谐波

谐波
谐波

谐波

一、1. 何为谐波?

在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。

“谐波”一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。

到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。

谐波研究的意义,道德是因为谐波的危害十分严重。谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。

2. 谐波抑制

为解决电力电子装置和其他谐波源的谐波污染问题,基本思路有两条:一条是装设谐波补偿装置来补偿谐波,这对各种谐波源都是适用的;另一条是对电力电子装置本身进行改造,使其不产生谐波,且功率因数可控制为1,这当然只适用于作为主要谐波源的电力电子装置。

装设谐波补偿装置的传统方法就是采用LC调谐滤波器。这种方法既可补偿谐波,又可补偿无功功率,而且结构简单,一直被广泛使用。这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。此外,它只能补偿固定频率的谐波,补偿效果也不甚理想。

3. 无功补偿

人们对有功功率的理解非常容易,而要深刻认识无功功率却并不是轻而易举的。在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无获得公认的无功功率定义。但是,对无功功率这一概念的重要性,对无功补偿重要性的认识,却是一致的。无功补偿应包含对基波无功功率补偿和对谐波无功功率的补偿。

无功功率对供电系统和负荷的运行都是十分重要的。电力系统网络元件的阻抗主要是电感性的。因此,粗略地说,为了输送有功功率,就要求送电端和受电端的电压有一相位差,这在相当宽的范围内可以实现;而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。不仅大多数网络元件消耗无功功率,大多数负载也需要消耗无功功率。网络元件和负载所需要的无功功率必须从网络中某个地方获得。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。

无功补偿的作用主要有以下几点:

(1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗。

(2)稳定受电端及电网的电压,提高供电质量。在长距离输电线中合适的地点设置动态无功补偿装置还可以改善输电系统的稳定性,提高输电能力。

(3)在电气化铁道等三相负载不平衡的场合,通过适当的无功裣可以平衡三相的有功及无功负载。

二、谐波和无功功率的产生

在工业和生活用电负载中,阻感负载占有很大的比例。异步电动机、变压器、荧光灯等都是典型的阻感负载。异步电动机和变压器所消耗的无功功率在电力系统所提供的无功功率中占有很高的比例。电力系统中的电抗器和架空线等也消耗一些无功功率。阻感负载必须吸收无功功率才能正常工作,这是由其本身的性质所决定的。

电力电子装置等非线性装置也要消耗无功功率,特别是各种相控装置。如相控整流器、相控交流功率调整电路和周波变流器,在工作时基波电流滞后于电网电压,要消耗大量的无功功率。另外,这些装置也会产生大量的谐波电流,谐波源都是要消耗无功功率的。二极管整流电路的基波电流相位和电网电压相位大致相同,所以基本不消耗基波无功功率。但是它也产生大量的谐波电流,因此也消耗一定的无功功率。

近30年来,电力电子装置的应用日益广泛,也使得电力电子装置成为最大的谐波源。在各种电力电子装置中,整流装置所占的比例最大。目前,常用的整流电路几乎都采用晶闸管相控整流电路或二极管整流电路,其中以三相桥式和单相桥式整流电路为最多。带阻感负载的整流电路所产生的谐波污染和功率因数滞后已为人们所熟悉。直流侧采用电容滤波的二极管整流电路也是严惩的谐波污染源。这种电路输入电流的基波分量相位与电源电压相位大体相同,因而基波功率因数接近1。但其输入电流的谐波分量却很大,给电网造成严重污染,也使得总的功率因数很低。另外,采用相控方式的交流电力调整电路及周波变流器等电力电子装置也会在输入侧产生大量的谐波电流。

三、无功功率的影响和谐波的危害

1.无功功率的影响

(1)无功功率的增加,会导致电流增大和视在功率增加,从而使发电机、变压器及其他电气设备容量和导线容量增加。同时,电力用户的起动及控制设备、测量仪表的尺寸和规格也要加大。

(2)无功功率的增加,使总电流增大,因而使设备及线路的损耗增加,这是显而易见的。

(3)使线路及变压器的电压降增大,如果是冲击性无功功率负载,还会使电压产生剧烈波动,使供电质量严重降低。

2.谐波的危害

理想的公用电网所提供的电压应该是单一而固定的频率以及规定的电压幅值。谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的能耐电力电子设备广泛应用以前,人们对谐波及其危害就进行过一些研究,并有一定认识,但那时谐波污染还没有引起足够的重视。近三四十年来,各种电力电子装置的迅速发展使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。

(1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热甚至发生火灾。

(2)谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以至损坏。

(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。

(4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。

(5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;重者导致住处丢失,使通信系统无法正常工作。

3 谐波知识对该问题的介绍基于以下几个方面:基本原理,主要现象和防止谐波故障的建议。由于功率转换(整流和逆变)而导致配电系统污染的问题早在1960年代初就被许多专家意识到了。直到1980年代初,日益增长的设备故障和配电系统异常现象,使得解决这一问题成为迫在眉睫的事情。今天,许多生产过程中没有电力电子装置是不可想象的。至少以下用电设备在每个工厂都得到了应用:- 照明控制系统(亮度调节)- 开关电源(计算机,电视机)- 电动机调速设备- 自感饱和铁芯- 不间断电源- 整流器- 电焊设备- 电弧炉- 机床(CNC)- 电子控制机构- EDM机械所有这些非线性用电设备产生谐波,它可导致配电系统本身或联接在该系统上的设备故障。仅考虑导致设备故障的根源就在发生故障现象的用电工厂内可能是错误的。故障也可能是由于相邻工厂产生的谐波影响到公用配电网络而产生

的。在您安装一套功率因数补偿系统之前,如下工作是非常重要的:对配电系统进行测试以确定什么样的系统结构对您是合适的。可调谐的滤波电路和组合滤波器已经是众所周知的针对谐波问题的解决方案。另外的方法就是使用动态有源滤波器。本报告将详细讲解各种滤波系统的结构并分析它们的优缺点。 1.基本术语载波(AF) 是附加在电网电压上的一个高频信号,用于控制路灯、HT/NT 转换系统和夜间储能加热器。载波(AF) 检出电路由一个初级扼流线圈和一个并联谐振电路(次级扼流线圈和电容)并联组成的元件。AF 锁相电路用于检出供电部门加载的AF 信号。电抗在电容器回路串联扼流线圈。电抗系数扼流线圈的电感X L 相对于电容电感

