短波JT65通讯入门(中文教程)

短波JT65通讯入门

原著:Steve Ford, WB8IMY,(QST杂志编辑)

翻译:BG5TOX

什么是JT65?

?这是一种最初由Joe Taylor, K1JT开发的数字通讯格式, 适用于极度微弱的月面反射信号。

?采用先进的数字信号处理技术。

?同时也依靠冗余性——

一遍又一遍的发送信息

65种不同的音调?1270.5 Hz 同步音

?64 种附加音用于传送信息

?在空中,它听起来就像有人在播放音乐。

时间就是一切

?每个JT65传输持续精确的46.8秒。

?在传输过程中,只有少量的信息可被发送-约13个字母。

?两个电台的时间误差必须在2秒以内。

?即使多达80%的传输信息丢失,它任然可以解码。

交替收发

?各个电台交替发射

?电台在偶数或奇数分钟发射,然后在接下来的一分钟或几分钟守听。

交替发射/接收

内容概述!

?一个JT65通联仅仅交换完成一个完整“QSO‖所必需的最少量信息。

?呼号

?信号报告

?网格(Grid Square)

短波上的JT65

?短波段上的JT65―革命”要归功于Joe大神—

W6CQZ。

?Joe编写了JT65-HF软件,使得人们更加方便地用JT65模式进行通联。

?JT65-HF目前只能在Windows系统下使用。

?对于低功率、天线受限制的电台,这是一个优秀的操作模式。

看“颜色”进行通联

?JT65-HF 用高亮的颜色来标示——

?哪些电台正在呼叫CQ,

?哪些电台正在互相通联,

?哪些电台正在给你发送信息。

?该程序只需要简单双击对应的行,就会按照预定格式生成所需回复的内容。

让我们根据一个实际通联,

一步一步的学习。

?我做这个通联时使用的功率为5W,在20米波段上工作,使用由两条Hamstick 移动天线连接在一起制成的DP天线(如下图)。

我正在呼叫CQ

W0RSB 回答了我的呼叫。我正在回复一个信号报告。

W0RSB 确认了我的信号报告,并且给了我一个-13 dB的信号报告。我回复“RRR‖。

W0RSB 发送了73 我也发送了相同的信息

你也可以发送简短的文字信息。白色的文字是UR3CTB 告诉我他用30W发射,使用的是DP天线。

理解JT65-HF 的解码界面

?UTC–接收到该信号的UTC时间。

?Sync–接收到的同步音的强度,越高越好。?dB–接收到的信号强度,用dB表示.。

越高越好。0 为上限。

?DT–根据接收到的信号与你的本地时钟计算出的时间偏移值。典型值为.3 到1.9 之间。?DF–与中心频点(0)之间的频偏。

JT65通联对大多数奖状申请都是有效的

?DXCC

?Worked All States

?Worked All Continents

?ARRL的LoTW也支持JT65通联

在短波上尝试JT65你需要哪些?

?单边带电台

?带声卡的电脑

?接口盒/线

典型安装方法

?这种安装方式可以很好的用于其它基于声卡的数字通讯模式。

高压电工操作必须懂的基础知识

高压电工操作必须懂的基础知识 一、绝缘安全用具的检查与使用 1、什么叫绝缘安全用具?它包括几类?每类又有哪些? 绝缘安全用具是指用来防止工作人员直接触电的用具。 绝缘安全用具分为基本绝缘安全用具和辅助绝缘安全用具两类。 基本绝缘安全用具;用具本身的绝缘足以抵御工作电压的用具。(可以接触带电体)辅助绝缘安全用具;用具本身的绝缘不足以抵御工作电压的用具。(不可以接触带电体) 高压设备的基本绝缘安全用具有:绝缘杆、绝缘夹钳和高压验电器, 高压设备的辅助绝缘安全用具有:绝缘手套、绝缘靴、绝缘垫、绝缘台等。 2、绝缘杆、绝缘手套、绝缘靴使用前应作哪些检查? 使用前的检查: (1)检查外观应清洁,无油垢,无灰尘。表面无裂纹、断裂、毛刺、划痕、孔洞及明显变形等。 (2)绝缘手套还应做充气试验,检验并确认其无泄漏现象。 (3)绝缘靴底无扎伤现象,底部花纹清晰明显,无磨平迹象。 (4)绝缘拉杆的连接部分应拧紧。 3、绝缘杆、绝缘手套、绝缘靴如何正确地使用?如何正确地保管? 使用注意事项: (1)使用绝缘拉杆时,就配戴绝缘手套。同时手握部分应限制在允许范围内,不得超出防护罩或防护环。 (2)穿用绝缘靴要防止硬质尖锐物体将底部扎伤。 保管注意事项: (1)安全用具应存放在于燥、通风场所:

