QCT647_2013汽车转向万向节总成性能要求与试验方法

QCT647_2013汽车转向万向节总成性能要求与试验方法
QCT647_2013汽车转向万向节总成性能要求与试验方法

QC/T 647-2000(2000-07-07发布,2001-01-01实施)

前言

本标准是根据全国汽车标准化技术委员会汽车行业标准修订计划制定的。

本标准由国家机械工业局提出。

本标准由全国汽车标准化技术委员会归口。

本标准由汽车研究所负责起草。

本标准主要起草人:旌扬、宏、夏小俊、游城、自标。

本标准由全国汽车标准化技术委员会负责解释。

中华人民国汽车行业标准

汽车转向万向节总成性能要求及试验方

法QC/T 647-2000

1 围

本标准规定了汽车转向万向节总成性能要求及试验方法。

本标准适用于汽车转向万向节总成。

2 定义

本标准采用下列定义。

2.1 最大工作角

转动万向节时,两万向节叉不产生相互干涉,万向节能够传递转向转矩的最大摆角。

2.2 摆动力矩

固定万向节叉中的一个而另一个万向节叉绕十字轴摆动时的摆动力矩值。

2.3 转动方向间隙

在转动方向上万向节的间隙。

2.4 万向节十字轴轴向间隙

万向节十字轴的端面和轴承或调整垫圈之间的间隙。

2.5 万向节与轴的拔拉力

在装配状态下,当在夹紧固定式万向节叉和轴之间轴向拔拉时,滑动时的负荷。

2.6 轴承的压出力

用铆接的方法将轴承固定在万向节叉轴承孔,以防止轴承从万向节叉轴承孔中滑出,铆接后轴承压出所需的力。

3 试验项目

3.1 最大工作角试验

3.2 摆动力矩试验

3.3 转动方向间隙试验

3.4 十字轴轴向间隙试验

3.5 万向节与轴的拔拉力试验

3.6 轴承的压出力试验

4 试验样品

试验样品应按照规定程序批准的图样和技术文件制造,其材料、尺寸、热处理及装配状态应符合图样和技术文件规定。每项试验样品数量不少于3件。

5 性能要求

5.1 最大工作角试验

最大工作角应符合设计要求。

5.2 摆动力矩试验

除非另有规定、摆动力矩最大为0.39Nm。

5.3 转动方向间隙试验

除非另有规定,转动方向间隙应不大于15'。

5.4 万向节十字轴轴向间隙试验

万向节十字轴轴向间隙应满足设计要求。

5.5 万向节与轴的拔拉力试验

万向节与轴的拔拉力应满足设计要求。

5.6 轴承的压出力试验

轴承的压出力应满足设计要求。

6 试验条件

在每个试验项目中使用的夹紧固定式万向节叉上,应装配车上使用的相应的轴,并把螺栓紧固到最小的规定力矩。

只有在摆动力矩试验时,要求夹紧固定式万向节叉的螺栓拧紧到最大规定力矩值。

7 试验方法

7.1 最大工作角试验

7.1.1 将万向节的一个万向节叉绕另一个万向节叉摆动,同时连续转动万向节。

7.1.2 测出旋转最大可能工作角。

7.1.3 测量误差不大于1°。

7.2 摆动力矩试验

7.2.1 将一个万向节叉固定,绕十字轴摆动另一个万向节叉。

7.2.2 类似地,交换万向节叉的固定,分别测出两个万向节叉的最大摆动力矩。

7.2.3 测量误差不大于2%。

7.3 转动方向间隙试验

7.3.1 将一个万向节叉的一端固定,在另一个万向节叉一端施加扭转力矩±1Nm。试验台应有防止万向节错位的装置。

7.3.2 测出万向节转动的角度值,即转动方向间隙。

7.3.3测量误差不大于2%。

7.4 万向节十字轴轴向间隙试验

7.4.1 使两万向节叉的轴线成一直线,固定一个万向节叉,另一万向节叉沿其两轴承孔中心线往复平移。

7.4.2 测量一个方向的万向节十字轴的轴向间隙。

7.4.3 类似地,交换万向节叉的固定,可以测出与之垂直方向的万向节叉十字轴的轴向间隙。

7.5 万向节与轴的拔拉力试验

7.5.1 将夹紧固定式万向节和轴总成安装到拉力试验机上,施加轴向拉伸负荷。

7.5.2 测出夹紧固定式万向节叉和轴之间的拔拉力。

7.5.3 测量误差不大于2%。

7.6 轴承的压出力试验

将万向节叉安装在压力试验机上,对万向节轴承施加压力负荷,使轴承产生位移,测量位移过程中的峰值负荷即轴承的压出力。

汽车制动性能测试方法分析

编号:SY-AQ-06715 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 汽车制动性能测试方法分析Analysis on test method of automobile braking performance

汽车制动性能测试方法分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 汽车制动性能是汽车性能检测中极其重要的指标,关系着汽车行驶安全,为此应加强汽车制动性能测试方法研究,为更好的检测汽车制动性能奠定基础。本文着重探讨了汽车制定性能检测方法,以期为汽车制动性能的检测提供参考。 截止去年年底我国汽车保有量已达到2.4亿辆,由此引发的汽车安全问题越来越引起人们的重视,不断提高汽车制动性能检测水平,对减少汽车事故保证行车安全具有重要意义。 汽车制动性能指标 汽车制动性能指汽车在短距离内能够稳定停车,以及在长坡时维持一定车速的能力。用于评判汽车制动性能优劣的重要参数称为汽车制动性能指标,包括制动稳定性、制动效能恒定性以及制动效能,下面逐一对其进行阐述。 1.1.制动效能