X C 的百分比。标准的电抗系数是:例如 5.5% 、7% 和14% 。组合滤波器两个不同电抗系数回路并联以检出杂波信号,用于低成本地清洁电网质量。Cos Φ 功率因数代表了电流和电压之间的相位差。电感性的和电容性的cosΦ 说明了电源的质量特性。用cosΦ 可以表述电网中的无功功率分量。傅立叶分析通过傅立叶分析使得将非正弦函数分解为它的谐波分量成为可能。在正弦频率ω 0 上的波形已知为基波分量。在频率n × ω 0 上的波形被称为谐波分量。

谐波吸收器,调谐的

由一个扼流线圈和一个电容器串联组成的谐振电路并调谐为对谐波电流具有极

小的阻抗。该调谐的谐振电路用于精确地清除配电网络中的主要谐波成分。

谐波吸收器,非调谐的

由一个扼流线圈和一个电容器串联组成的谐振电路并调谐为低于最低次谐波的

频率以防止谐振。

谐波电流

谐波电流是由设备或系统引入的非正弦特性电流。谐波电流叠加在主电源上。

谐波

其频率为配电系统工作频率倍数的波形。按其倍数称为n 次( 3 、5 、7 等)谐波分量。

谐波电压

谐波电压是由谐波电流和配电系统上产生的阻抗导致的电压降。

阻抗

阻抗是在特定频率下配电系统某一点产生的电阻。阻抗取决于变压器和连在系统上的用电设备,以及所采用导体的截面积和长度。

阻抗系数

阻抗系数是AF (载波)阻抗相对于50Hz (基波)阻抗的比率。

并联谐振频率

网络阻抗达到最大值的频率。在并联谐振电路中,电流分量I L 和I C 大于总电流I 。

无功功率

电动机和变压器的磁能部分,以及用于能量交换目的的功率转换器等处需要无功功率Q 。与有功功率不同,无功功率并不做功。计量无功功率的单位是Var 或kvar 。

无功功率补偿

供电部门规定一个最小功率因数以避免电能浪费。如果一个工厂的功率因数小于这个最小值,它要为无功功率的部分付费。否则它就应该用电容器提高功率因数,这就必须在用电设备上并联安装电容器。

谐振:

在配电系统里的设备,与它们存在的电容( 电缆,补偿电容器等) 和电感( 变压器,电抗线圈等) 形成共振电路。后者能够被系统谐波激励而成为谐振。配电系统谐波的一个原因是变压器铁芯非线性磁化的特性。在这种情况下主要的谐波是 3 次的;它在全部导体内与单相分量具有相同的长度,因而在星形点上不能消除。

谐振频率:

每个电感和电容的连接形成一个具有特定共振频率的谐振电路。一个网络有几个电感和电容就有几个谐振频率。

串联谐振谐电路:

由电感(电抗器)和电容( 电容器) 串联的电路。

串联谐振频率:

网络的阻抗水平达到最小的频率。在串联谐振电路内分路电压U L 和U C 大于总电压U 。

分量谐波

频率不是基波分量倍数的正弦曲线波。

2. 谐波是什么?

谐波是主电网频率的倍数。术语“电网谐波也被使用。

电网频率 f = 50 赫兹

3 次谐波 f = 150 赫兹

5 次谐波 f = 250 赫兹

7 次谐波 f = 350 赫兹

用傅立叶分析能够把非正弦曲线信号分解成基本部分和它的倍数。

3.谐波分量是如何产生的?

由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器比较大的背离正弦曲线波形。

谐波电流的产生是与功率转换器的脉冲数相关的。6脉冲设备仅有5、7、11、13、17、19 ….n倍于电网频率。功率变换器的脉冲数越高,最低次的谐波分量的频率的次数就越高。

其他功率消耗装置,例如荧光灯的电子控制调节器产生大强度的3 次谐波( 150 赫兹)。

在供电网络阻抗( 电阻) 下这样的非正弦曲线电流导致一个非正弦曲线的电压降。在供电网络阻抗下产生谐波电压的振幅等于相应谐波电流和对应于该电流频率的供电网络阻抗Z的乘积。次数越高,谐波分量的振幅越低。

4.谐波分量在哪里发生的?

只要哪里有谐波源( 参看介绍) 那里就有谐波产生。也有可能,谐波分量通过供电网络到达用户网络。例如,供电网络中一个用户工厂的运转可能被相邻的另一个用户设备产生的谐波所干扰。5.电容器的技术

MKP 和MPP 技术之间的区别在于电力电容器在补偿系统中的连接方式。

MKP( MKK ,MKF) 电容器:

这项技术是在聚丙烯薄膜上直接镀金属。其尺寸小于用MPP 技术的电容器。因为对生产过程较低的要求,其制造和原料成本比MPP 技术要相对地低很多。MKP 是最普遍的电容器技术,并且由于小型化设计和电介质的能力,它具有更多的优点。

MPP( MKV) 电容器:

MPP 技术是用两面镀金属的纸板作为电极,用聚丙烯薄膜作为介质。这使得它的尺寸大于采用MKP 技术的电容器。生产是非常高精密的,因为必须采用真空干燥技术从电容器绕组中除去全部残余水分而且空腔内必须填注绝缘油。这项技术的主要优势是它对高温的耐受性能。

自愈:

两种类型的电容器都是自愈式的。在自愈的过程中电容器储存的能量在故障穿孔点会产生一个小电弧。电弧会蒸发穿孔点临近位置的细小金属,这样恢复介质的充分隔离。电容器的有效面积在自愈过程中不会有任何实际程度的减少。每只电容都装有一个过压分断装置以保护电气或热过载。测试是符合VDE 560 和IEC 70 以及

70A 标准的。

6. 电容器的发展

直到大约1978年,制造电力电容器仍然使用包含PCB的介质注入技术。后来人们发现,PCB 是有毒的,这种有毒的气体在燃烧时会释放出来。这些电容器不再被允许使用并且必须处理,它们必须被送到处理特殊废料的焚化装置里或者深埋到安全的地方。