(2)绝缘拉杆应悬挂在支架上,不应与墙面接触或斜放; (3)绝缘手套应存放在密闭的橱内,应与其它工具、仪表分别存放; (4)绝缘靴应放在橱内,不准代替雨鞋使用,只限于在操作现场使用。 二、检修安全用具的检查与使用 1、什么叫检修安全用具?它包括哪几种? 检修安全用具是指检修时应配置的保护人身安全和防止误入带电间隔以及防止误操作的安全用具。 检修安全用具除基本绝缘安全用具和辅助绝缘安全用外,还有临时接地线、标示牌、安全带、脚扣、临时遮栏等。 2、对验电器有哪些要求?使用前应做哪些检查? (1)验电器必须是:电压等级合适,经试验合格,试验期限有效。 (2)验电器应无灰尘、油污、裂纹、断裂等现象。 (3)验电前和验电后应将验电器在带电的设备上测试,确认信号良好。 (4)验电器各连接部位应牢固。 (5)同时应对绝缘手套做检查(按相关内容进行检查)。 3、验电工作应由谁作?对验电工作有哪些要求?(主考老师任意指定一项设备的检修,应能正确地验电) 验电工作应有值班员来完成 验电实际操作及安全注意事项如下: (1)检修的电气设备停电后,在悬挂接线之前,必须用验电器检查有无电压; (2)应在施工或检修设备的进出线的各相分别进行; (3)高压验电必须戴绝缘手套; (4)联络用的断路器或隔离开关检修时,应其两侧验电; (5)线路的验电应逐相进行;

短波的天波传播衰减预测模型

短波的天波传播衰减预测模型 2010-12-09 14:36:31 来源:维库开发网 关键字:短波天波传播衰减预测模型ITU-R P.533-7 建立短波天波传播衰减预测的计算模型,为保障短波通信电路的可靠性提供参考依据,建立的方法主要依据ITU-R P.533-7。首先进行传播路径的判别,进而进行频率预测,最后建立传播衰减计算模型并与文献结果进行比对,两者有较好的一致性。频率预测部分摒弃了ITU-R P.533-7中的全球预测方法,采用了对我国来说较为准确的亚大方法。 天波是指经电离层反射而传播的波,亦称电离层波。电离层是太阳辐射构成的,一年四季乃至每时每刻太阳照射的强弱都在变化,因此各地电离层的情况各有所异。电离层的电离条件不断变化,使通过天波传播的短波信道并不稳定,它实质上是一种时变的色散信道。短波信道的路径衰耗、时延散布、大气噪声和干扰等均随时间、地点、季节、昼夜以及频率的不同而不断地变化。因此,在短波通信中,为了保障通信可靠性,有必要对每一个具体的通信电路进行天波频率及传播衰减的预测。本文就是在ITU-R P.533-7推荐建议的基础上建立了短波天波传播衰减的计算模型,并将计算结果与参考文献比对后进行了软件仿真实现。 1 天波传播路径的判别 短波天波主要靠电离层的反射进行远距离的传播,电离层是分层的,其范围大约从地球表面上空50 km处一直延伸到2 000 km左右,按照电子浓度的分布情况,电离层通常分3层,由下向上分别称为D层、E层和F层。白天,F层还可细分为F1层和F2层,F2层位于地面 上空220 km以上,对短波通信起主要作用。短波天波传播路径主要依靠E层及F2层的反射来确定。 在短波通信的收发点位置确定以后,依靠E层及F2层反射的最少跳数由式(1)确定。 2 传播路径上各反射点的频率预测 欲建立可靠的短波通信,不能在短波频段内任意选择一个频率。在给定距离和方向的路径上,在一定时间内短波通信只能用一个有限的频带,对于长时间的短波通信电路,通常需要几种频率以便在不同的时间内供选用。当考虑了最主要的影响天波传播的传播条件后,可

数据通信基本知识

数据通信基本知识 -------------------------------------------------------------------------- 所有计算机之间之间通过计算机网络的通信都涉及由传输介质传输某种形式的数据编码信号。传输介质在计算机、计算机网络设备间起互连和通信作用,为数据信号提供从一个节点传送到另一个节点的物理通路。计算机与计算机网络中采用的传输介质可分为有线和无线传输介质两大类。 一、有线传输介质(Wired Transmission Media) 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质(Wired Transmission Media)为:铜线和玻璃纤维。 1. 铜线 铜线(Copper Wire)由于具有较低的电阻率、价廉和容易安装等优点因而成为最早用于计算机网络中的传输介质,它以介质中传输的电流作为数据信号的载体。为了尽可能减小铜线所传输信号之间的相互干涉(Interference),我们使用两种基本的铜线类型:双绞线和同轴电缆。 (1)双绞线 双绞线(Twisted Pair)是把两条互相绝缘的铜导线纽绞起来组成一条通信线路,它既可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干涉。双绞线分屏蔽和无屏蔽两种,其形状结构如图1.1所示。双绞线的线路损耗较大,传输速率低,但价格便宜,容易安装,常用于对通信速率要求不高的网络连接中。 (2)同轴电缆 同轴电缆(Coaxial Cable)由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按特性阻抗值不同,同轴电缆可分为基带(用于传输单路信号)和宽带(用于同时传输多路信号)两种。同轴电缆是目前LAN局域网与有线电视网中普遍采用的比较理想的传输介质。 2.玻璃纤维 目前,在计算机网络中十分流行使用易弯曲的石英玻璃纤维来作为传输介质,它以介质中传输的光波(光脉冲信号)作为信息载体,因此我们又将之称为光导纤维,简称光纤(Optical Fiber)或光缆(Optical Cable)。 光缆由能传导光波的石英玻璃纤维(纤芯),外加包层(硅橡胶)和保护层构成。在光缆一头的发射器使用LED光发射二极管(Light Emitting Diode)或激光(Laser)来发射光脉冲,在光缆另一头的接收器使用光敏半导体管探测光脉冲。 模拟数据通信与数字数据通信 一、通信信道与信道容量(Communication Channel & Channel Capacity) 通信信道(Communication Channel)是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。物理信道指用于传输数据信号的物理通路,它由传输介质与有关通信设备组成;逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻?quot;联系",由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。物理信道还可根据传输介质的不同而分为有线信道和