制动效能即汽车的制动减速度或制动距离,其优劣与否常用汽车在路面良好的条件下,以一定的速度行驶制动至完全停止的距离评定。汽车制动后行驶的距离越短,表示制动性能越佳。另外,为保证交通安全,国家对不同车型的制动减速度和制动距离做了明确规定,如表1所示: 表1不同车辆类型制动距离和速度 机动车类型 制动初速度/(km·h-1 ) 满载减速度/(m·s-2 ) 满载制动距离/m 空载减速度/(m·s-2 ) 空载制动距离/m 空载t1/s

汽车电动助力转向虚拟测试系统研究

?316?计算机测量与控制.2007.15(3) Computer Measurement &Control 自动化测试 中华测控网https://www.360docs.net/doc/3312678209.html, 收稿日期:2006-05-06; 修回日期:2006-06-19。基金项目:重庆市教委基金资助项目(040408)。 作者简介:李 伟(1965-),重庆人,教授,博士后,主要从事汽车电子控制方向的研究。 文章编号:1671-4598(2007)03-0316-03 中图分类号:TP274;U46314 文献标识码:B 汽车电动助力转向虚拟测试系统研究 李 伟,张德明 (重庆交通大学机电与汽车工程学院,重庆 400074) 摘要:汽车电动助力转向是一种利用电动机直接为汽车转向系统提供助力的高新技术,代表着未来汽车动力转向技术的发展方向;从而迫切需要一种方便、快捷的EPS 系统测试仪器,而传统的测试系统在便捷性、可靠性、可扩展性方面都具有一定的局限;针对这种情况,文中应用目前最流行的虚拟仪器软件开发平台LabVIEW 软件开发汽车电动助力转向系统虚拟测试仪器;考虑到LabVIEW 软件不直接支持第三方数据采集卡的背景,提出了基于LabV IEW 软件的单片机、PC 机串口通信的测试方案,并成功开发了该虚拟测试系统;测试结果表明,该测试系统具有操作简便、工作可靠、开发成本低等优点,对相关虚拟测试系统的开发具有一定的借鉴价值。 关键词:电动助力转向;LabV IEW ;串口通信;虚拟测试 R esearch on Virtual test System of Automobile Electric Pow er Steering Li Wei ,Zhang Deming (College of Machine -Electronic and Automobile Engineering ,Chongqing Jiaotong University ,Chongqing 400074,China ) Abstract :Automobile electric power steering (EPS )is one superior technique which supplies power to steering system of automobile wit h motor directly 1it has become one sign of fut ure development direction of high technique of automobile 1So ,a convenient and quickly testing inst rument is needed 1While t he current testing instrument s are not so satisfactory ,for t his reason t he virtual test system based on LabVIEW software is developed 1Under t he grounds t hat LabVIEW can not directly support data acquisition board of t hird party 1a test plan t hrough serial communication between single board and PC wit h LabVIEW is presented 1Some functions of automobile elect ric power steering system were tested by t his virt ual testing system ,t he test result showed t he virtual test system has many virtues such as convenient ,stabili 2zation and low expenses 1So ,it has some value of using for reference 1 K ey w ords :EPS ;LabVIEW ;series communication ;virtual testing 0 引言 汽车电动助力转向(Electric power steering 简称EPS )是一种用电动机直接为汽车转向系统提供助力的高新技术,具有传统液力助力转向所不具有的低能耗、环保、高主动安全性等优点,代表着未来汽车电动助力转向技术的发展方向。 目前,国外该项技术趋近成熟,国内则处于研究试验阶段,从而迫切需要一种方便、快捷的EPS 系统测试工具。而目前所采用的传统测试系统在便捷性、可靠性、可扩展性方面都具有一定的局限,针对这种情况作者在熟悉运用美国国家仪器公司(NI )所开发出的虚拟仪器软件开发平台———LabV IEW 的基础上和在LabV IEW 软件不直接支持第三方数据采集卡的背景下,自制数据采集卡,利用上、下位机通过串口通信的办法,开发出一套高效率的EPS 虚拟测试仪器。 所谓的虚拟仪器,由美国国家仪器公司(N I )于1986年首次提出,就是用户在通用计算机平台上,根据需求定义和设计仪器的测试功能。虚拟仪器的概念打破了传统仪器由厂家定义,用户无法根据自己的要求而改变其相应功能的工作模式,充分利用了计算机技术来实现和扩展传统测试系统和仪器的功能。“软件就是仪器”是虚拟仪器概念最简单、也是最本质的表述。 1  测试系统硬件开发 111 EPS 工作原理 EPS 是一种直接依靠电机提供转向助力的动力转向系统, 根据电机布置位置的不同,分为转向轴助力式(Column Type )、小齿轮助力式(Pinion Type )、齿条助力式(Rack Type )3种型式。但其基本原理是相同的。其系统结构如图1所示。 图1 电动助力转向系统结构图 所谓的EPS 系统就是在原机械转向系统的基础上,增加 了车速传感器、转矩转角传感器、电子控制器、电动机及其传动机构,直接利用电动机驱动转向轴提供助力转矩。转矩转角传感器测量转矩与方向盘转角大小并和车速信号一起送入电子控制器。控制器根据得到的信号判断是否助力以及助力的方向。若需要助力,则依照既定的控制策略计算电机助力转矩的大小并输出相应控制信号给驱动电路。后者提供相应的电压或者电流给电动机。电动机输出的转矩通过传动机构驱动转向轴

