正弦型函数的性质

正弦型函数的性质
正弦型函数的性质

正弦型函数的)sin(?ω+=x A y 性质

【学习目标】1、会用“五点作图法”画正弦型函数)sin(?ω+=x A y 的图像。 2、能根据给定的图像求正弦型函数的解析式。 【自主学习】

1、利用“五点作图法”作出函数)

(3sin π

+=x y 的图像 解:①列表

②作图

2、利用“五点作图法”作出函数x y 2sin = ①列表

②作图

【合作探究】

1、利用“五点作图法”作出函数)3

2sin(2π

+

=x y 的图像

2、已知函数),0,0()sin(π?ω?ω<>>+=A x A y 的图象如图所示,求它的解析式和对称轴的方程。

3、已知函数)2

,0,0()sin(π

?ω?ω<

>>++=A b x A y 的图象如图所示,求它

的解析式。

【收获总结】

(1)五点作图的作图方法

(2)利用图像求解析式的方法

【达标检测】

1、已知函数的),0,0)(sin(π?ω?ω<>>+=A x A y 图象如图所示,求它的解析式。

2、已知函数)2

,0,0()sin(π

?ω?ω<

>>+=A x A y 的图象上相邻的两个最值

点是)212

7212-,)、(,(ππ,

(1)求其解析式 (2)求单调区间

4.4.1正弦函数图像与性质练习题.doc

正弦、余弦函数的图像及性质习题 一、选择题 1、若[]π2,0∈x ,函数x x y cos sin -+=的定义域是 A .[]π,0 B .???? ??23,2ππ C . ?? ?? ??ππ,2 D .?? ? ? ??ππ2,23 2、函数x y sin 1-=的最小值是 A .1- B .0 C .2- D .1 3、若cosx=0,则角x 等于( ) A .k π(k ∈Z ) B . 2π+k π(k ∈Z ) C .2 π +2k π(k ∈Z ) D .- 2 π +2k π(k ∈Z ) 4、使cosx=m m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1 D .m <-1或m >1 5、已知函数f(x)=2sin x(>0)在区间[,]上的最小值是-2,则的最小值等于( )A. B. C.2 D.3 6.若函数的图象相邻两条对称轴间距离为 ,则等于 . A . B . C .2 D .4 7.函数y=3cos ( 52x -6 π )的最小正周期是( ) A . 5 π2 B . 2 π 5 C .2π D .5π 8.下列函数中,同时满足①在(0, 2 π )上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2 x D .y=|sinx| 9、函数??? ?? ?- ∈=32,6,sin ππx x y 的值域是 ??3π- 4 π ?322 3 cos()3 y x π ω=+ (0)ω>2 π ω12 12

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

中职数学基础模块5.3.1正弦函数的图象和性质教学设计教案人教版

课时教学设计首页(试用) 授课时间:年月日

☆补充设计☆ 第页(总页)

(4)单调性 正弦函数在闭区间 n n [—2 + 2 k n 2 + 2 k n (kE Z)上是 增函数;在闭区间 l n 3 n 「—[2 + 2 k n, —+ 2 k n (kE Z)上是减函数. 例2求使函数y= 2+ sin x取最大值和最小值的x的集合,并求这个 函数的最大值、最小值和周期. 练习:教材P154,练习A组第1、2 题. 例3 不求值,比较下列各对正弦值 的大小: (1)si n(― 18 )与sin( —:n O ); (2)sin 严与sin 宁. 奇函数图象关于坐标原点对称. (4)随着单位圆中正弦线的变 化,体会正弦函数的单调性?学生总结 正弦函数的单调性. 师:在正弦函数图象上,函数单 调性是如何体现出来的? 生:正弦函数在[—n + 2k n n 2 + 2kn](k迂Z)上,图象是上升的, 在[2 + 2k n, + 2k n](k^Z)上, 图象是下降的. 教师将例2结合函数图象讲 解,在练习后小结:函数y= 2+ sin x, y= 2—sin x 的图象与y = sin x 的关 系,求它们最大值、最小值的规律. 教师将例3结合正弦函数图象 讲解如何比较函数值的大小,然 后再引导学生一起写出解题步骤. 利用两个例题, 使学生更好地理解函数 性质的应用,进一步渗 透数形结合的思想. 课时教学设计尾页(试用) ☆补充设计☆ 板书设计 1?“五点法”作图; : 2 ?正弦函数的图象和性质