150条电工必懂基础知识问答

150条电工必懂基础知识问答 1、什么叫电场? 答:带电体周围形成的场,能传递带电体之间的相互作用。 2.什么叫电荷? 答:物体或构成物体的质点所带的正电或负电。 3.什么叫电位? 答:单位正电荷在某点具有的能量,叫做该点的电位。 4.什么叫电压?它的基本单位和常用单位是什么? 答:电路中两点之间的电位差称为电压。它的基本单位是伏特。简称伏,符号v,常用单位千伏(kv),毫伏(mv)。 5.什么叫电流? 答:电荷在电场力作用下的定向运动叫作电流。

6.什么叫电阻?它的基本单位和常用单位是什么? 答:电流在导体中流动时,要受到一定的阻力,,这种阻力称之为导体的电阻。它的基本单位是欧姆,简称欧,符号表示为Ω,常用的单位还有千欧(kΩ),兆欧(mΩ)。 7.什么是导体?绝缘体和半导体? 答:很容易传导电流的物体称为导体。在常态下几乎不能传导电流的物体称之为绝缘体。导电能力介于导体和绝缘体之间的物体称之为半导体。 8.什么叫电容?它的基本单位和常用单位是什么? 答:电容器在一定电压下储存电荷能力的大小叫做电容。它的基本单位是法拉,符号为F,常用符号还有微法(MF),微微法拉(PF),1F=106MF=1012MMf(PF)。 9.什么叫电容器? 答:储存电荷和电能(电位能)的容器的电路元件。 10.什么是电感?它的基本单位和常用单位是什么?

答:在通过一定数量变化电流的情况下,线圈产生自感电势的能力,称为线圈的电感量。简称为电感。它的常用单位为毫利,符号表示为H,常用单位还有毫亨(MH)。1H=103MH。 11.电感有什么作用? 答:电感在直流电路中不起什么作用,对突变负载和交流电路起抗拒电流变化的作用。 12.什么是容抗?什么是感抗?什么是电抗?什么是阻抗?他们的基本单位是什么? 答:电容在电路中对交流电所起的阻碍作用称为容抗。电感在电路中对交流电所起的阻碍作用称为感抗。电容和电感在电路中对交流电引起的阻碍作用总称为电抗。电阻,电容和电感在电路中对交流电引起的阻碍作用阻抗。他们的基本单位都是欧姆(Ω)。 13.什么叫电路? 答:电流在电器装置中的通路。电路通常由电源,开关,负载和直接导线四部分组成。

Arduino初学系列3:Arduino,按键,LED

3 Arduino,按键,LED 3.1 问题描述:如何采用Arduino控制器和按键同时控制LED的闪烁 在前面的2个例子中,都是简单地通过将程序烧录到Arduino控制板,然后由控制板来控制LED灯的闪烁,缺乏人情味。那能不能在Arduino控制的过程中,再加上与人的互动呢?答案是肯定的。在这个实验中,我们将增加一个新的材料按键按钮来和Arduino一起控制灯的闪烁。 3.2 所需材料 表3-1:所需材料 序号名称数量作用备注 1 Arduino软件1套提供IDE环境最新版本1.05 2 Arduino UNO开发板1块控制主板各种版本均可 3 USB线1条烧录程序随板子配送 4 杜邦线若干条连接组件 5 发光二极管(LED)1个 LED闪烁 6 电阻(10,200Ω)2个限流 7 多功能面包板1块连接 8 按键按钮1个开关 在进行实验之前,我们先介绍按键按钮的相关属性。 按键按钮 按键是一种经常使用的设备,通过按键可以输入指令和数据来控制电路的开与关,从而达到控制某些设备的运行状态。在本实验中,通过给按键输入高低电平来控制LED灯的闪烁。开关的种类繁多复杂,比如厨房用的单孔开关,卧房用的双控开关,楼道用的声控开关等等,均属于开关的范畴。在我们实验中,主要是用微型开关,但其种类也很多,如图3-1所示。 图3‐1 微型按键开关种类 在本实验中采用的微型开关大致为6*6*5mm的四脚开关。如图3-2所示。

图3-2 本实验用的按键 值得注意的是,1和2是一边的,3和4是一边的,中间有道痕分开。其原理如图3-3所示,当按键按下去时,1,2,3,4四个管脚接合在一起,2根导线连通,变成一根导线。电路导通,起到触发(关)作用。当松开按钮,1,2,3,4四个管脚断开,起到开的作用。 图3‐3 按键按钮原理图 3.3 实验原理图 当按键按钮按下,获取一个高电平,触发在Arduino控制下的LED闪烁。当然,我们也可以设置为按键按下是LED灯不亮,当松开按键时,LED灯闪烁,请看后面的代码分析。原理图如3-4所示,就是在实验1的基础上增加一个按键按钮。