包含PCB 的电容器有大约30 W/kvar的功率损耗值。电容器本身由镀金属纸板做成。

由于这种电容被禁止使用,一种新的电容技术被开发出来。为了满足节能趋势的要求,发展低功耗电容器成为努力的目标。

新的电容器是用干燥工艺或是用充入少量油( 植物油)的技术来生产的。现在用镀金属塑料薄膜代替镀金属纸板。因此新电容充分显示出了其环保的特性,并且功耗仅为0.3 W/kvar。这表明改进后使功耗降至原来的1/100。这些电容器是根据常规电网条件而开发的。在能源危机的过程中,人们开始相控技术的研究。相位控制的结果是导致电网的污染和许多到现在才搞清楚的故障。

由于前一代电容器存在一个很高的自电感(所以功耗情况很差,达到现在的100倍),高频的电流和电压(谐波) 不能被吸收,而新的电容器则会更多地吸收谐波。

因此存在这种可能,即,新、旧电容器工作在相同的母线上时会表现出运行状况和寿命预期的很大差异,由于上述原因有可能新电容器将在更短的时间内损坏。

我们向市场提供的电力电容器是专门为用于补偿系统中而开发的。电网条件已经发生急剧的变化,选择正确的电容器技术越来越重要。电容器的使用寿命会受到如下因素的影响而缩短:-谐波负载-较高的电网电压-高的环境温度我们配电系统中的谐波负载在持续增长。在可预知的将来,可能只有组合电抗类型的补偿系统会适合使用。很多供电公司已经规定只能安装带电抗的补偿系统。其它公司必须遵循他们的规定。如果一个用户决定继续使用无电抗的补偿系统,他起码应该选用更高额定电压的电容器。这种电容器能够耐受较高的谐波负载,但是不能避免谐振事故。

电力系统的谐波产生的原因

电力系统的谐波产生的原因电网谐波来自于3个方面: 一是发电源质量不高产生谐波: 发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。 二是输配电系统产生谐波: 输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。 三是用电设备产生的谐波: 晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。 电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。 气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。 家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。 供电系统的无功补偿及谐波治理 在供电系统中,为了节能降损、提高电压质量和电网经济运行水平,经常采用各种无功补偿装置。近年来,配电网中整流器、变频调速装置、电弧炉、各种电力电子设备以及电气化铁路大量应用。这些负荷大都具有非线性、冲击性和不平衡性的特点,在运行中会产

谐波的危害

1、高次谐波能使电网的电压与电流波形发生畸变,另外相同频率的谐波电压和 谐波电流要产生同次谐波的有功功率和无功功率,从而降低电网电压,增加线路损耗,浪费电网容量, 2、影响供电系统的无功补偿设备,谐波注入电网时容易造成变电站高压电容过 电流和过负荷,在谐波场合下,电容柜无法正常投切,更严重的请况下,电容柜会将电网谐波进一步放大。 3、影响设备的稳定性,尤其是对继电保护装置,危害特大。 4、谐波的存在会造成异步电动机效率下降,噪声增大;使低压开关设备产生误 动作;对工业企业自动化的正常通讯造成干扰,影响电力电子计量设备的准确性。 5、谐波的存在会使电力变压器的铜损和铁损增加,直接影响变压器的使用容量和使用效率;还会造成变压器噪声增加,缩短变压器的使用寿命。 谐波对公用电网和其他系统的危害大致有以下几个方面: 1、加大企业的电力运行成本 由于谐波不经治理是无法自然消除的,因此大量谐波电压电流在电网中游荡并积累叠加导致线路损耗增加、电力设备过热,从而加大了电力运行成本,增加了电费的支出。 2、降低了供电的可靠性 谐波电压在许多情况下能使正弦波变得更尖,不仅导致变压器、电容器等电气设备的磁滞及涡流损耗增加,而且使绝缘材料承受的电应力增大。谐波电流能使变压器的铜耗增加,所以变压器在严重的谐波负荷下将产生局部过热,噪声增大,从而加速绝缘老化,大大缩短了变压器、电动机的使用寿命,降低供电可靠性,极有可能在生产过程中造成断电的严重后果。 3、引发供电事故的发生 电网中含有大量的谐波源(变频或整流设备)以及电力电容器、变压器、电缆、电动机等负荷,这些电气设备处于经常的变动之中,极易构成串联或并联的谐振条件。当电网参数配合不利时,在一定的频率下,形成谐波振荡,产生过电压或过电流,危及电力系统的安全运行,如不加以治理极易引发输配电事故的发生。

谐波的危害及其抑制措施

谐波的危害及其抑制措施 中国联通苏州分公司 柳振伟 摘要:本文对谐波的概念及产生原理、谐波产生的问题作了较为详细的描述,并对目前解决谐波问题的措施作了分析。 关键词:交频器;谐波危害;抑制谐波措施 一、概述 理想状态下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国工业用电频率以50Hz 为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基频率波的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I 区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4,6、8等为偶次谐波,如基波为50Hz 时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。一个正弦波在5次谐波和7次谐波的影响下怎样发生畸变。(相对于基波的24%和9%),如下图所示。 图1 基波和谐波 图2 失真波形 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热,使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏,从而降低继电保护、控制、以及检测装