作业设计教材P154,练习A组第3、4、5题, 练习B组. 教学后记

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

高一数学1.3.1正弦函数的图像与性质学案2

辽宁省农村实验中学高一数学《1.3.1 正弦函数的图像与性质》学案(2) 一、学习目标 重点:正弦型函数的图象特征与性质. 难点:y=A sin(ωx+φ)与y=sin x之间的图象变换规律及正弦型函数的单调区间等性质. 二、知识归纳 1.正弦型函数y=Asin(ωx+φ)( A>0,ω>0)周期T= ,频率f= ,初相, 相位,振幅,值域 2.三角函数的图象变换 (1)y=A sin x(A>0)的图象可由y=sin x图象上各点的横坐标不变,纵坐标 (A>1)或 (00)或向 (φ<0)平行移动|φ|个单位长度而得到. (3)y=sinωx) 的图象可由y=sin x图象如何变换得到? (4)y=A sin(ωx+φ) 的图象可由y=sin x图象如何变换得到? 三、例题讲解: 例 1. 函数y=a sin x+b的最大值为2,最小值为-1,则a=________,b=________. 例2 下图所示为函数y=A sin(ωx+φ)的图象的一段,试确定函数y=A sin(ωx+φ)的解析式. 变式1.如图所示为函数y=A sin(ωx+φ)的图象,其中A>0,ω>0,求该函数的解析式. 变式2:(2009·海南、宁夏)已知函数y=sin(ωx+φ)(ω>0,-π≤φ<π)的图象如图所示,则φ=________.

例3.方程x =sin x 在x ∈[-π,π]上实根的个数为( ) A .1 B .2 C .3 D .4 例4.已知函数f (x )=3sin(x 2+π6)+3 (1)用五点法画出它在一个周期内的闭区间上的图象; (2)求f (x )的单调递减区间、对称轴、值域; (3)求出使f (x )取最大值时x 的取值集合. 变式.已知函数f (x )=2sin(2x +π6 )+a +1(其中a 为常数).(1)求f (x )的单调区间; (2)若x ∈[0,π2 ]时,f (x )的最大值为4,求a 的值;(3)求出使f (x )取最大值时x 的取值集合. 课后习题: 一选择 1.函数y =5sin ? ????25 x +π6的最小正周期是( ) A.25π B.52π C .5π D.π6

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

正弦型函数的性质和图象教案

重庆市渝中区职业教育中心 数学课程教案 教师 周名昆 第 1 页 第 1 页 共 2 页 [课 题] 5.8函数)sin(?ω+=x A y 的性质和图象 [课 时] 第一课时 [课 型] 新授课 [目 标] 1. 了解正弦型函数的解析表达式中各个符号的实际背景意义; 2. 理解正弦型函数的图象与正弦函数的图象之间的关系; 3. 能够根据表达式正确地指出A 、ω、?并求出最值、最小正周期 [重 点]根据表达式正确地指出A 、ω、?并求出最值、最小正周期 [难 点] 理解正弦型函数的图象与正弦函数的图象之间的关系 [教 法] 讲授法、启发式教学法 [教 具] 教材、实物展示台、多媒体投影 [教学过程] 一、复习引入 1正弦函数在区间[-π,π]上的图象(五点法作出) 2正弦型函数引出:见教材实例 二、新课讲授 1正弦型函数)sin(?ω+=x A y 中各个字母的意义 1)A ——振幅 2)ω——频率(弧度/秒) 3)?——初相 4)??+t ——t 时刻的相位 2正弦型函数的性质:A 、T A ——最值 T ——最小正周期(? π2=T ) 例1已知函数求A (最大值、最小值)、T (ω) x y 5sin 3= )115sin(3π-=x y )875sin(3π+=x y )11 5sin(π+=x y 练习已知函数求A (最大值、最小值)、T (ω) )351sin(6π+=x y )11100sin(24ππ+=x y )4 21sin(2π+=x y x y 5.0sin 13= 3正弦型函数与正弦函数图象之间的关系(利用课件演示) ⑴x A y sin =与x y sin = 振幅变换:y=Asinx ,x ∈R(A>0且A ≠1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(00且ω≠1)的图象,可看作把正弦曲线上

正弦函数的图像和性质(一)

正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、问题导学 1、函数的图像的画法: 描点法 步骤:列表→描点→连线 补全上述表格,并根据表格中数据在直角坐标系中画出的图像。 几何法 阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出的图像。 五点法