通信原理基础知识整理

通信常识:波特率、数据传输速率与带宽的相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为:Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】 香农定理是在研究信号经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,它描述有限带宽、有随机热噪声信道的最大数据传输速率(或码元速率)与信道带宽、信噪比(信号噪声功率比)之间的关系,以比特每秒(bps)的形式给出一个链路速度的上限。

短波天波传播浅谈

短波天波传播浅谈 【摘要】短波利用天波传播时,由于电离层的吸收随着频率的升高而减小,故能以较小的功率借助电离层反射完成远距离传播。可以传播到几百到一二万千米的距离,甚至环球传播。而电波比较深入的进入电离层时,受电离层的影响较大,信号不稳定。即使工作频率选择的正确,有时也难以正常工作。下面简单介绍短波天波传播工作频率的选择及影响短波天波传播正常工作的几个问题。 【关键词】短波天波传播;工作频率选择;短波天波传播的几个主要问题 1.短波天波传播工作频率的选择 工作频率的选择是影响短波通信质量的关键性问题之一。若选用频率太高,虽然电离层的吸收小,但电波容易传出电离层,若选用频率太低,虽然能被电离层反射,但电波将受到电离层的强烈吸收。一般来说,选择工作频率应考虑以下原则: (1)不能高于最高可用频率Fmuf , Fmuf是指当工作距离一定时,能被电离层反射回来的最高频率。 (2)不能低于最低可用频率Fluf,Fluf。在短波天波传播中。频率越低,电离层吸收越大,接收点信号电平越低。由于在短波波段的噪声是以外部噪声为主,而外部噪声——人为噪声.天线噪声等的噪声电平却随着频率的降低而增强,结果使信噪比变坏。 (3)一日之内适时改变工作频率。由于电离层的电子密度随时变化,相应地,最佳工作频率也随时间变化,但电台的工作频率不可能随时变化,所以实际工作中通常选用两个或三个频率为该电路的工作频率,选用白天适用的频率称为“日频”,夜间适用的频率称为“夜频”。 2.短波天波传播的几个主要问题 2.1衰落现象严重 衰落现象是指接受点信号振幅忽大忽小,无次序不规则的变化现象。衰落时,信号强度有几十倍到几百倍的变化。通常衰落分为快衰落和慢衰落两种。 慢衰落的周期从几分钟到几小时甚至更长,是一种吸收型衰落。主要由电离层电子密度及高度变化造成电离层吸收的变化而引起的。克服慢衰落的有效措施之一是在接收机中采用自动增益控制。 快衰落的周期在十分之几秒到几秒之间,是一种干涉型衰落,产生的原因是发射天线辐射的电波是由几条不同路径到达接收点的(即多径效应),由于电离层状态的随机变化,天波射线路径随之改变。造成在接收点各条路径间的相位差随之变化,信号便忽大忽小。分集接收是一种比较有效的抗衰落措施。所谓分集接收,就是采用不同的方法接收同一信号,不同方法接收的信号互为补偿,从而使在接收端信号的衰落影响得以减小。 2.2多径时延效应 短波天波传播中,随机多径传输现象不仅引起信号幅度的快衰落,而且使信号失真或使信道的传输带宽受到限制。多径时延是指多径传输中最大的传输时延与最小的传输时延之差,其大小与通信距离,工作频率,时间等有关。 2.2.1多径时延与工作距离有较明显的关系 在200到300km的短程电路上,多径时延可达8ms,这主要是因为在几百千米的短程电路上,通常都使用弱方向性天线等,电波传播模式较多,射线仰角

Arduino可穿戴开发入门教程

Ard duin no 可可穿(内ww 穿戴开内部资料大学霸ww.daxue 开发料) 霸 https://www.360docs.net/doc/3312660040.html, 发入门门教 教程

前 言 在可穿戴技术高度被关注的今天,可穿戴技术与最热开源硬件Arduino碰撞到一起,迸发闪亮的火花——LilyPad。LilyPad是Arduino官方出品的一款为可穿戴和电子织设计的微控制器板。除了微控制器之外,它还提供了配套的一系列外设,如LED、振动马达、蜂鸣器以及三轴陀螺仪等。 在本教材中,针对LilyPad的特点和定位,以不同于其他Arduino系列控制板的方式对LilyPad是什么,以及它可以做什么进行了详细的介绍。 最后,在教程中还实现了3个切实可用的项目。大家只要将他们缝纫起来就可以使用了。特别是最后的POV手环,那是非常炫酷的。 许多教材是在学习的同时做出项目,而本教材则更偏向在做项目的同时学习。在做完所有这些项目之后,你的眼界将会被开阔,各种奇思妙想会接踵而至。你一定会在有限的LilyPad硬件上做出无限可能的设计。 1.学习所需的系统和软件  的开发可以在三大主流操作系统Windows、OS X和Linux上进行,本教材主要集中?Arduino 在Windows操作系统;  的开发环境是Arduino IDE,它的安装和使用都非常方便,在教材中也有所介绍。 ?Arduino 2.学习建议 大家购买器件之前,建议大家先初略阅读本书内容,以确定项目中可能需要用到的器件。这样可以避免重复多次购买,或者购买到不需要的器件。