谐波电流计算公式是什么

谐波电流计算公式是什么? 谐波含量计算: 测试时最好测出设备较长时期运行时最大的谐波电流,其和产生谐波电流的负载投入有关,若产生谐波电流的负载全部投入,测试的数据是比较准的。 A、咨询现场工程人员,此时产生谐波的负载是否全部满负荷运行,产生谐波的负载就是非线性负载,变频器,整流设备,中频炉等。测试时现场工程人员应该知道同类的非线性负载投入了多少,所以一定问清楚,自己也可以通过配电盘看一下同类的设备投入了多少,最终目的就是能够知道我们此次测试的谐波电流含量是否为其真正的谐波含量,否则按比例推算。譬如我们测试时同类设备只有一半运行,毫无疑问我们的测试报告要对其进行说明,并且推算出其真实的谐波含量应该乘以2。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大谐波含量,如下图: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其THDA (平均畸变率)为9.4%,Arms为1.119KA,那么其计算的谐波含量为105.186A,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大谐波含量,那么选取1台100A的设备即可满足谐波补偿要求。 无功功率补偿计算: A、咨询现场工程人员,或者调用其原始功率因数数据,因为功率因数是考核指标,主要咨询两个问题,一是功率因数长期基本上是多少,二是在此功率因数时长期负载电流I多大,通过公式计算出P的值,然后计算出需要补偿的无功功率,无功功率计算公式为,——对应cosφ前的正切值,——对应cosφ后的正切值。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大无功补偿量,如下图所示: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其平均功率为P=140KW,补偿前功率因数cosφ前=0.554,若补偿后要求功率因数不低于cosφ后=0.90,那么根据公式其计算的无功补偿容量为142.66KVAR,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大无功补偿容量,那么选取3台100A的设备即可满足谐波补偿要求。

高次谐波-百度百科

高次谐波(high order harmonic component) 对于任意一复合周期振动函数Y(T)按傅氏级数分解表示为:第一项称均值或直流分量,第二项为基波或基本振动,第三项称二次谐波,依次类推或把二次谐波以后的统称为高次谐波。 危害 与一般无线电电磁干扰一样,变频器产生的高次谐波通过传导、电磁辐射和感应耦合三种方式对电源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰,感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干扰,电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。 高次谐波的危害具体表现在以下几个方面: ①变压器 电流和电压谐波将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产生共振及噪声。 ②感应电动机 电流和电压谐波同样使电动机铜损和铁损增加,温度升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。 ③电力电容器 当高次谐波产生时,由于频率增大,电容器阻抗瞬间减小,涌人大量电流,因而导致过热、甚至损坏电容器,还有可能发生共振,产生振动和噪声。 ④开关设备 由于谐波电流使开关设备在起动瞬间产生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。 ⑤保护电器 电流中含有的谐波会产生额外转距,改变电器动作特性,引起误动作,甚至改变其操作特性,或烧毁线圈。 ⑥计量仪表 计量仪表因为谐波会造成感应盘产生额外转距,引起误差,降低精度,甚至烧毁线圈。 ⑦电力电子设备