实验二机构运动简图测绘

《机械设计基础》实验指导书课程编号:02106220、02106420、02107220、02106520 课程名称:机械设计基础(A)、机械设计基础(B)、机械设计基础(C) 注:1、实验01和10可合并在一起,分两个单元进行; 2、实验03和04应根据学时和专业方向从中选择一个。 实验一机构认识实验 一、实验目的 1.初步了解《机械原理》课程所研究的各种常用机构的结构、类型、特点及应用实例。 2.增强学生对机构与机器的感性认识。 二、实验内容 陈列室展示各种常用机构的模型,通过模型的动态展示,增强学生对机构与机器的感性认识。实验教师只作简单介绍,提出问题,供学生思考,学生通过观察,增加对常用机构的结构、类型、特点的理解,培养对课程理论学习和专业方向的兴趣。 三、实验设备和工具 机构陈列室机构展柜和各种机构模型。 四、实验原理

(一)对机器的认识:通过实物模型和机构的观察,学生可以认识到:机器是由一个机构或几个机构按照一定运动要求组合而成的。所以只要掌握各种机构的运动特性,再去研究任何机器的特性就不困难了。在机械原理中,运动副是以两构件的直接接触形式的可动联接及运动特征来命名的。如:高副、低副、转动副、移动副等。 (二)平面四杆机构:平面连杆机构中结构最简单,应用最广泛的是四杆机构,四杆机构分成三大类:即铰链四杆机构;单移动副机构;双移动副机构。 1.铰链四杆机构分为:曲柄摇杆机构、双曲柄机构、双摇杆机构,即根据两连架杆为曲柄,或摇杆来确定。 2.单移动副机构,它是以一个移动副代替铰链四杆机构中的一个转动副演化而成的。可分为:曲柄滑块机构,曲柄摇块机构、转动导杆机构及摆动导杆机构等。 3.双移动副机构是带有两个移动副的四杆机构,把它们倒置也可得到:曲柄移动导杆机构、双滑块机构及双转块机构。 (三)凸轮机构:凸轮机构常用于把主动构件的连续运动,转变为从动件严格地按照预定规律的运动。只要适当设计凸轮廓线,便可以使从动件获得任意的运动规律。由于凸轮机构结构简单、紧凑,因此广泛应用于各种机械,仪器及操纵控制装置中。 凸轮机构主要有三部分组成,即:凸轮(它有特定的廓线)、从动件(它由凸轮廓线控制着)及机架。 凸轮机构的类型较多,学生在参观这部分时应了解各种凸轮的特点和结构,找出其中的共同特点。 (四)齿轮机构:齿轮机构是现代机械中应用最广泛的一种传动机构。具有传动准确、可靠、运转平稳、承载能力大、体积小、效率高等优点,广泛应用于各种机器中。根据轮齿的形状齿轮分为:直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮及蜗轮、蜗杆。根据主、从动轮的两轴线相对位置,齿轮传动分为:平行轴传动、相交轴传动、交错轴传动三大类。 1.平行轴传动的类型有:外、内啮合直齿轮机构、斜齿圆柱齿轮机构、人字齿轮机构、齿轮齿条机构等。 2.相交轴传动的类型有圆锥齿轮机构,轮齿分布在一个截锥体上,两轴线夹角常为90°。 3.交错轴传动的类型有:螺旋齿轮机构、圆柱蜗轮蜗杆机构,弧面蜗轮蜗杆机构等。 在参观这部分时,学生应注意了解各种机构的传动特点,运动状况及应用范围等。 4.齿轮机构参数:齿轮基本参数有齿数z、模数m、分度圆压力角α、齿顶高系数h*a、顶隙系数c*等。 在参观这部分时学生们一定要知道,什么是渐开线?渐开线是如何形成的?什么是基圆、发生线? 并注意观察基圆、发生线、渐开线三者间关系,从而得出渐开线有什么性质?