目 录 第1章 LilyPad Arduino概览 (1) 1.1 可穿戴技术和电子织物 (1) 1.2 LilyPad各模块简介 (1) 1.2.1 控制器板 (1) 1.2.3 输出模块 (3) 1.2.4 输入模块 (3) 1.2.5 电源模块 (4) 1.2.6 编程器模块 (5) 1.2.7 LilyPad套装 (5) 1.3 缝纫基础 (6) 1.4 LilyPad和LilyPad Simple (10) 1.4.1 LilyPad (10) 1.4.2 LilyPad Simple (11) 1.5 本书写作思想 (12) 第2章开发环境 (13) 2.1 Arduino IDE (13) 2.1.1 安装包下载 (13) 2.1.2 Windows平台下安装Arduino IDE (15) 2.1.3 Linux平台下安装Arduino IDE (18) 2.2 认识IDE (18) 2.2.1 启动Arduino IDE (18) 2.2.2 新建源文件 (20) 2.2.3 编辑源文件 (21) 2.2.4 保存源文件 (23) 2.2.5 打开已经存在的源文件 (24) 2.3 连接LilyPad (25) 2.3.1 Windows平台的驱动 (25) 2.3.2 Linux平台的驱动 (26) 2.4 Blink (27) 2.4.1 打开官方示例 (27) 2.4.2 连接硬件 (28) 2.4.3 选择板子 (28) 2.4.4 选择端口 (29) 2.4.5 上传程序 (31) 2.4.6 观察运行结果 (31) 第3章Arduino语言基础 (33)

电工基础知识大全精编版

电工基础知识大全 电工基础知识大全电工识图口诀巧记忆 一,通用部分 1,什麽叫电路? 电流所经过的路径叫电路。电路的组成一般由电源,负载和连接部分(导线,开关,熔断器)等组成。 2,什麽叫电源? 电源是一种将非电能转换成电能的装置。 3,什麽叫负载? 负载是取用电能的装置,也就是用电设备。 连接部分是用来连接电源与负载,构成电流通路的中间环节,是用来输送,分配和控制电能的。 4,电流的基本概念是什麽? 电荷有规则的定向流动,就形成电流,习惯上规定正电荷移动的方向为电流的实际方向。电流方向不变的电路称为直流电路。 单位时间内通过导体任一横截面的电量叫电流(强度),用符号I 表示。 电流(强度)的单位是安培(A),大电流单位常用千安(KA)表示,小电流单位常用毫安(mA),微安(μA)表示。 1KA=1000A 1A=1000 mA 1 mA=1000μA

5,电压的基本性质? 1)两点间的电压具有惟一确定的数值。 2)两点间的电压只与这两点的位置有关,与电荷移动的路径无关。 3)电压有正,负之分,它与标志的参考电压方向有关。 4)沿电路中任一闭合回路行走一圈,各段电压的和恒为零。 电压的单位是伏特(V),根据不同的需要,也用千伏(KV),毫伏(mV)和微伏(μV)为单位。 1KV=1000V 1V=1000 mV 1mV=1000μV 6,电阻的概念是什麽? 导体对电流起阻碍作用的能力称为电阻,用符号R表示,当电压为1伏,电流为1安时,导体的电阻即为1欧姆(Ω),常用的单位千欧(KΩ),兆欧(MΩ)。 1MΩ=1000KΩ 1KΩ=1000Ω 7,什麽是部分电路的欧姆定律? 流过电路的电流与电路两端的电压成正比,而与该电路的电阻成反比,这个关系叫做欧姆定律。用公式表示为:I=U/R 式中:I——电流(A);U——电压(V);R——电阻(Ω)。 部分电路的欧姆定律反映了部分电路中电压,电流和电阻的相互关系,它是分析和计算部分电路的主要依据。 8,什麽是全电路的欧姆定律?

