源(低频振荡器)1Hz~3OHz(可调);气压源0~15kpa可调;高精度温度控制仪表(控制精度±0.5℃);RS232计算机串行接口;流量计。 2、三源板:装有振动台1Hz~3OHz(可调);旋转源0~2400转/分(可调);加热源<200℃(可调)。 3、传感器:基本型传感器包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流位移传感器、光纤位移传感器、光电转速传感器、集成温度传感器、K型热电偶、E型热电偶、Pt10O 铂电阻,共十五个。 4、实验模块部分:普通型有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个模块。 5、数据采集卡及处理软件:数据采集卡采用12位A/D转换、采样速度1500点/秒,采样速度可以选择,既可单采样亦能连续采样。标准RS-232接口,与计算机串行工作。提供的处理软件有良好的计算机显示界面,可以进行实验项目选择与编辑,数据采集,特性曲线的分析、比较、文件存取、打印等。 6、实验台桌尺寸为160O×8OO×280(mm),实验台桌上预留计算机及示波器安放位置。 注意事项: 1、迭插式接线应尽量避免拉扯,以防折断。 2、注意不要将从各电源、信号发生器引出的线对地(⊥)短路。 3、梁的振幅不要过大,以免引起损坏。 4、各处理电路虽有短路保护,但避免长时间短路。 5、最好为本仪器配备一台超低频双线示波器,最高频率≥1MHz,灵敏度不低于 2mV/cm。 6、 0.4~10KHZ信号发生器接低阻负载(小于100Ω),必须从L V接口引出。

软件测试技术实验报告

软件测试技术实验报告本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

《软件测试技术》 实验报告 河北工业大学计算机科学与软件学院 2017年9月

软件说明 电话号码问题 某城市电话号码由三部分组成。它们的名称和内容分别是:地区码:空白或三位数字; 前缀:非'0'或'1'的三位数字; 后缀:4位数字。 流程图 源代码 import .*; import class PhoneNumber extends Frame implements ActionListener{ /**

* */ private static final long serialVersionUID = 1L; private final String[] st = {"Name","Local","Prefix","Suffix"}; static int c_person=0; TextField t_name,t_local,t_prefix,t_suffix; RecordDialog d_record; MessageDialog d_message; person a[]=new person[100]; public PhoneNumber() { super("电话号码"); (250,250); (300,240); Panel panel1 = new Panel(new GridLayout(4, 1)); for (int i = 0; i < ; i++) (new Label(st[i],0)); Panel panel2 = new Panel(new GridLayout(4, 1)); t_name =new TextField("",20); t_local =new TextField(""); t_prefix=new TextField(""); t_suffix=new TextField(""); (t_name); (t_local); (t_prefix);

物联网技术复习要点

第1章_物联网概述 内容提要: ◆物联网的基本概念及三个重要特征 ◆物联网的起源与发展:标志性事件 ◆物联网的四层体系结构模型: ◆典型的应用示例:如何布局物联网? 练习题: 1、物联网分为、、和四个层次。 2、物联网技术通过对物理世界信息化、网络化,对传统上分离的物理世界和信息世界实现互联和整合。 3、2009年,时任国务院总理温家宝在无锡视察时发表重要讲话,提出()的战略构想。 A、未来之路 B、感知中国 C、感知环境 D、智慧地球 4、什么是物联网?物联网的三个重要特征是什么? 5、物联网可分为哪四层?并简要介绍各层的基本功能。 6、2009年,IBM首席执行官彭明盛首次提出了“智慧地球“这一概念,建议新政府投资新一代的智慧型基础设施。 7、判断题 自计算机问世以来,计算技术的发展大致经历了三个阶段:让人与计算机对话,让计算机与计算机对话,在第三阶段中尝试与物理世界对话。() 8、物联网的英文名称是 第2章_自动识别技术与RFID ◆各种自动识别技术:光学符号识别、语音识别、虹膜识别、指纹识别。 ◆IC卡系统的构成及分类方法。 ◆条形码技术:二维条形码与一维条形码的比较,常见的一维条形码和二维条形码编码。 ◆RFID的概念与现状。 ◆RFID系统的组成,RFID标签的优点,RFID标签的存储方式及分类,RFID系统的常见频率及其优缺点。练习题: 1、RFID系统可分为()、()和()三大组件。 2、 RFID的标签根据是否内置电源,可分为三种类型:()、()和()。 3、射频识别系统中真正的数据载体是()。 A. 读写器 B.电子标签 C. 天线 D.中间件 4、二维码目前不能表示的数据类型()。 A、文字 B、数字 C、二进制 D、视频 5、下列属于矩阵式二维条码是()。 A、UPC码 B、EAN 码 C、Code49码 D、QR Code 6、下列哪个不是二维条形码的特点。()

测试技术实验指导书

测试技术实验 指导书 赵爱琼编 付俊庆审 长沙理工大学测控教研室 07 年3 月

前言 测试技术是一门实践非常强的技术基础课,通过实验,了解测试系统中各环节(包括传感器、信号变换与放大、仪表显示与记录装置、实验数据的计算机分析与处理)的作用与特点,加深同学们对测试技术基本内容和基本概念的理解。 本实验指导书适用于交通运输、机电、机制、测控、自控、车辆工程,汽车服务工程、电子信息等专业的测试技术课、检测与传感器技术课、传感器与自动检测课、传感器原理及应用等课的实验。各专业可根据课时的需要适当取舍,要求同学们在实验中要动脑动手,以达到提高实验动手能力的目的。 本实验指导书由赵爱琼老师编写,付俊庆教授审稿,并经测控教研室全体老师讨论定稿 由于编写仓促,水平有限,书中缺点错误在所难免,恳请读者批评指正 测控教研室 07年3月