球笼式等速万向节是前置前驱动轿车的关键部件之一

球笼式等速万向节是前置前驱动轿车的关键部件之一,其性能和寿命与接 触应力密切相关,万向节疲劳破坏的特征是常在滚道表面造成麻坑、剥落和点 蚀。因此,球笼式等速万向节接触应力的分析与计算对于等速万向节的设计显 得尤为重要[2]。 万向节和传动轴的作用是在不在同一轴线上的轴之间传递运动和转矩。由 于球笼式和三枢轴式等速万向节的结构形式不同,因而它们的转矩传递方式也 不尽相同。对于球笼式万向节,传递扭矩的元件是钟型壳、钢球与星形套;对 于三枢轴式万向节,传递元件是筒形壳、球形套圈、滚针和三轴柱。因此,在 确定滚动体与滚道之间的接触应力时应区别对待。 关于球笼式万向节的接触应力,国内的王良模、卢强等对伯菲尔德等速万 向节采用解析方法,假设接触区处于弹性应力状态,且接触面尺寸比物体接 [13] 触点曲率半径小得多,引用Hertzian 理论求解出接触应力,接触面的最大应力 发生在接触椭圆中心。 由于内滚道接触点的曲率半径小于外滚道接触点的纵向曲率半径,因此内 滚道的接触椭圆比外滚道的接触椭圆小,内滚道的接触应力大于外滚道上的应 力值,从而使内滚道就比外滚道易于磨损,疲劳寿命较短。 当滚动体与轨道间为点接触时,运用经典的Hertzian 理论可以求得滚动体 汽车等速驱动轴的结构强度主要取决于万向节关键零件间的接触强度,对 于球笼式等速万向节来说其分析的重点是钢球与星形套和钟形壳滚道之间的 接触应力,尤其是钢球和星形套滚道之间的接触应力 ②球笼式万向节 球笼式等速万向节(亦称球笼式万向联轴器)如图1-7所示,是一类容许两相交轴间有较大角位移的联轴器,它是目前应用最为广泛的等速万向节。球笼式等速万向节主要由钟形壳、星形套、钢球和保持架(亦称球笼)构成。钟形壳的内径球面与保持架的外径球面组成一个转动定心球面副;保持架的内径球面与星形套的外径球面也组成一个转动定心球面副。两个球面副的球心重合于两轴轴线的交点。钢球一般为六个,相应地,保持架有六个周向腰鼓形槽,以在其轴向方向夹持六个钢球。在钟形壳的内径球面上,周向等分地开有六个环面内槽;在星形套的外径表面上,也周向等分地开有六个窝面外槽。它们分别与六个钢球共轭接触,以传递运动和扭矩。钟形壳一般通过螺栓与驱动轴(或被驱动轴)连接;星形套通过花键与被驱动轴(或驱动轴)相连接。环面的轴线偏离两轴轴线的交点(球面副的球心),钟形壳、星形套环面的轴线偏心量应相等。环面的素线是一段圆弧。环面的母线是不完整的半椭圆曲线。因为在传递扭矩过程中,钢球既和钟形壳相接触又同时和星形套接触,同一个钢球的角速度ω相等,因此ω钟=ω球=ω星,就是说固定端具有同步等速性。这种等速万向节无论转动方向如何,六个钢球全都传递转矩,它可在两轴之间的夹角达35°~37°的情况下工作[3][4][5][6]。 球笼式万向节与十字轴式刚性万向节相比,具有单节瞬时同步、两轴间角位移大、效率高、安装拆卸方便、能承受重载及冲击载荷等突出优点。球笼式等速万向节是轿车关键部件之一,它直接关系到汽车转向驱动性能。但是,球笼式等速万向节因其加工制造精度高、难度大,国产球笼式等速万向节由于回转方向间隙原因会产生很大的噪音和振动,当球笼式等速万向节回转方向间隙过大,内部零件之间发生干涉时,等速万向节会产生冲击、噪音。此外,它

汽车万向节介绍

第一节摩擦离合器的结构型式选择 现代汽车摩擦离合器在设计中应根据车型的类别,使用要求,与发动机的匹配要求,制造条件以及标准化、通用化、系列化要求等,合理地选择离合器总成的结构和有关组件的结构,现分述如下: 1.从动盘数及干、湿式的选择 (1)单片干式摩擦离合器 其结构简单,调整方便,轴向尺寸紧凑,分离彻底,从动件转动惯量小,散热性好,采用轴向有弹性的从动盘时也能接合平顺。因此,广泛用于各级轿车及微、轻、中型客车与货车上,在发动机转矩不大于1000N·m的大型客车和重型货车上也有所推广。当转矩更大时可采用双片离合器。 (2)双片干式摩擦离合器 与单片离合器相比,由于摩擦面增多使传递转矩的能力增大,接合也更平顺、柔和;在传递相同转矩的情况下,其径向尺寸较小,踏板力较小。但轴向尺寸加大且结构复杂;中间压盘的通风散热性差易引起过热而加快摩擦片的磨损甚至烧伤碎裂;分离行程大,调整不当分离也不易彻底;从动件转动惯量大易使换档困难等。仅用于传递的转矩大且径向尺寸受到限制时。 (3)多片湿式离合器 摩擦面更多,接合更加平顺柔和;摩擦片浸在油中工作,表面磨损小。但分离行程大、分离也不易彻底,特别是在冬季油液粘度增大时;轴向尺寸大;从动部分的转动惯量大,故过去未得到推广。近年来,由于多片湿式离合器在技术方面的不断完善,重型车上又有采用,并有不断增加的趋势。因为它采用油泵对摩擦表面强制冷却,使起步时即使长时间打滑也不会过热,起步性能好,据称其使用寿命可较干式高出5~6倍。 2.压紧弹簧的结构型式及布置 离合器压紧弹簧的结构型式有:圆柱螺旋弹簧、矩形断面的圆锥螺旋弹簧和膜片弹簧等。可采用沿圆周布置、中央布置和斜置等布置型式。根据压紧弹簧的型式及布置,离合器分为: (1)周置弹簧离合器 周置弹簧离合器的压紧弹簧是采用圆柱螺旋弹簧并均匀布置在一个圆周上。有的重型汽车将压紧弹簧布置在同心的两个圆周上。周置弹簧离合器的结构简单、制造方便,过去广泛用于各种类型的汽车上。现代由于轿车发动机转速的提高(最高转速高达5000~7000r/min或更高),在高转速离心力的作用下,周置弹簧易歪斜甚至严重弯曲鼓出而显著降低压紧力;另外,也使弹簧靠到定位座柱上而使接触部位严重磨损甚至出现断裂现象。因此,现代轿车及微、轻、中型客车多改用膜片弹簧离合器。但在中、重型货车上,周置弹簧离合器仍得到广泛采用。 (2)中央弹簧离合器 采用一个矩形断面的圆锥螺旋弹簧或用1~2个圆柱螺旋弹簧做压簧并布置在离合接触,因此压盘由于摩擦而产生的热量不会直接传给弹簧而使其回火失效。压簧的压紧力是经杠杆系统作用于压盘,并按杠杆比放大,因此可用力量较小的弹簧得到足够的压盘压紧力,使操纵较轻便。采用中央圆柱螺旋弹簧时离合器的轴向尺寸较大,