高速铁路牵引供电系统谐波及其传输特性研究 何得发

高速铁路牵引供电系统谐波及其传输特性研究何得发 发表时间:2018-09-12T09:13:56.800Z 来源:《电力设备》2018年第13期作者:何得发[导读] 摘要:随着高速铁路的高速度、大容量、高密集网络化发展,高速机车引起的牵引网谐波放大、谐振问题越发严峻。 (中国铁路青藏集团有限公司西宁供电段青海省西宁市 810006) 摘要:随着高速铁路的高速度、大容量、高密集网络化发展,高速机车引起的牵引网谐波放大、谐振问题越发严峻。从牵引网谐波放大倍数的角度考察谐振以及谐波放大特性。这对于防治实际的谐波危害、选择合适的滤波方案有较大的实用参考价值。本文分析了高速铁路牵引供电系统谐波及其传输特性。 关键词:高速铁路;牵引供电系统谐波;传输特性; 高速铁路牵引供电系统与电力系统相比具有负荷移动、方式多变等特点,加之牵引网多条线路间互感、分布电容的存在,使分析牵引网谐波电流传输特性也越发变得复杂。 一、高速铁路牵引供电系统谐波传输特性分析 牵引供电系统由外部电源、牵引变电所、牵引网和电力机车组成。外部电源系统为牵引供电系统提供高压电源,其电压等级为110 kV 或者220 kV。目前我国普通电气化铁路大多接入110 kV 电网,而高速客运专线则接入220 kV 电网。牵引网为一平行多导体传输线,由于导体数目较多,如果对所有导体建模,这样必然会增加模型建立的难度,因此在建立模型时可根据牵引网空间分布以及导体参数计算出牵引网电气参数,然后利用导线合并方法,将承力索、加强线等效到接触线中,将钢轨合并为一条导线。复线AT 牵引网系统几何结构复杂,它由接触线、承力索、负馈线、保护线、钢轨、埋地线等组成。牵引网导线数目较多,如果在计算时都考虑进去,那将会使计算变得十分困难。引入多导体传输线模型,对导线数目进行合并简化,最终可以简化成一个五导线的等值电路。牵引网是一个RLC 分布的多导体传输系统,考察谐波传输时,根据电力传输线稳态方程和等值电路,对电力机车的两侧的分布参数电路分别采用T 型等效电路。机车离牵引变电所越远,谐波电流的放大倍数越大。机车注入谐波电流在牵引网上的传输特性和谐振频率主要受牵引网长度、系统阻抗(包括电源阻抗和牵引变压器阻抗)、牵引网分布参数、机车位置等的影响。当机车向牵引网注入的谐波频率等于或接近于牵引网的谐振频率时谐波放大明显和发生谐振。根据所建机车仿真模型,当机车输出功率变化时,由于基波和谐波电流的变化不同步,这就使不同输出功率下谐波电流含量的变化较大。电流谐波畸变较牵引工况下要高出许多,从电压、电流相位分析,再生制动的功率因数也较小。再生制动技术广泛应用于动车组制动,若有多机车处于不同运行工况时,再生制动所产生的能量将会被牵引下的机车利用,这些不良的电能对高速列车的受流以及变流过程会产生极其不利的影响。再生制动工况下的谐波治理应引起高度关注。动车组在高速运行中,其运行状态受线路条件、过分相、天气、列车员控制等条件的影响,机车运行过程中牵引负荷不断变化,从而导致机车的牵引电流有较大的波动。高次谐波集中在开关频率的偶数倍附近;但在牵引工况下,随着机车功率的降低,同一频率的谐波含量增大,再生制动工况下,随着机车再生功率的增加,同一频率的谐波含量也有增大的趋势接触网是牵引变电所和电力机车交换电能的主要通道,而承力索、加强线及地埋线等也会对其线路参数的计算产生一定的影响。在建立模型时可将承力索、加强线按多导体传输线电感矩阵法[1 0]等效到接触线中,将地埋线等效到钢轨中,这种简化并不影响模型的精度。选取多个1 km的分布式参数线路建立整个牵引网的电路模型,其模型更接近于实际,这样对不同牵引网长度下的谐波传输特性的仿真分析更加准确。机车在再生制动情况下和下坡减速运行时虽降低了功率的消耗,但同时也带来大量亟待解决的谐波问题,合适的机车滤波、机车变流器的改善都是行之有效的解决方案。当机车位于某一位置的瞬间,可看作是静止的,根据实际的机车运行调度可以及时预知牵引网发生谐振的位置以及谐波放大情况,这有利于延长牵引变压器的服役寿命和提高容量利用率,也对减少或者避免谐振带来的危害有十分重要的意义。 二、高速铁路牵引供电系统谐波谐振抑制 高速铁路的飞速发展给国民经济带来了巨大的经济利益的同时也向公共电网注入了大量的谐波电流,谐波电流及谐振放大电流对电力系统和各种电气设备造成十分严重的危害,因此非常有必要对谐波进行治理。要得到显著的谐波抑制效果,需要从谐波源上入手。只有充分了解谐波产生的来源及机理,分析谐波的主要成分才能做到有的放矢,才能针对特定次谐波进行治理,防止或减小其对牵引供电系统的谐波及谐振危害。牵引供电系统参数满足一定条件时,相应次数的谐波便会发生谐振,产生的过电压和过电流危害牵引供电系统运行的安全性和稳定性。网侧变流器按照直流侧储存电能形式的不同可分为电流型网侧变流器与电压型网侧变流器。电流型网侧变流器直流侧储存能量的是电感元件,直流侧电感体积和重量都比较大,同时由于电感通过大电流,其损耗也比较大;而电压型网侧变流器直流侧储存电能的是电容元件,具有响应较快、体积小、成本低、容易实现的优点,因而目前许多工程项目都使用电压型变流器。目前,交直交电力传动机车上的变流器采用的是电压型变流器。网侧变流器控制方法根据是否将瞬态电感电流直接作为反馈量和被控制量,主要分为间接电流控制和直接电流控制两种控制方法。间接电流控制不直接控制网侧电流,而通过控制变流器的交流电压的幅值与相位间接控制电流。间接电流控制控制系统结构简单,成本较小,但由于没有交流电流反馈,电流环动态响应速度慢,对系统参数波动较敏感,己逐步被直接电流控制策略取代。直接电流控制引入了电流闭环控制,一般采用电压外环,电流内环的双闭环方式,具有控制精度高、动态响应快、交流电流与直流电压的稳定性好、交流电流的谐波含量小等优点。直接电流控制有瞬态电流控制、预测电流控制及滞环电流控制等,预测电流与瞬态电流控制算法较简单,实用方便,控制效果较好。现在交直交电力传动机车使用较多的控制策略是瞬态电流控制。在牵引变电所安装滤波装置,假如加装无源滤波器,由于牵引网额定电压是25kV,加装该类装置需额外配置降压变压器,使得成本大大提升;而加装有源滤波器,则需要更多设备,成本也很高,而在机车内的牵引变压器辅助绕组上加装滤波装置,能达到同样的谐波抑制效果且易于实现。对于这种方法,加装有源滤波器实现起来比较困难,而加装无源滤波器相对容易实现。滤波器的电感可用变压器的漏感代替,具有成本低,结构简单和运行稳定的优点。网侧变流器功率因数很高,在实际应用中能达到98%,不需要无功补偿,因此设计的滤波器无功功率应该尽量小,以减小对系统和变流器的影响。同时滤波器电路有功功率也应该尽量小,以提高电力机车的用电效率。 牵引网越长,谐振点越低,电压谐波畸变率也逐渐降低。同一供电臂上机车数量的增加会使系统侧电压谐波畸变率增大。机车谐波电流频谱分布趋势不随功率、运行工况(牵引、再生制动)而变化。但在牵引工况下,谐波含量随着机车功率的增加而降低;再生制动工况下,谐波含量随着机车返送的功率增加而增加。 参考文献: [1]李群湛, 贺建闽. 牵引供电系统分析[M]. 成都: 西南交通大学出版社, 2017.

谐波分析产生原因,危害,解决方法

谐波分析 一、谐波的相关概述 谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。 谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性。由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。 电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波。因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。 二、谐波的危害 谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。(2)谐波影响各种电气设备的正常工作。(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故。(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 三、谐波的分析 由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害。我国对于谐波相关工作的研究大致起源于20世纪80年代。我国国家技术监督局于93年颁布了国家标准《电能质量——公用电网谐波》(GB/T 14549-1993)。该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。这个规定给我国相关人员进行谐波检测分析、谐波污染的抑制提供了理论依据和大致思路。

谐波表说明书

多功能谐波电量仪表 特点:⊙4路开关量输入和4路开关量输出;输入/输出全隔离(可选) ⊙真有效值测量;(标配) ⊙具有可编程变送输出功能,可对电压/电流/有功功率/无功功率/频率/功率因数变送输出(可选) ⊙具有RS485数字接口,采用Modbus RTU通信协议(标配) ⊙具有2路电能脉冲输出;2路可编程报警;显示编程设置输入参数(可选) ⊙对显示页面选择/有功电能/无功电能有掉电保护功能(标配) ⊙具有3-31次谐波测量功能(标配) -⊙具有需量测量功能(标配) ⊙具有8时段4费率功能;实时时钟功能(可选) 该系列仪表可广泛应用于控制系统、SCADA系统和能源管理系统中、变电站自动化、配电网自动化、小区电力监控、工业自动化、智能建筑、智能型配电盘、开关柜中;有安装方便、接线简单、维护方便、工程量小、现场可编程设置输入参数的特点。 一、主要技术参数 网络三相三线、三相四线 电压额定值AC 100V 400V(订货时说明) 电压功耗<1V A (每相) 电压阻抗≥300KΩ 电压精度RMS测量、精度等级0.5 电流额定值AC 1A 、5A(订货时请说明) 电流过负荷持续:1.2倍瞬时:10倍/10S 电流功耗<0.4V A (每相) 电流阻抗<20mΩ 电流精度RMS 测量、精度等级0.5 频率45~60Hz、精度0.1Hz 功率有功、无功、视在功率,精度0.5% 电能四象限计量,有功精度0.5%,无功精度1% 显示可编程设置、切换、循环3排LED显示 电源工作范围AC/DC 100~240V 电源功耗≤5V A 输出数字接口标准RS-485、MODBUS-RTU 协议 脉冲输出2路电能脉冲输出(光耦继电器) 开关量输入4路开关量输入(干结点方式) 报警输出4路开关输出,250V AC/3A或30VDC/5A 模拟量输出4路模拟量变送输出,4-20mA DC 工作环境温度:-10~55℃湿度:<85% RH 存储环境-20~75℃ 耐压输入和电源1600V AC, 输入和输出1600V AC,电源和输出1600V AC 绝缘输入、输出、电源对机壳>5MΩ 尺寸(mm) 120W×120H×95L 96W×96H×95L 重量0.6Kg