目录 实验一霍尔传感器特性实验 实验二电涡流传感器特性实验 实验三电容传感器特性实验 实验四压电式传感器特性实验与振动实验 实验五电阻应变片及电桥性能实验 实验六动应力测量 实验七振动测量 实验八应变式传感器测量系统的设计 附一:CSY——2000系列传感器与检测技术实验台组成附二:实验报告格式与要求

霍尔传感器特性实验 一、实验目的: 1、掌握霍尔传感器的工作原理及特性 2、掌握霍尔传感器的静态标定方法 3、了解霍尔传感器在振幅测量中的应用 二、实验器材: 1、CSY-2000传感器与检测技术实验台,其中所取单元:霍尔传感器实验 模板、霍尔传感器、直流源±4v、±15v、测微头、数显单元、低频振 荡器 2、电子示波器、工控机数据采集系统 三、实验原理: 根据霍尔效应,霍尔电势U=KIBsinα。若保持霍尔元件的激励电流I不变,而使其在一均匀梯度磁场中移动时,则输出霍尔电势值U只决定于它在磁场B中的位移量。本实验即通过对U大小的测量来得其位移。 四、实验内容及步骤: 1、将霍尔传感器按图1安装。霍尔传感器与实验模板的连接见图2进行。1、3为电源±4v, 2、4为输出 图1

感测技术实验1

感测技术实验报告班级姓名(学号)、 实验名称 一、实验目的 二、实验原理及实验内容 三、实验器材(型号、规格、件数) 四、实验数据及记录 五、数据处理及实验结果分析 六、结论

实验一箔式应变片性能测试——差动半桥 一、 实验目的 1. 观察理解箔式应变片的结构及粘贴方式; 2. 熟悉电路的工作原理; 3. 测试应变梁变形的应变输出。 二、 实验原理 本实验说明箔式应变片及单臂直流电桥的原理和工作情况。 应变片是最常用的测力元件。当用应变片测试时,应变片要牢固地粘贴在测 试体表面,当测件(本实验中的悬臂梁)受力发生形变,应变片的敏感栅随同变 形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种, 当电桥平衡时,桥路对臂电 阻乘积相等,电桥输出为零,在桥臂四个电阻 R1、R2、R3、R4中,电阻的相 对变化率分别为 △ R1/R1、△ R2/R2、△ R3/R3、△ R4/R4。根据直流电桥输出电 压,单臂时U 。二旦兰,差动半桥时U 。二旦仝,差动全桥时U 。=E 兰,由此 4 R 2 R R 可见,单臂、半桥、全桥电路的灵敏度依次增大。 三、 实验所需部件 直流稳压电源(土 4V 档)、电桥、差动放大器、F/V 表、测微头、双平行悬 臂梁、金属箔式应变片、主、副电源、导线若干。 四、 实验电路 五、验步骤及内容 1. 差动放大器调零 开启仪器电源,差动放大器 增益置最大(顺时针方向旋到底),“+、- ”输入 端用实验线对地短接,将差动放大器的输出端与F/V 表的输入插口 Vi 相连。用 “调零”电位器调整差动放大器输出电压为零(可先把F/V 表的档位开关置于 20V 档,调到零后再调 。 |。开? 副电源 4V _ + V 直流稳压电源 A -4 电桥平衡网络放大器

物联网-基于物联网的物流定位与追踪系统的设计剖析

随着物联网技术的快速发展,物联网在各个领域都得到了广泛的应用,本文对基于物联网的物流定位与追踪系统的设计这一课题进行研究和讨论。还简单介绍了物联网技术在物流行业中的发展历程、应用现状及发展趋势。加快物联网技术在物流领域的应用,对于实现物流可视化、智能化和信息化具有重要意义。 关键字:物联网,物流

1.概述 (2) 2.设计方案 (2) 2.1原理说明 (2) 2.2体系构架 (3) 2.3 详细步骤 (4) 2.3.1 RFID信息采集 (4) 2.3.2 GPS/GSM定位 (5) 2.3.3 定位和追踪的实现 (6) 3. 发展趋势 (6) 4. 总结 (7) 参考文献 (8)

基于物联网的物流定位与追踪系统的设计 1.概述 物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制物流业是物联网很早就参与进来的行业之一,很多先进的现代物流系统已经具备了信息化、数字化、网络化、集成化、智能化、柔性化、敏捷化、可视化、自动化等先进技术特征。很多物流系统和网络也采用了最新的红外、激光、无线、编码、认址、识别、定位、无接触供电、光纤、数据库、传感器、RFID、卫星定位等高新技术,这种集光、机、电、信息等技术为一体的新技术在物流系统的集成应用就是物联网技术在物流业应用的体现。 本文将对基于物联网的物流定位与追踪系统的设计这一课题进行研究和讨论。 2.设计方案 2.1 原理说明 物流信息定位服务(Location Based Service,LBS)是统一信息系统(Unified Information System,UIS)利用无线终端和无线网络的有机配合,运用GPS (Global Positioning Syste,全球定位系统)、GIS (Geographical Information System,地理信息系统)、Internet融合计算机电信集成技术(Computer Telecommunication Integration,CTI)与GSM(Global System for Mobile Communications,全球移动通讯系统),通过物联网(Internet Of Things,IOT)设备读写出物流实时位置信息,在统一信息系统中

相关文档
最新文档