汽车转向系统检测与维修要点

摘要: 本文阐述了汽车转向系统各个部分的作用、组成、主要构造、工作原理、及可能出现的故障,同时提出了对出现的故障进行维修的可行方案;采用了理论与实际相结合的方法,对每个问题都有良好的认识,对所学内容进行了良好的总结归纳,以此进一步熟悉掌握汽车转向系统的各方面知识,深化巩固所学知识,做到理论与实际相结合,在理论学习的前提下,用实际更好的理解所学内容。 关键词:转向;故障;诊断; 目录 摘要 (1) 关键词 (1) 一、绪论 (2) 1.1 什么是汽车转向系统 (2) 1.2 汽车转向系统概述 (2) 1.3 转向系统简介及工作原理 (3) 二、汽车转向系统的故障诊断 (7) 2.1 机械转向系故障诊断 (7) 三、对汽车转向系统的故障进行维修 (9) 3.1机械转向系的维修 (9) 3.2动力转向系的维修 (10) 四、结论 (14) 谢辞 (15) 参考文献 (16) 绪论:

转向系统:用来改变或保持汽车行驶方向的机构称为汽车转向系统(steering system)。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全至关重要,因此汽车转向系统的零件都称为保安件。 汽车转向系统分为两大类:机械转向系统和动力转向系统。 完全靠驾驶员手力操纵的转向系统称为机械转向系统。 借助动力来操纵的转向系统称为动力转向系统。动力转向系统又可分为液压动力转向系统和电动助力动力转向系统。 随着汽车工业的迅速发展,转向装置的结构也有很大变化。现代汽车转向装置的设计趋势主要向适应汽车高速行驶的需要、充分考虑安全性、轻便性、低成本、低油耗、大批量专业化生产发展。 通过本次毕业论文对转向系统进行进一步的了解,并且结合通过实习了解的知识对转向系统的可能出现的问题进行分析和解决方法,从而提高自身对转向系统的深入认识 一论述 1.1什么是汽车转向系统 用来改变或保持汽车行驶或倒退方向的一系列装置称为汽车转向系统(steering system)。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全至关重要,因此汽车转向系统的零件都称为保安件。汽车转向系统和制动系统都是汽车安全必须要重视的两个系统。 1.2汽车转向系统概述 汽车在行驶的过程中,需按驾驶员的意志改变其行驶方向。就轮式汽车而言,实现汽车转向的方法是, 驾驶员通过一套专设的机构,使汽车转向桥(一般是前桥)上的车轮(转向轮)相对于汽车纵横线偏转一定角度。这一套用来改变或恢复汽车行驶方向的专设机构,即称为汽车转向系统。

万向传动的运动和受力分析

第三节 万向传动的运动和受力分析 一、单十字轴万向节传动 当十字轴万向节的主动轴与从动轴存在一定夹角α 时,主动轴的角速度ω1与从动轴的角速度ω2之间存在如下关系 12212cos sin 1cos ?ααωω-= (4-1) 式中,φ1为主动轴转角,定义为万向节主动叉所在平面与万向节主、从动轴所在平面的夹角。 由于cos α是周期为 2π 的周期函数,所以ω2/ω1,也为同周期的周期函数。当φ1为0、π时,ω2达最大值ω2max 。且为ω1/cos α; 当φ1为 π/2、3π/2时, ω2有最小值ω2min 。且为ω1 cos α。因此,当主动轴以等角速度转动时,从动轴时快时慢,此即为普通十字轴万向节传动的不等速性。 十字轴万向节传动的不等速性可用转速不均匀系数 k 来表示 ααωωωtan sin 1 min 2max 2=-=k (4-2) 如不计万向节的摩擦损失,主动轴转矩T 1和从动轴转矩T 2与各自相应的角速度有关系式T 1ω1= T 2ω2,这样有 11222cos cos sin 1T T α ?α-= (4-3) 显然,当ω2/ω1最小时,从动轴上的转矩为最大T 2max =T 1/cos α;当ω2/ω1最大时, 从动轴上的转矩为最小T 2min =T 1cos α。当T l 与α一定时,T 2在其最大值与最小值之间每一转变化两次; 具有夹角 α 的十字轴万向节,仅在主动轴驱动转矩和从动轴反转矩的作用下是不能平衡的。这是因为这两个转矩作用在不同的平面内,在不计万向节惯性力矩时,它们的矢量互成一角度而不能自行封闭,此时在万向节上必然还作用有另外的力偶矩。从万向节叉与十字轴之间的约束关系分析可知,主动叉对十字轴的作用力偶矩,除主动轴驱动转矩T l ,之外,

汽车转向系统故障诊断与维修-(汽车检测论文)

汽车转向系统故障诊断与维修-(汽车检测论文)

现代汽车检测与故障诊断简介: 汽车是一个复杂的技术和结构集成系统,其运行的载荷、路况和气候等工作条件复杂多变,运动的自然磨损和车辆振动等,会造成连接关系的变化。由于复杂多变的工作条件的影响,汽车的技术状态将随行驶里程的增加而恶化,其安全性、动力性、经济性和可靠性等将逐渐下降,排气污染和噪声加剧,故障发生率增加。汽车检测诊断技术对汽车的运行状态作出判断,及时发现故障,并采取相应对策,则可以提高汽车的使用可靠性,避免汽车恶性事故发生,保证交通安全,减少环境污染,改善汽车性能,提高维修效率实现“视情修理”,同时可充分发挥汽车的效能减少维修费用,获得更大的经济效益。因此,汽车检测诊断技术具有着重要的地位和作用。 一、汽车检测与故障诊断技术与方法 1. 人工深入诊断 人工深入诊断是指由诊断者利用仪器、仪表等诊断手段, 如发动机分析仪、扫描仪、万用表、示波器、频谱分析仪等通用或专用设备, 对汽车故障进行诊断, 这种诊断方法, 除能对汽车作出是否有故障和故障严重程度的判断外, 还 能对故障的性质、类别、原因及故障部位等作出判断。 2.自我诊断 现代汽车的电控系统, 都配备有自诊断功能, 电控系统的ECU 具有实时检测电 控系统故障的能力,当电控系统出现故障时, ECU 将储存相应的故障代码在ECU