谐波谐振产生的原因及危害分析

谐波谐振产生的原因及危害分析 摘要:在电网运行中,不可避免地会产生谐波和谐振。当谐波谐振发生时,其电压幅值高、变化速度快、持续时间长,轻则影响设备的安全稳定 运行,重则可使开关柜爆炸、毁坏设备,甚至造成大面积停电等严重 事故。本文就其定义、产生原因、危害及预防措施作以介绍,供参考。 1.定义 谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。通俗地说,基波频率是50HZ,那么谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。 谐振是交流电路的一种特定工作状况,是指在含有电阻、电感、电容的交流电路中,电路两端电压与其电流一般是不同相位的,当电路中的负载或电源频率发生变化,使电压相量与电流相量同相时,称这时的电路工作状态为谐振。谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。 2.产生的原因 谐波的产生是由于电网中存在着非线性负荷(谐波源),如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。 谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些情况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。谐波也可产生谐振,由谐波源和系统中

的某一设备或某几台设备可能构成某次谐波的谐振电路。 3.造成的危害 3.1谐波的危害 谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的通信系统产生干扰。电力电子设备广泛应用以前,人们对谐振及其危害就进行过一些研究,并有一定认识,但那时谐波污染没有引起足够的重视。近三四十年来,各种电力、电子装置的迅速使用,使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。 (1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热 甚至发生火灾。 (2)谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重 过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以 至损坏。 (3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。 (4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。 (5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;

次谐波的产生原理

在理想的干净供电系统中,电流和电压都是正弦波的。在只含线性元件(电阻、电感及电容)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。 在实际的供电系统中,由于有非线性负荷的存在,当电流流过与所加电压不呈线性关系的负荷时,就形成非正弦电流。任何周期性波形均可分解为一个基频正弦波加上许多谐波频率的正弦波。谐波频率是基频的整倍数,例如基频为50Hz,二次谐波为100Hz,三次谐波则为150Hz。因此畸变的电流波形可能有二次谐波、三次谐波……可能直到第三十次谐波组成。 有几个常见多发的问题是由谐波引起的:电压畸变、过零噪声、中性线过热、变压器过热、断路器的误动作等。 ①电压畸变:因为电源系统有内阻抗,所以谐波负荷电流将造成电压波形的谐波电压畸变(这是产生"平顶"波的根源)。此阻抗有两个组成部分:电源接口(PCC)以后的电气装置内部电缆线路的阻抗和PCC以前电源系统内的阻抗,用户处的供电变压器即是PC C的一例。 由非线性负荷引起的畸变负荷电流在电缆的阻抗上产生一个畸变的电压降。合成的畸变电压波形加到与此同一电路上所接的全部其他负荷上,引起谐波电流的流过,即使这些负荷是线性的负荷也是如此。 解决的办法是把产生谐波的负荷的供电线路和对谐波敏感的负荷的供电线路分开,线性负荷和非线性负荷从同一电源接口点开始由不同的电路馈电,使非线性负荷产生的畸变电压不会传导到线性负荷上去。 ②过零噪声:许多电子控制器要检测电压的过零点,以确定负荷的接通时刻。这样做是为了在电压过零时接通感性负荷不致产生瞬态过电压,从而可减少电磁干扰(EM I)和半导体开关器件上的电压冲击。当在电源上有高次谐波或瞬态过电压时,在过零处电压的变化率就很高且难于判定从而导致误动作。实际上在每个半波里可有多个过零点。 ③中性线过热:在中性点直接接地的三相四线式供电系统中,当负荷产生3N次谐波电流时,中性线上将流过各相3N次谐波电流的和。如当时三相负荷不平衡时,中性线上流经的电流会更大。最近研究实验发现中性线电流会可能大于任何一相的相电流。造成中性线导线发热过高,增加了线路损耗,甚至会烧断导线。 现行的解决措施是增大三相四线式供电系统中中性线的导线截面积,最低要求要使用与相线等截面的导线。国际电工委员会(IEC)曾提议中性线导线的截面应为相线导线截面的200%。 ④变压器温升过高:接线为Yyn的变压器,其二次侧负荷产生3N次谐波电流时,其中性线上除有三相负荷不平衡电流总和外,还将流过3N次谐波电流的代数和,并将谐波电流通过变压器一次侧流入电网。解决上述问题最简单的办法是采用Dyn接线的变压器,使负荷产生的谐波电流在变压器△形绕组中循环,而不致流入电网。 无论谐波电流流入电网与否,所有的谐波电流都会增加变压器的电能损耗,并增加了变压器的温升。 ⑤引起剩余电流断路器的误动作:剩余电流断路器(RCCB)是根据通过零序互感器的电流之和来动作的,如果电流之和大于额定的限值它就将脱扣切断电源。出现谐波时RCC B误动作有两个原因:第一,因为RCC B是一种机电器件,有时不能准确检测出高频分量的和,所以就会误跳闸。第二,由于有谐波电流的缘故,流过电路的电流会比计算所得或简单测得的值要大。大多数的便携式测量仪表并不能测出真实的电流均方根值而只是平均值,然后假设波形是纯正弦的,再乘一个校正系数而得出读数。在有谐波时,这样读出的结果可能比真实数值要低得多,而这就意味着脱扣器是被整定在一个十分低的数值上。 现在可以买到能检测电流均方根值的断路器,再加上真实的均方根值测量技术,校正脱扣器的整定值,便可保证供电的可靠性。

基于单片机的谐波检测仪的研究.