短波的电波传播特点和工作频率选择

科技信息2013年第1期 SCIENCE&TECHNOLOGYINFORMATION 短波通信利用电离层折射,可以不依赖任何中继系统与数百千米到数千千米外的地方建立通信联络,短波通信按传播途径可分成地波和天波两种基本传播途径,由于电离层不断变化,使通过天波传播的短波信道并不稳定,影响短波通信的效果。只有透彻认识和运用短波电波的传播特点,才能发挥短波通信的应有效能,建立稳定可靠的通信联系。在短波电台灵敏度和发射功率、天线架设、地形地物均已确定的情况下,工作频率成为决定通信质量的唯一可选因素。本文主要就短波通信特别是短波天波通信的电波传播特点和工作频率选择问题作简要的探讨。 1短波的地波通信与工作频率选择 地波是指沿地球表面传播的电波,基本不受昼夜、季节等条件影响,因此信号稳定。地波传播时在大地产生感应电荷,这些电荷随电波前进而形成地电流。由于大地有一定的电阻,地电流流过时要消耗能量,形成大地对电波的吸收。地电阻的大小与电波频率有关,频率越高,吸收作用越明显。地波的场强与传播距离成反比,距离越远,信号强度越弱,远至一定距离,信噪比将降低到无法保证可靠通信的程度,导致通信中断。短波地波传播的噪声主要来自大气的天电和周围工业设备的电气干扰。 短波电台可利用地波传播方式在几千米至几十千米距离内建立稳定可靠的通信联络,其有效距离主要取决于短波电台的发射功率、天线的架设方式、传播路径上的地形地物影响及使用的工作频率。鉴于频率越低,大地对电波的吸收作用越小,短波电台利用地波传播方式进行通信联络宜选用短波频率的低段(3-6MHz)。 2短波的天波通信与工作频率选择 天波是指地面发出的经电离层折射返回地面的电波。电离层随昼夜、季节、年度而变化,导致天波传播状况随时变化,直接影响着不同频率短波电波的传播。 (1)电离层对电波的折射和反射 太阳辐射使地球大气中的氮、氧原子失去电子,形成离子,进而这些电离化的气体形成所谓电离层,其分布高度距地面几十千米至上千千米。有了电离层对于短波信号的折射作用,才使远距离通信成为可能。电离层可看成具有一定介电常数的媒质,电波进入电离层会发生折射。折射率与电子密度和电波频率有关,电子密度越高,折射率越大;电波频率越高,折射率越小。电离层电子密度随高度的分布是不均匀的,随高度的增加电子密度逐渐加大,折射率亦随之加大。可以将电离层划分为许多薄层,电波在通过每一薄层时都要折射一次,折射角依次加大,当电波射线达到电离层的某一点时,该点的电子密度值恰使其折射率为90°,此时电波射线达到最高点,尔后沿折射角逐渐减小的轨迹由电离层深处折返地面。当频率一定时,电波射线入射角越大,则越容易从电离层反射回来。当入射角小于一定值时,由于不能满足90°的折射角的条件,电波将穿透电离层进入太空不再返回地面。当入射角一定时,频率越高,使电波反射所需的电子密度越大,即电波越深入电离层才能返回。当频率升高到一定值时,亦会因不能满足90°折射角的条件而使电波穿透电离层进入太空,不再返回地面。 (2)电离层对电波的吸收 当电波通过电离层时,电离层中的自由电子在电波的作用下作往返运动,互相碰撞,消耗的能量来自电波,即为电离层对电波的吸收。吸收效果主要与电子密度和电波频率有关,电子密度越高、电波频率越低,吸收越大,反之则低。当吸收作用大到一定程度时,电波强度将不能满足短波电台的信噪比要求,导致通信中断。太阳耀斑期间,电波在电离层遭到强烈的吸收,以至接收不到由电离层反射的短波信号,造成短波通信中断。 (3)电离层的变化规律 电离层中电子密度呈层状分布,对短波通信影响大的有D层、E 层、F1层、F2层,各层之间没有明显的分界线,电子密度D层<E层<F1层<F2层。由于电离层的形成主要是太阳辐射的结果,因此电离层的电子密度与阳光强弱密切相关,随地理位置、昼夜、季节和年度变化而变化,其中昼夜变化的影响最大。 D层是电离层中最靠近地面的一层。它在中午的时候电离程度最高,但离子很容易丢失,所以D层中午电子密度最大,入夜后很快消失。这一层只是吸收电波的能量,而不反射它们。D层电离化的程度越高,吸收电波的能力越强。 跟D层类似,没有阳光照射的时候E层失去离子的速度很快,因此它主要在白天影响传播。白天电子密度增加,晚上相应减少。但是E 层不像D层那样吸收较低频率的电波的能量而让较高频率的通过,E 层可以把电波反射回地面。在晚上E层非常弱,电波都能穿透它。 F1和F2层合称为F层,F1层中午电子密度最大,入夜后很快消失;F2层下午达到最大值,入夜逐渐减少,黎明前最小。对于远距离短波通信来说F层是最为重要的,F层在白天和晚上都存在,只是在晚上F层比较薄。因此F层在白天能把比较高频率的电波反射回地面,而到了晚上就让较高频率的电波通过。一般来说,在晚上可以把10~15MHz的信号反射回地面。 夜间D层消失,E层也变得很弱,F1和F2层合到了一起。由于没有D层的吸收作用,我们可以使用较低频率的无线电信号,这也是我们可以在晚上听到很多国外中波广播的原因。而那些在白天可以被反射的电波,在晚上则穿过了不够厚的F层。 能被F层反射的最高频率被称为最高可用频率。工作频率选择接近最高可用频率是一个较好的选择。因为低于这个频率的将被吸收得多,而高于这个频率的又容易穿透电离层。有时最高可用频率甚至降到了5MHz以下,这是由于电离层的扰动或者是F层过于稀薄。同样,太阳周期的最低点也会造成这种情况。太阳黑子可以使电离层的反射短波信号的能力增强。而太阳流又会使电离层扰动导致电磁暴,骚动的电离层会吸收电波。 (4)短波天波通信的工作频率选择 由于电离层的高度及电子密度主要随日照强弱昼夜变化,因此工作频率的选择是影响短波通信质量的关键。这就决定了为取得良好的通信效果,短波通信的工作频率必须随电离层的变化而改变。我们应在通信距离和天线架设、地形地物等因素确定的情况下,根据通信时段、气象条件等因素在一定范围内对工作频率进行调整,选择最佳频率,避开干扰频率,以达到最佳通信质量。 一般来说,选择工作频率应考虑以下原则: (1)不能高于最高可用频率 当通信距离一定时,可以被电离层反射回来的最高频率叫最高可用频率,通信频率不能高于最高可用频率,否则电波将(下转第88页) 浅谈短波的电波传播特点和工作频率选择 张太福韩宇 (中国人民武装警察部队新疆总队司令部通信站,新疆乌鲁木齐830063) 表1 时段频率 距离 500千米1000千米2000千米 0时最高可用频率 5.4MHz7MHz11.5MHz 最佳工作频率 4.6MHz6MHz10MHz 4时最高可用频率 5.3MHz 5.9MHz7MHz 最佳工作频率 4.5MHz5MHz6MHz 8时最高可用频率8.3MHz11.8MHz21MHz 最佳工作频率7MHz10MHz18MHz 12时最高可用频率18.8MHz23MHz33MHz 最佳工作频率16MHz20MHz30MHz 16时最高可用频率16MHz21MHz32MHz 最佳工作频率14MHz18MHz28MHz 20时最高可用频率9.5MHz11.8MHz18MHz 最佳工作频率8MHz10MHz16MHz 24时最高可用频率 5.4MHz7MHz11.6MHz 最佳工作频率 4.6MHz6MHz10MHz ○IT论坛○ 95