的存储器中, 并起动故障保护功能, 确保汽车的运行能力、点亮立即维修指示灯, 提醒驾驶员ECU 已检测到故障, 应立即进行检查维修。自我诊断可利用诊断仪将ECU 贮存的各种信息提取出来, 进行比较和分析, 并以清晰的方式( 文字、曲线或图表) 显示出来, 诊断者可根据这些显示出来的信息, 准确快捷地判断故障的类型和发生的部位。 3.计算机辅助诊断技术 计算机辅助诊断是指一种建立在利用计算机分析功能基础上的多功能的自动化诊断系统。计算机还可通过配备的专用传感器接收诊断对象的其他机械系统的信号, 并配备有对这些信号进行自动分析诊断的软件,以实现状态信号的自动采集、特征提取、状态识别等, 并能以显示、打印、绘图等多种方式自动输出分析结果, 给出故障的性质、程度、类别、部位、原因及趋势的诊断与预报结果, 并可将大量故障信息贮存起来, 可随时通过人机对话查阅诊断对象的运行资料。 二.汽车转向系统检测与诊断 2.1传统转向系统:机械转向系统 2.1.1机械转向系统的组成 用司机体力为转向能源,所有传力件都是机械的。转向操纵机构:转向盘、转向轴、万向节(上、下)、转向传动轴。(采用万向传动装置有助于转向盘和转向器等部件和组件的通用化和系列化) 转向器:内设减速传动付,作用减速增扭。 转向传动机构:转向摇臂、转向主拉杆、转向节臂、转向节、转向梯形。

万向联轴节及链条传动不均率测试实验

实验15 万向联轴节及链条传动不均率测试实验 链传动是由链条和主、从动链轮所组成的应用较广的一种机械传动。链轮上制有特殊齿 形的齿,依靠链轮轮齿与链节的啮合来传递运动和动力,链传动具有运动不均匀性。 一、 实验目的 1. 通过实验测得,万向联轴器在正置状态下回转不均匀度(即瞬时传动比;偏置情况下 情回转不均匀率;) 2. 主动链轮的回转不均匀率;从动轮的回转不均匀率; 3. 把所测的数据、曲线加以比较,分析存在不均匀率的原因。 二、 设备和仪器 图15-1 测试系统框图 测试系统由图15-1组成: 1. ZSY —L 型万向节链轮链条传动机构; 2. MEC —B 型机械动态参数测试仪; 3. PP ——40四色绘图打印机; 4. 角位移传感器。 三、 原理和方法 万向联轴器传动允许两轴有较大的夹角,(夹角实际使用可达??45~35),而且在机器运 转时,夹角发生改变仍可正常传动。当夹角过大时,这种传动的传动效率会显著降低,当主动轴夹角为常数,从动轮的角速度不是常数,在一定范围内(αωωαωcos /cos 121≤≤)变化,因而在传动中将产生附加载荷。为了改善这种情况,常将万向联轴器成对使用。只有这种双万向联轴器才可以得到21ωω=,链传动中链条的节链与链轮齿相啮合,可看作为将链条绕在正多边形的链轮上。该正多边形的边长等于链条的节距t ,边数等于链轮齿z 。轮每转一转,随之转过的链长为zt ,所以链的速度v 为 s m t n z t n z v /1000 601000602211?=?= 式中:1z 、2z 为主,从动链轮的齿数;1n 、2n 从动轮转的转数;t 链的节距,mm 。 而瞬时传动比: 2 112W W i = 1W 、2W 为主,从动链转角速度。 根据分析已知,由于链传动的多边效应。实际上链传动中瞬时速度和瞬时传动比都是变

球笼式万向节设计

球笼式万向节设计 作者:xxx;指导老师:xxx (xxx大学工学院 2011级车辆工程专业合肥 230036) 下载须知:本文档是独立自主完成的毕业设计,只可用于学习交流,不可用于商业活动。另外,有需要电子档的同学可以加我2353118036,我保留着毕设的全套资料,旨在互相帮助,共同进步,建设社会主义和谐社会。同进步,建设社会主义和谐社会。 摘要:球笼式万向节是上个世纪六七十年代快捷发展出来的一种万向节,它的特点是密封性好、同步性好、紧凑、结构简单、寿命长、承重效果好、效率高、角位移大。它主要应用于起重机、拖拉机、汽车、纺织、医疗等领域。本设计基于对汽车传动系统布局结构的设计,以确定球笼式万向节的结构特性和其他参数。对于球笼式万向节等速性的运动,受力,效率和寿命有了深入的分析。选择了材料分析过程中的重要部分和零件,并采用三维绘图软件PRO-E进行了分析。 关键词:球笼式万向节;结构;设计;分析;选择;寿命校核 1 绪论 球笼式等速万向节是奥地利A.H.Rzeppa于1926年发明的(简称Rzeppa型),后经过多次改进。1958年英国波菲尔(Birfidld)集团哈迪佩塞公司成功滴研制了比较理想的球笼联轴器(称Birfield型:或普通型,简称BJ型)。1963年日本东洋轴承株式会社引进这项新技术,进行了大量生产、销售,并于1965年又试制成功了可作轴向滑动的伸缩型(亦称双效补偿型,简称DOJ型)球笼万向联轴器。目前,球笼式等速万向节已在日、英、美、德、法、意等12个国家进行了专利主城。