河北农业大学现代科技学院本科毕业论文(设计) 题目:基于单片机的谐波检测仪的研究 学部:工学部 专业班级:电子信息科学与技术0801 学号:XXXXXXXXX 学生姓名:XXXX 指导教师姓名:XXXX 指导教师职称:讲师 二O一二年六月三日

摘要 本文首先介绍了谐波分析算法的理论依据。在广泛使用的FFT算法的基础上,对谐波检测的对象进行数据分析,为系统的设计提供参考数据。本文完成了系统硬件电路的设计和仿真。硬件电路以MCS一51单片机为核心,配以适当的外围接口电路来完成各项功能。主要包括A/D采样电路、数据处理电路(单片机)、D/A转换器。软件设计以快速傅立叶变换(FFT)为主要部分,通过对所采集的数据来测量电参数。进行了相关软件算法的设计,完成每周期256点的离散采样,由单片机进行基2一FFT运算,运算结果可用于63次以下的谐波分析。系统程序采用模块化的设计思想,在软件设计中对每个模块都完成了框图设计和相关的编码设计。 关键字:单片机;谐波检测;FFT Abstract This paper first introduced the harmonic analysis algorithm theory basis. In the extensive use of FFT algorithm, on the basis of the object of harmonic detection of data analysis, for the design of the system with reference data. We completed a hardware circuit and the design of system simulation. Hardware circuit to 51 single-chip microcomputer is a MCS, match with appropriate interface circuit to the periphery of the complete all the function. Mainly includes A/D sampling circuit, data processing circuits (SCM), D/A converter. The software design with fast Fourier transform (FFT) as the main part, from all the data to measure electric parameters. Some software algorithm design, complete each cycle of discrete sampling 256 points, by MCU and 2 a FFT calculation, the operation result can be used for 63 times of the harmonic analysis. System programming the modularized design thought, in the software design of each module completed the block diagram design and relevant code design. Key word: single chip microcomputer;the harmonic detection; FFT

谐波产生的根本原因及治理对策

谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真在电力系统中对谐波的抑制就是如何减少或消除注入系统的谐波电流,以便把谐波 电压控制在限定值之内,抑制谐波电流主要有四方面的措施: 1)降低谐波源的谐波含量。也就是在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用。2)采取脉宽调制(PWM)法。采用脉宽调制(PWM)技术,在所需要的频率周期内,将直流电压调制成等幅不等宽的系列交流电压脉冲,这种方法可以大大抑制谐波的产生。3)在谐波源处吸收谐波电流。这类方法是对已有 的谐波进行有效抑制的方法,这是目前电力系统使用最广泛的抑制谐波方法。4)改善供电系统及环境。对于供电系统来说,谐波的产生不可避免,但通过加大供电系统短路容量、提高供电系统的电压等级、加大供电设备的容量、尽可能保持三相负载平衡等措施都可以提高电网抗谐波的能力。选择合理的供电电压并尽可能保持三相电压平衡,可以有效地减小谐波 对电网的影响。谐波源由较大容量的供电点或高一级电压的电网供电,承受谐波的能力将会 增大。对谐波源负荷由专门的线路供电, 减少谐波对其它负荷的影响,也有助于集中抑制和消除高次谐波。 谐波的产生原因及其危害介绍 一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。[/B][/size] 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。

关于三次谐波

三次谐波电流主要来自于单相整流电路。 图示的是一个典型的单相整流电路,电路中的电容是平滑电容,大部分整流电路中都包含这个电容,否则直流电压的纹波很大。这个电容是导致三次谐波电流的主要原因。 熟悉电路的人都知道,平滑电容的电压被充电到交流电的峰值后,就维持在交流电峰值附近。当交流电的电压低于电容上的电压时,电网上没有电流流入负载。这时,负载的电流由电容供给,随着输出电流,电容的电压开始降低,在某个时刻,交流电的电压会高于电容上的电压,这时,电网上才会有电流流入电容(给电容充电,使电容上的电压升高)和负载中。因此,电网仅在接近电压峰值的时刻向负载输入电流,电流的形状为脉冲状。 通过付立叶分析可知,这种脉冲状的波形包含丰富的三次谐波成分。 脉冲状的电流中包含了高次谐波成分,3次谐波电流最大。传统负荷与现代符合的重要区别是,传统负荷大部分是线性负荷,现代负荷大部分是非线性负荷:

1.通信设备、UPS电源 2.电脑为代表的信息设备、办公自动化设备 3.大型医疗设备 4.电视机为代表的家用电器,特别是变频空调、电磁炉等 5.节能灯、调光灯等照明设备 6.大尺寸的LED屏幕 电视机和计算机电流波形 调光灯和节能灯电流波形

电视机和计算机的电流为很窄的脉冲波,这是很典型的单相整流电路的电流波形,实际上,任何使用开关电源作为直流电源的设备都。会产生这种电流的波形。这是三次谐波电流的主要来源。 目前大量使用的大尺寸LED屏幕,采用很多开关电源并联供电,因此LED 屏幕产生的3次谐波电流很大。 节能灯也是目前常见的负载,他的电流也是脉冲状的。实际上,现代建筑物中,节能灯导致的三次谐波电流已经成为主要的危害。 三次谐波引起跳闸 常识告诉我们,电流的持续时间短了,要保持一定的有效值,就必须具有更高的峰值。