观察的图像,发现有五个点起着关键的作用,它们是图像与轴的交点和图像的最高点及最低点: ______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出的图像。 2、 因为正弦函数是以为周期的周期函数,所以函数在区间上的图像与在区间上的图像形状完全一样,只是位置不同,因此我们只需将函数的图像向左、向右平行移动(每次移动个单位)就可以得到的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 3、 合作探究 例1、用五点法画出下列函数在区间上的简图。 (1) (2) 例2、在上,利用的图像求满足下列不等式的的取值范围。 (1) (2)

正弦函数的图像和性质(一)

x y 等分圆 平移三角函数线作正弦函数的图像 三角函数线 圆 O O 正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:x y sin =图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数x y sin =的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同 角度观察、研究问题的思维习惯。 二、问题导学 1、函数] 2,0[ sinπ ∈ =x x y,的图像的画法: 补全上述表格,并根据表格中数据在直角坐标系中画出] 2,0[ sinπ ∈ =x x y,的图像。 ②几何法阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出 ] 2,0[ sinπ ∈ =x x y,的图像。 ③五点法 观察] 2,0[ sinπ ∈ =x x y,的图像,发现有五个点起着关键的作用,它们是图像与x轴的 交点和图像的最高点及最低点:______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然 后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出] 2,0[ sinπ ∈ =x x y,的图像。 2、因为正弦函数是以π2为周期的周期函数,所以函数x y sin =在区间 )0 ] )1 2, 2[≠ ∈ +k Z k k k且 ( (π π上的图像与在区间] 2,0[π上的图像形状完全一样,只是位置 不同,因此我们只需将函数] 2,0[ sinπ ∈ =x x y,的图像向左、向右平行移动(每次移动π2 个单位)就可以得到R sin∈ =x x y,的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 三、合作探究 例1、用五点法画出下列函数在区间] 2,0[π上的简图。 (1)x y sin 3 =(2)x y sin -1 =

正弦函数的性质

正弦函数的性质:编辑本段 解析式:y=sinx 图象:波形图象 定义域:R 值域:【-1,1】 最值: ①最大值:当x=(π/2)+2kπ时,y(max)=1 ②最小值:当x=-(π/2)+2kπ时,y(min)=-1 零值点: (kπ,0) 对称性: 1)对称轴:关于直线x=(π/2)+kπ对称 2)中心对称:关于点(kπ,0)对称 周期:2π 奇偶性:奇函数 单调性:在【-(π/2)+2kπ,(π/2)+2kπ】上是增函数,在【(π/2)+2kπ,(3π/2)+2kπ】上是减函数 余弦函数的性质:编辑本段 余弦函数 图象:波形图象 定义域:R

值域:【-1,1】 最值: 1)当x=2kπ时,y(max)=1 2)当x=2kπ+π时,y(min)=-1 零值点:(π/2+kπ,0) 对称性: 1)对称轴:关于直线x=kπ对称 2)中心对称:关于点(π/2+kπ,0)对称 周期:2π 奇偶性:偶函数 单调性:在【2kπ-π,2kπ】上是增函数 在【2kπ,2kπ+π】上是减函数 tan15°=2-√3 tan30°=√3/3 tan45°=1 tan60°=√3 性质 1、定义域:{x|x≠(π/2)+kπ,k∈Z} 2、值域:实数集R 3、奇偶性:奇函数 4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数 5、周期性:最小正周期π(可用T=π/|ω|来求) 6、最值:无最大值与最小值 7、零点:kπ,k∈Z 8、对称性: 轴对称:无对称轴 中心对称:关于点(kπ/2,0)对称(k∈Z) 9、图像(如图所示) 实际上,正切曲线除了原点是它的对称中心以外,所有x=(2/n)π点都是它的对称中心. 诱导公式 tan(2π+α)=tanα tan(-α) =-tanα tan(2π-α)=-tanα tan(π-α) =-tanα tan(π+α) =tanα tan(α+β) =(tanα+tanβ)/(1-tanα×tanβ) 12.正弦(sin)等于对边比斜边;