Arduino 电子积木基础套装中文教程

Arduino 入门版使用教程 V0.2
https://www.360docs.net/doc/3312660040.html,
Arduino 入门版使用教程
DFRduino Starter kit User Manual
版本号:V 0.22 最后修订日:2010 09 10
仅供内部评测使用,请勿外传
第 1 页 共 90 页

Arduino 入门版使用教程 V0.2
https://www.360docs.net/doc/3312660040.html,
目录
介绍 ......................................................................................................................................................... 3 元件清单 ............................................................................................................................................. 3 Arduino 介绍篇 .................................................................................................................................... 4 概 述 ................................................................................................................................................... 4 Arduino C 语觊介绍............................................................................................................................. 5 结极 ..................................................................................................................................................... 8 功能 ..................................................................................................................................................... 8 Arduino 使用介绍............................................................................................................................... 10 面包板使用介绍 ................................................................................................................................... 29 实验篇 ................................................................................................................................................... 31 第一节 多彩 led 灯实验 ................................................................................................................. 31 第二节 蜂鸣器实验 ......................................................................................................................... 42 第三节 数码管实验 ......................................................................................................................... 47 第四节 按键实验 ............................................................................................................................. 54 第五节 倾斜开关实验 ..................................................................................................................... 64 第六节 光控声音实验 ................................................................................................................... 68 第七节 火焰报警实验 ................................................................................................................... 71 第八节 抢答器实验 ......................................................................................................................... 75 第九节 温度报警实验 ..................................................................................................................... 80 第十节 红外遥控 ............................................................................................................................. 84
仅供内部评测使用,请勿外传
第 2 页 共 90 页

通信基础知识

第1章基础知识 1.1 通信基础知识 1.1.1 移动通信系统概述 移动通信的发展过程: 众所周知,个人通信(Personal communications)是人类通信的最高目标,它是用各种可能的网络技术实现任何人(whoever)在任何时间(whenever)、任何地点(wherever)与任何人(whoever)进行任何种类(whatever)的交换信息。 蜂窝移动通信的飞速发展是超乎寻常的,它是20世纪人类最伟大的科技成果之一。在回顾移动通信的发展进程时我们不得不提起1946年第一个推出移动电话的AT&T的先驱者,正是他们为通信领域开辟了一个崭新的发展空间。然而,移动通信真正走向广泛的商用,为广大普通大众所使用,还应该从20世纪70年代末蜂窝移动通信的推出算起。蜂窝移动通信系统从技术上解决了频率资源有限,用户容量受限,无线电波传输时的干扰等问题。20世纪70年代末的蜂窝移动通信采用的空中接入方式为频分多址接入方式,即所谓的FDMA方式。其传输的无线信号为模拟量,因此人们称此时的移动通信系统为模拟通信系统,也称为第一代移动通信系统(1G)。 然而随着移动通信市场的大大发展,对移动通信技术提出了更高的要求。由于模拟系统本身的缺陷,如频谱效率低、网络容量有限、保密性差等,已使得模拟系统无法满足人们的需求。为此,广大的移动通信领域里的有识之士在20世纪90年代初期开发出了基于数字通信的移动通信系统,即所谓的数字蜂窝移动通信系统,也称为第二代移动通信系统(2G)。 第二代数字蜂窝移动通信系统克服了模拟系统所存在的许多缺陷,因此2G系统一经推出就倍受人们注目,得到了迅猛的发展,短短的十几年就成为了世界范围的、最大的移动通信网,几乎完全取代了模拟移动通信系统,在我国已经完全取代了模拟系统。在当今的数字蜂窝移动系统中,最有代表性是GSM系统和N-CDMA系统。