Birfield型和Rzeppa型万向节在结构上的最大区别,除没有分度机构外,还在于钢球滚道的几何学与断面形状不一样。Rzeppa型万向节用的是单圆弧的钢球滚道,单圆弧滚到其半径大一个间隙,因此最大接触应力常发生在滚道边缘处。当钢球的载荷很大时,滚道边缘易被挤压坏,从而降低了工作能力。Birfield (BJ型)万向节的钢球滚道横断面的轮廓为椭圆型,骑等角速传动是依靠外套滚到中心A、内套滚到中心B等偏置地位于万向节中心O的两侧实现的。而伸缩型的等速传动则依靠保持架(球笼)外球面中心A与内球面中心B等偏置地位于万向节中心O的两边实现的。 2 结构分析 球笼式万向节是目前应用最为广泛的等速万向节。早期的Rzeppa型球笼式万向节(图1—a)是带分度杆的,球形壳1的内表面和星形套3的球表面上各有沿圆周均匀分布的六条同心的圆弧滚道,在它们之间装有六个传力钢球2,这些钢球由球笼4保持在同一平面内。当万向节两轴之间的夹角变化时,靠比例合适的分度杆6拨动导向盘5,并带动球笼4使六个钢球2处于轴间夹角的平分面上。经验表明,当轴间夹角较小时,分度杆是必要的;当轴间夹角大于11°时,仅靠球形壳和星形套上的子午滚道的交叉也可将钢球定在正确位置。这种等速万向节无论转动方向如何,六个钢球全都传递转矩,它可在两轴之间的夹角达35°~37°的情况下工作。 目前结构较为简单、应用较为广泛的是Birfield型球笼式万向节(图1—b)。它取消了分度杆,球形壳和星形套的滚道做得不同心,令其圆心对称地偏离万向节中心。这样,即使轴间夹角为0°,靠内、外子午滚道的交叉也能将钢球定在正确位置。当轴间夹角为0’时,内、外滚道决定的钢球中心轨迹的夹角稍大于11°,这是能可靠地确定钢球正确位置的最小角度。滚道的横断面为椭圆形,接触点和球心的连线与过球心的径向线成45‘角,椭圆在接触点处的曲率半径选为钢球半径的1.03~1.05倍。当受载时,钢球与滚道的接触点实际上为椭圆形接触区。由于工作时球的每个方向都有机会传递转矩,且由于球和球笼的配合是球形的,因此对这种万向节的润滑应给予足够的重视。润滑剂的使用主要取决于传动的转速和角度。在转速高达1500r/min时,一般使用防锈油脂。若转速和角度都较大时,则使用润滑油。比较好的方法是采用油浴和循环油润滑。另外,万向节的密封装置应保证润滑剂不漏出,根据传动角度的大小采取不同形式的密封装置。这种万向节允许的工作角可达42°。由于传递转矩时六个钢球均同时参加工作,其承载能力和耐冲击能力强,效率高,结构紧凑,安装方便。但是滚道的制造精度高,成本较高。

汽车制动系统结构性能和试验方法概述

汽车制动系统结构、性能和试验方法 Road vehicle — Braking systems — Structure,performance and test methods 标准号:G B12676-1999 替代标准号: 实施日期:1999-10-1 前言 本标准是依照联合国欧洲经济委员会(ECE)第13号法规《关于M、N、O类机动车制动的统一规定》和ISO7634-1995《被牵引车辆气制动系试验方法》、ISO7635-1991《道路车辆气压、气液制动性试验方法》和ISO6597-1991《道路车辆液压制动系性能试验方法》等国际标准和法规对GB/T12676-93《汽车制动性能道路试验方法》进行修订的。修订后本标准做为强制性标准实施。 本标准中有关汽车制动系统结构、性能方面的内容在技术上是等效采纳ECE第13号法规,有关汽车制动系统性能试验方法方面的内容在技术上是等效采纳ISO 6597-1991、ISO 7634-1995和ISO 7635-1991标准。该三项国际标准是按照ECE第13号法规的要求制定的。 本标准是对GB/T12676-90的修订,技术内容上较原标准增加专门多,增加了对汽车制动系统结构功能和性能指标的要求,试验方法也进行了专门大修改。 1 本标准实施之日起,下列条款12个月后实施: ①第4.1.5条有关接续挂车的气动接头必须是双管路或多管路的要求。 ②第5.1.4条有关制动性能必须在车轮不抱死的条件下的要求。 2 本标准实施之日起,下列条款24个月后实施。 ①第4.1.4.3条中有关挂车气制动系和牵引车驻车制动系同时作用的要求。 ②第4.2.5.1条有关传能装置中零部件失效时,必须保证接着向不受失效阻碍的其他部分供应能量的要求。 ③第4.2.12.1条有关液面报警装置的要求。 ④第4.2.12.2条有关液压制动系必须安装失效报警装置。 ⑤第4.2.12.3条有关制动液类型的标志的要求。 ⑥第4.2.13条有关储能装置中安装报警装置。 ⑦第4.4条有关弹簧制动系的要求。 ⑧第5.1.5条有关车辆状况应符合附录A的要求。 ⑨第5.2.1.2条有关发动机接合的0型试验性能要求。 ⑩第5.2.4条和第5.2.5条有关行车制动系Ⅱ型和ⅡA型试验的要求。 3 本标准实施之日起,下列条款48个月后实施: ①有关应急制动系结构和性能的要求(第4.1.4.2条,第4.2.2.5条,第4.2.2.6a条,第4.2.2.6b条,第4.2.5.2条,第4.2.13条中有关报警压力的要求、第4.2.15条,第5.2.6条,第5.5条)。 ②有关挂车制动系结构和性能的要求(第4.3.10条、第5.3条,但第5.3.4条除外,第5.4.4条)。 ③第4.2.11.1条和4.3.8.1条有关行车制动器的磨损应能自动调整的要求。 ④第4.2.20条和第4.3.13条有关车辆必须安装防抱死装置的要求。 ⑤第4.2.18条,第4.3.12条,第5.4.2.3条。 ⑥第4.1.3条有关制动衬片不含石棉的要求。 ⑦第5.2.7.6条有关驻车制动系动态试验的要求。 4 本标准实施之日起,对N2类气制动汽车,上述第1条和第2条各项要求均为48个月后实施;对N1、N2类液压制动汽车,第5.1.5条48个月后实施。 本标准实施之日起,同时代替GB/T12676-90。 本标准的附录A、附录B、附录C均为标准的附录。 本标准由国家机械工业局提出。 本标准由全国汽车标准化技术委员会归口。 本标准起草单位:中国汽车技术研究中心、长春汽车研究所、东风汽车公司技术中心、重庆汽车研究所、北京吉普汽车有限公司、