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

1.5正弦函数的图像与性质基础练习题

1.5正弦函数的图像与性质基础练习题 一、单选题 1.已知函数()sin 022f x x ππ??????=+<< ???????的图象过点0,2? ?? ,则()f x 图象的一个对称中心为( ) A .1,03?? ??? B .()1,0 C .4,03?? ??? D .()2,0 22sin 0x -≥成立的x 的取值集合是( ) A .()32244x k x k k Z ππππ?? +≤≤+∈???? B .()72244x k x k k Z ππππ?? +≤≤+∈???? C .()52244x k x k k Z π πππ?? -≤≤+∈???? D .()572244x k x k k Z π πππ?? +≤≤+∈???? 3.函数π ()sin(2)3f x x =+的最小正周期为( ) A .4π B .2π C .π D .π 2 4.函数sin 26y x π?? =+ ???的最小正周期是( ) A .2π B .π C .2π D .4π 5.函数1sin y x =-的最大值为( ) A .1 B .0 C .2 D .1- 6.已知函数()()sin 2f x x ?=+的图像关于直线3x π =对称,则?可能取值是( ). A .2π B .12π - C .6π D .6π- 7.函数sin 26y x π? ? =+ ???的一条对称轴是( ) A .6x π =- B .0x = C .6x π = D .3x π =

8.函数2sin y x =的最小值是( ) A .2- B .1- C .1 D .2 9.已知集合{}20M x x x =-≤, {}sin ,N y y x x R ==∈,则M N =( ) A .[]1,0- B .()0,1 C .[]0,1 D .? 10.已知函数()sin()()2f x x x R π =-∈,下面结论错误的是( ) A .函数()f x 的最小正周期为2π B .函数()f x 在区间0, 2π??????上是增函数 C .函数()f x 的图像关于直线0x =对称 D .函数()f x 是奇函数 11.函数()sin 4f x x π? ?=+ ??? 图象的一条对称轴方程为( ) A .4πx =- B .4x π = C .2x π = D .x π= 12.函数12sin()24y x π=+ 的周期,振幅,初相分别是( ) A .,2,44ππ B .4,2,4π π-- C .4,2,4π π D .2,2,4π π 二、填空题 13.函数sin 2y x =的最小正周期为_____________ 14.函数1sin 223y x π??=+ ?? ?的最小正周期是_______ 15.y =3sin 26x π??- ???在区间0,2π?? ????上的值域是________. 三、双空题 16.设函数()sin f x A B x =+,当0B <时,()f x 的最大值是 32,最小值是12-,则A =_____,B =_____. 17.函数sin 24y x π??=+ ???的对称轴为_________,对称中心为_____________. 四、解答题 18.已知函数2sin 23y x π? ?=+ ??? .

教学设计――正弦型函数概念及性质

案例名称 科目 课时正弦型函数的概念及性质(职业模块工科类) xx数学 一课时教学对象xx (2)提供者xx 一、教材内容分析 1、主要内容: 函数y Asin(x)(A0,0)的概念及性质处于中等职业教育课程改革国家规划新教材《数学》(职业模块工科类)第一章第2节,主要利用正弦函数的性质和图像研究y Asin(x)(A0,0)的性质和图像。 2、地位与作用: 这节知识是学生在学习了正弦、余弦和正切三个基本三角函数的性质与图像的基础上,进一步加深对三角函数图像的认识,其地位与作用从以下两点可以体现: Ⅰ、它在三角函数知识从理论到生活实践中扮演了连接桥梁的角色。 Ⅱ、学好它可以进一步领会函数图像的研究方法,以及实际生活中的应用。 3、教学建议: 结合具体的实例,了解y Asin(x)(A0,0)的实际意义。 了解正弦函数在电工学和物理学中的应用,培养学生解决问题的能力。 二、教学目标(知识与技能,过程与方法,情感态度与价值观)及重点、难点

1、教学目标: 知识与能力: 掌握正弦型函数的性质. 过程与方法: 通过“变量替换”、概括、归纳的方法,让学生理解并掌握三角函数的周期和最值;通过分析例题和练习,巩固知识。 情感态度与价值观: 通过学生参与教学活动提高认真、积极、自信态度;遇到困难时,通过自己的努力加以克服。养成乐于学习的好习惯。 2、重点及难点 重点: 利用正弦型函数的性质,求三角函数的周期和最值. 难点: 正弦型函数的转化过程。 三、学习者特征分析 1、通过在基础模块上册中三角函数——正弦函数的学习,已经掌握了三角函数的概念、性质及图像,具备了一定的分析、理解能力,对于正弦型函数只需要“变量替换”而形成。 2、学生认为函数很难理解,但是在已有的知识结构基础上,通过“变量替换”总结知识点。加强了学生的运算能力及推导能力。 四、教学策略选择与设计 1、问题激发策略:

正弦函数的图像与性质教案

《正弦函数的图像与性质》(第一课时)(教案) 神木职教中心 数学组 刘伟 教学目标:1、理解正弦函数的周期性; 2、掌握用“五点法”作正弦函数的简图; 3、掌握利用正弦函数的图像观察其性质; 4、掌握求简单正弦函数的定义域、值域和单调区间; 5、初步理解“数形结合”的思想; 6、培养学生的观察能力、分析能力、归纳能力和表达能力等 教学重点:1、用“五点法”画正弦函数在一个周期上的图像; 2、利用函数图像观察正弦函数的性质; 3、给学生逐渐渗透“数形结合”的思想 教学难点:正弦函数性质的理解和应用 教学方法:多媒体辅助教学、讨论式教学、讲议结合教学、分层教学 教学过程: Ⅰ 知识回顾 终边相同角的诱导公式: )(sin )2sin(Z ∈=+k k απα 所以正弦函数是周期函数,即 ,6-,4-,2-,6,4,2ππππππ及都是它的周期,其中π2是它的最小正周期,也直接叫周期,故正弦函数的周期为π2 Ⅱ 新知识 1、用描点法作出正弦函数在最小正周期上的图象 x y sin =,[]π2,0∈x (1)、列表

(2)、描点 (3)、连线 因为终边相同的角的三角函数值相同,所以x y sin =的图像在…, [][][][]ππππππ4,2,2,0,0,2,2,4--- ,…与x y sin =,[]π2,0∈x 的图像相 同 2、正弦函数的奇偶性 由诱导公式x x sin )sin(-=-,R x ∈得: ①定义域关于原点对称 ②满足)()(x f x f -=- 所以,正弦函数为奇函数(观察上图,图像关于原点对称) 3、正弦函数单调性 、值域 由图像观察可得: 正弦函数在??????++- ππ ππ k k 22, 22 是增函数,在?? ? ???++ππππk k 223,22是减函数 得到最大值为1,最小值为-1,所以值域为[]1,1-

正弦函数和余弦函数图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定 的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法

7.3三角函数的性质与图像7.3.1正弦函数的性质与图像

第七章三角函数 7.3三角函数的性质与图像7.3.1正弦函数的性质与图像 1.能画出正弦函数的图像,了解正弦函数的周期性、单调性、奇偶性、最大(小)值. 2.借助图像理解正弦函数在[0, 2π]上的性质. 会用“五点法”画正弦函数的图像. 3.通过学习,提高学生逻辑推理、直观想象和数学运算的核心素养. 知识点一正弦函数的性质 (一)教材梳理填空 1. 正弦函数 对于任意一个角x,都有唯一确定的正弦sin x与之对应,因此y=sin x是一个函数,一般称为正弦函数. 2. 正弦函数的性质 (1)定义域与值域 ①正弦函数y=sin x的定义域为R,值域为[-1, 1]. ②当且仅当x=π 2+2kπ,k∈Z时,函数y=sin x的最大值y max=1;当且仅当x= 3π 2+2kπ,k∈Z时, 函数y=sin x的最小值y min=-1. (2)奇偶性 正弦函数y=sin x是奇函数,其图像关于原点中心对称. (3)周期性 ①周期函数定义:一般地,对于函数f(x),如果存在一个非零常数T,使得对定义域内的每一个x,都满足f(x+T)=f(x),那么就称函数f(x)为周期函数,非零常数T称为这个函数的周期. ②最小正周期:对于一个周期函数f(x),如果在它的所有周期中存在一个最小的正数,那么这个最小

的正数就称为f (x )的最小正周期. ③正弦函数y =sin x 是一个周期函数,2k π(k ∈Z ,k ≠0)都是它的周期,它的最小正周期为2π. (4)单调性 一般地,正弦函数y =sin x 在区间在????-π2+2k π,π2+2k π(k ∈Z )上递增,在????π2+2k π,3π 2+2k π(k ∈Z )上递减. (5)零点 正弦函数y =sin x 的零点为k π(k ∈Z ). (二)基本知能小试 1.在下列区间中,使y =sin x 为增函数的是( ) A .[0,π] B.???? π2,3π2 C.??? ?-π2,π 2 D.[π,2π] 解析:选C 因为函数y =sin x 的单调递增区间是??? ?-π2+2k π,π 2+2k π,k ∈Z ,故当k =0时,即为??? ?-π2,π2,故选C. 2.函数y =3sin x +5的最小正周期是________. 解析:设f (x )=3sin x +5,对任意x ∈R ,f (x +2π)=3sin(x +2π)+5=3sin x +5=f (x ),所以y =3sin x +5的最小正周期是2π. 答案:2π 3.若函数f (x )是以2为周期的函数,且f (3)=6,则f (5)=________. 解析:因为函数f (x )是以2为周期的函数,且f (3)=6,则f (5)=f (3+2)=f (3)=6. 答案:6 4.函数y =2-sin x 取得最大值时x 的值为________________________________. 解析:当sin x =-1,即x =-π 2+2k π(k ∈Z )时,函数y =2-sin x 的最大值为3. 答案:-π 2+2k π(k ∈Z ) 知识点二 正弦函数的图像 (一)教材梳理填空