数据通信基本知识03794

数据通信基本知识 所有计算机之间之间通过计算机网络的通信都涉及由传输介质传输某种形式的数据编码信号。传输介质在计算机、计算机网络设备间起互连和通信作用,为数据信号提供从一个节点传送到另一个节点的物理通路。计算机与计算机网络中采用的传输介质可分为有线和无线传输介质两大类。 一、有线传输介质(Wired Transmission Media) 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质(Wired Transmission Media) 为:铜线和玻璃纤维。 1. 铜线 铜线(Copper Wire)由于具有较低的电阻率、价廉和容易安装等优点因而成为最早用于计算机网络中的传输介质,它以介质中传输的电流作为数据信号的载体。为了尽可能减小铜线所传输信号之间的相互干涉(Interference) ,我们使用两种基本的铜线类型:双绞线和同轴电缆。 (1) 双绞线 双绞线(Twisted Pair) 是把两条互相绝缘的铜导线纽绞起来组成一条通信线路,它既可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干涉。双绞线分屏蔽和无屏蔽两种,其形状结构如图 1.1 所示。双绞线的线路损耗较大,传输速率低,但价格便宜,容易安装,常用于对通信速率要求不高的网络连接中。 (2) 同轴电缆 同轴电缆(Coaxial Cable) 由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按特性阻抗值不同,同轴电缆可分为基带(用于传输单路信号)和宽带(用于同时传输多路信号)两种。同轴电缆是目前LAN局域网与有线电视网中普遍采用的比较理想的传输介质。 2. 玻璃纤维目前,在计算机网络中十分流行使用易弯曲的石英玻璃纤维来作为传输介质,它以介质中传输的光波(光脉冲信号)作为信息载体,因此我们又将之称为光导纤维, 简称光纤(Optical Fiber) 或光缆(Optical Cable) 。 光缆由能传导光波的石英玻璃纤维(纤芯),外加包层(硅橡胶)和保护层构成。在光缆一头的发射器使用LED光发射二极管(Light Emitting Diode) 或激光(Laser)来发射光脉冲,在光缆另一头的接收器使用光敏半导体管探测光脉冲。 模拟数据通信与数字数据通信 一、通信信道与信道容量(Communication Channel & Channel Capacity) 通信信道(Communication Channel) 是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。物理信道指用于传输数据信号的物理通路,它由传输介质与有关通信设备组成;逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻?quot; 联系",由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。物理信道还可根据传输介质的不同而分为有线信道和 无线信道,也可按传输数据类型的不同分为数字信道和模拟信道。信道容量(Channel

电工实际操作基础知识

电机标准规定:从输出轴端面对电机,电机接线按铭牌连接,电机的旋转方向为顺时针! 1、当三相交流电动机,不许逆转,需要事先确定旋转方向时,可利用以下方法(如问其它电 机,另说): 找三块指针式万用表,置直流电压小量程,三个正表笔分别的接电动机的输入端,用手正向转动电动机,观察三块万用表,记下指针摆动出现最大值的次序,把电动机的输入端依次定为A,B,C。再用相序表测定电源的相序。当电源的相序与电动机输入端相序一致时,电动机必定正向转动。 自己理解其原理,并以其原理制做由LED显示的小仪器,替代三块万用表。 2、采用4-6V电池和量程在10V以下的两块直流电压表,按照下图接线,然后按要求方向 盘动转子。盘车时,观察两块电压表读数必为一增一减,例如V1增、V2减,则电动机相序为零、增、减。当电源电压相序确定后,就可将零、增、减与相应的电源正相序相连。主要是在两相之间加电池,并在这两相上电池之外串电压表,另外一相定为零。 三相电动机定子绕组及其首尾端判别 一、三相电动机定子绕组判别 三相电动机有三个定子绕组,每个绕组有两条引出线,共有六条引出线。用万用表测通断可以找出每个绕组的两条引出线。 二、三相电动机定子绕组的首尾端判别 在三相电动机每个绕组的两引出线确定的情况下,可进一步判别三绕组引出线的首尾。 测量方法一: (一)万用表选档:直流50μ (二)测量过程: 1、将电动机三绕组中每一绕组的一根引出线接在一起,余下三根引出线(每个绕组一根)也接在一起。这样做成两组引出线。将两组引出线分别缠绕在万用表的两表笔上。用手转动电动机转子,同时观察万用表指针,如果指针不偏转(摆动),说明接在一起的三根线同为三相绕组首端(或尾端)引出线,测试结束。如果指针有偏转(摆动),说明有一相绕组接反,继续下步测试。 2、将其中任一绕组的两根引出线对调,(注意:要记住是对调的哪一绕组。)这样又做成两组引出线。重复上述测试:将两组引出线分别缠绕在万用表的两表笔上。用手转动电动机转子,同时观察万用表指针,如果指针不偏转(摆动),说明接在一起的三根线同为三相绕组首端(或尾端)引出线,测试结束。如果指针有偏转(摆动),说明有一相绕组接反,继续下步测试。 3、再将余下两绕组中的任一绕组的两根引出线对调,这样又做成两组引出线。重复上述测

相关文档
最新文档