(推荐)二次谐波的产生及其解

§2.3 二次谐波的产生及其解 二次谐波或倍频是一种很重要二阶非线性光学效应,在实践中有广泛的应用,如Nd:YAG 激光器的基频光(1.064μm)倍频成0.532m 绿光,或继续将0.532μm 激光倍频到0.266μm 紫外区域。 本节从二阶非线性耦合波方程出发,求解出产生的二次谐波光强小信号解,并解释相位匹配对二次谐波产生的影响。 2.3.1 二次谐波的产生 设基频波的频率为1ω,复振幅为1E u r ;二次谐波的频率为()2212ωωω=,复振幅2E u r 。由基频波在介质中极化产生的二阶极化强度()2P u r ,辐射出的二次谐波场()3E z u r 所满足的非线性极化耦合波方程 ()()()222202 22 2ik z d E z i P z e dz k μω-= u r u r (2.3.1-1) ()() ()()()1222110211;,ik z P z z E z e εχωωω=-:E u r u r u r t (2.3.1- 2) 注意简并度1D =,212ωω= ()()()()()()()()()22202 1102112 2 1112112;,2;,i kz i kz d E z i E z E z e dz k i E z E z e n c μωεχωωωωχωωω??=-:=-:u r u r u r t u r u r t (2.3.1-3) 波矢失配量, 122k k k ?=- (2.3.1-4) 写成单位矢量(光波的偏振方向或电场的振动方向)和标量的乘积形式 333E a E =u r r ,基频光场可能有两种偏振方向,即'1111,a E a E r r ,两种偏振方向可以是 相互平行也可以是相互垂直,并有331a a ?=r r ()() ()()'222121121112;,i kz dE z i a a a E z e dz n c ωχωωω???=?-::? ???r r r t (2.3.1-5) 基频波与产生的二次谐波耦合产生的极化场强度() 21P u r ,辐射出基频光场满足的非线性极化耦合波方程。

谐波的基础知识,谐波、谐波的种类及谐波频率计算

谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 ———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容 易产生谐波,谐波的影响是什么 1 谐波的基础知识 (1)什么是基波? 电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz,所以 2 基波是50 Hz。 (2)什么是谐波? 电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为谐波。 电网或电路中,电压产生的谐波为电压谐波; 电流产生的谐波为电流谐波。 (3)谐波有几种? 整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波。 偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。 奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。 正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。 负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。 零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。 高频谐波:指频率为圆耀怨kHz的谐波。 (4)谐波频率如何计算? 谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊50 Hz越猿 3 缘园Hz等。 (5)哪些设备或电路容易产生谐波? 1)非线性负载,例二极管整流电路(AC/DC)。 2)三相电压或电流不对称性负载。 3)逆变电路(DC/AC)。 4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。 5)晶闸管调压装置或调速电路。 6)电镀设备。 7)电弧炉、矿热炉、锰矿炉、磷矿炉、电石炉、硅铁炉。 8)电解槽。 9)电焊机(弧焊、缝焊、点焊、碰焊、对焊)。 10)电池充电机。 11)变频器(低压或高压变频器)。 12)脉幅调制(PAM)调压电路或者是脉宽调制(PWM)调频电路。 13)谐波的次数与整流电路的相数有关,例三相、六相、十二相、十八相、二十四相,当相数越多并通过移相方式就可

电气化铁路的谐波标准问题

电气化铁路的谐波标准问题 1问题的由来礼经电器 改革开放以来我国电气化铁路(以下简称电铁)获得迅速发展。目前全国电铁通车里程已逾万里,遍及18个省(自治区、直辖市)电网。 电力机车整流负荷中含有较大的谐波,由于滤波措施不得力,电铁大量谐波注入公用电网。据不完全统计,自电铁投运30多年来,其谐波和负序已引发200MW发电机跳闸,山西、河南和贵州等省电网大面积停电或系统解列,电网产生局部谐振,网损明显加大,发电机转子损坏,继电保护和自动装置非正常频繁启动,用户电动机和电容器大量烧坏或不能正常运行,小火电厂不能就近并网等一系列危害,使国民经济蒙受了巨大的损失。随着电铁运量增加和向东部发达地区扩展,如电铁谐波仍不能得到及时治理,其产生的危害将会更加严重,对此应有足够的估计。 关于电铁的谐波标准,一直是电力和铁道2大部门争论的焦点。电铁谐波实际上长期处于失控状态。几乎每个电铁工程均引发了谐波标准的争议,为此国家计委委托中国国际工程咨询公司协调此事。1997年5月成立了专家工作组(由电力、铁道2部及一些高等院校的专家、教授组成),在中咨公司的领导下开展工作已达1年多,尚未得出结果。本文试图结合对国外有关标准的介绍,指出谐波国标用于电铁的问题,并以电铁南昆线和京广线上6个牵引站作为计算实例,提出确定电铁谐波限值计算方法,希望能为解决此问题起抛砖引玉的作用。

2国外的有关情况 从收集到的英国、加拿大、新西兰、澳大利亚、美国、南非等国家和地区的有关标准[1~8]可以看出: (1)目前电气化铁路的谐波问题已经普遍受到各国的关注。在电铁规划设计阶段,均应作为一个必须认真对待的技术问题。 (2)电铁的谐波限值一般服从各国电力部门制定的谐波标准,铁路部门努力采取措施,力求达到要求。 (3)针对电铁的特点,各国在贯彻标准上有不同的做法。例如,英国制定了专门工程导则(P.24),对电铁负荷的取法及波形作出规定;有些国家对电铁谐波标准作些弹性处理。对于110kV及以上系统,电压总畸变率不超过3%,单次谐波不超过1%(这里是否包括背景谐波似乎不太一致);有的国家按本国谐波国标执行。 3谐波国标用于电铁的问题 GB/T14549-93《电能质量公用电网谐波》是在总结执行原水电部《电力系统谐波管理暂行规定》(SD126-84)的经验,系统地研究了标准的有关问题,结合国情,吸收国外谐波标准研究成果的基础上提出的,作为推荐性国家标准,于1994年3月实施。实际上,此标准为国内唯一的公用电网谐波标准,经《电力法》规定为保证电能质量的依据(当然只限于谐波指标)之后,就带有权威性,因此应当严肃执行。但是必须指出: (1)从总体上讲,电网谐波水平是由各级谐波电压来表征的(即各次谐波电压含有率和电压总谐波畸变率)。尽管国际上对此尚未统一,但

相关文档
最新文档