正弦函数的性质与图像

北师大版必修4§1.5《正弦函数的性质与图像》第一课时 设计者:江西省南康中学 邱小伟 一、教学目标 1.知识与技能 (1)理解正弦线的概念和函数sin ,[0,2]y x x p =?的性质。 (2)了解正弦函数图像的画法,掌握五点作图法,并会用此方法画出[0,2π]上的正弦曲线。 2.过程与方法 通过利用单位圆研究正弦函数性质的过程,增强学生自主分析问题、解决问题的能力。 3.情感态度价值观 通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、教材分析 1.教材的地位与作用 《正弦函数的图像与性质》是高中《数学》必修4(北京师范大学版)第一章第五节的内容,过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学了锐角的正弦函数和任意角的正弦函数,在此基础上来学习正弦函数的图像,为今后余弦函数、正切函数的图像与性质、函数 的图像的研究打好基础,起到了承上启下的作用。因此,本节的学习有着极其重要的地位。 本节共分两个课时,本课为第一课时,主要是利用正弦线画出 sin ,[0,2]y x x p =?的图象,考察图象的特点,介绍“五点作图法”。 2.教学重、难点 重点:函数sin ,[0,2]y x x p =?的性质;正弦函数图像的五点作图法。 难点:正弦函数值的几何表示;正弦函数sin y x =图像的画法。 难点突破:在正弦函数定义的基础上,给出正弦函数值的几何表示(正弦线),再运用几何画板软件,带领学生一起直观形象地去探索正弦函数的图像,在清楚了正弦曲线的基本形状基础上,让学生通过练习动手实践掌握正弦曲线的五点作图法。 三、教法分析 根据上述学习目标分析和教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,确定本课主要的教法为: 1.计算机辅助教学 借助多媒体教学手段引导学生理解利用单位圆中的正弦线画出正弦函数的图象,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图象,给人以美的享受。 2.讨论式教学

最全三角函数的图像与性质知识点总结

三角函数的图像与性质 一、 正弦函数、余弦函数的图像与性质 二、正切函数的图象与性质 定义域 {|,}2 x x k k Z π π≠ +∈ 函数 y =sin x y =cos x 图 象 定义域 R R 值域 [-1,1] [-1,1] 单调性 递增区间:2,2() 2 2k k k Z ππππ??-+∈??? ? 递减区间:32,2()2 2k k k Z ππππ??++∈??? ? 递增区间:[2k π-π,2k π] (k ∈Z ) 递减区间:[2k π,2k π+π] (k ∈Z ) 最 值 x =2k π+π 2(k ∈Z )时,y max =1; x =2k π-π 2(k ∈Z )时,y min =-1 x =2k π(k ∈Z )时,y max =1; x =2k π+π(k ∈Z ) 时,y min =-1 奇偶性 奇函数 偶函数 对称性 对称中心:(k π,0)(k ∈Z )(含原点) 对称轴:x =k π+π 2,k ∈Z 对称中心:(k π+π 2,0)(k ∈Z ) 对称轴:x =k π,k ∈Z (含y 轴) 最小正周期 2π 2π

三、三角函数图像的平移变换和伸缩变换 1. 由x y sin =的图象得到)sin(?ω+=x A y (0,0A ω>>)的图象 注意:定要注意平移与伸缩的先后顺序,否则会出现错误。 2. )sin(?ω+=x A y (0,0A ω>>)的性质 (1)定义域、值域、单调性、最值、对称性: 将?ω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当?取特殊值时,这些复合函数才具备奇偶性: )sin(?ω+=x A y ,当π?k =时为奇函数,当2 ππ?±=k 时为偶函数; (3)最小正周期:ω π2=T

相关文档
最新文档