机械设计机构认知试验

实验一机构认知实验 实验项目性质:演示性 实验计划学时:1 一、实验目的 1.初步了解《机械原理》课程所研究的各种常用机构的结构、类型、特点及应用实例。 2.增强学生对机构与机器的感性认识。 3.了解机器的运动原理和分析方法,使学生对机器总体感性认识上升为理性认识。二、实验设备 机械结构设计陈列教学柜。 三、实验方法 陈列室展示各种常用机构的模型,通过模型的动态展示,增强学生对机构与机器的感性认识。实验教师只作简单介绍,提出问题,供学生思考,学生通过观察,对常用机构的结构、类型、特点有一定的了解。对学习机械原理课程产生一定的兴趣。 四、实验内容 1.对机器的认识 通过实物模型和机构的观察,学生可以认识到:机器是由一个机构或几个机构按照一定运动要求组合而成的。所以只要掌握各种机构的运动特性,再去研究任何机器的特性就不困难了。在机械原理中,运动副是以两构件的直接接触形式的可动联接及运动特征来命名的。如:高副、低副、转动副、移动副等。 2.平面四杆机构 平面连杆机构中结构最简单,应用最广泛的是四杆机构,四杆机构分成三大类:即铰链四杆机构;单移动副机构;双移动副机构。 (1) 铰链四杆机构分为:曲柄摇杆机构、双曲柄机构、双摇杆机构,即根据两连架杆为曲柄,或摇杆来确定。 (2) 单移动副机构,它是以一个移动副代替铰链四杆机构中的一个转动副演化而成的。可分为:曲柄滑块机构,曲柄摇块机构、转动导杆机构及摆动导杆机构等。 (3) 双移动副机构是带有两个移动副的四杆机构,把它们倒置也可得到:曲柄移动导杆机构、双滑块机构及双转块机构。 3.凸轮机构 凸轮机构常用于把主动构件的连续运动,转变为从动件严格地按照预定规律的运动。只要适当设计凸轮廓线,便可以使从动件获得任意的运动规律。由于凸轮机构结构简单、紧凑,因此广泛应用于各种机械,仪器及操纵控制装置中。 凸轮机构主要有三部分组成,即:凸轮(它有特定的廓线)、从动件(它由凸轮廓线控制着)及机架。

球笼(等速万向节)技术资料

球笼(等速万向节)技术资料本为主要介绍等球笼(以下称等速万向节),的相关技术参数及分析资料。 第一节等速万向节设计的最新动态与方向等速万向节广泛应用于前置前驱轿车的转向驱动桥中。驱动桥中。靠近车轮侧, 一、靠近车轮侧,即外侧的等速万向节通常采用Birfield(固定型)球笼式万向节,(固定型)球笼式万向节,通常采用允许传动轴(驱动轴)夹角变化。允许传动轴(驱动轴)夹角变化。桑塔纳2000奥迪、奥拓、丰田、2000、桑塔纳2000、奥迪、奥拓、丰田、日产等上海捷迈公司生产的固定型球笼式万向节InnerRaceBallsCageOuterRace圆弧槽滚道型球叉式万向节,圆弧槽滚道型球叉式万向节,也是等速万向但每次只有两个钢球传力,节,但每次只有两个钢球传力,传递转矩能力较小;钢球磨损较快,使钢球与滚道间的预紧较小;钢球磨损较快,力减小,会破坏传动的等速性。力减小,会破坏传动的等速性。不适合高速和连续运转工况,较少采用。连续运转工况,较少采用。 二、靠近差速器侧,即内侧的等速万向节靠近差速器侧,通常采用三叉式(三球销式通常采用三叉式(三球销式,Tripod)或伸缩)型球笼式万向节允许传动轴(驱动轴)万向节,型球笼式万向节,允许传动轴(驱动轴)长度和夹角的变化,夹角的变化,以补偿由于前轮跳动和载荷变化引起的轮距变化。起的轮距变化。三球销式组成:三球销支架、三个滚柱轴承、万向节壳。组成:三球销支架、三个滚柱轴承、万向节壳。壳为主动件,壳为主动件,沿内圆周均匀开有三条平行于轴线的槽;支架的内花键孔与传动轴内端花键配合,线的槽;支架的内花键孔与传动轴内端花键配合,球销垂直于半轴轴线,滚柱轴承可沿球销移动,球销垂直于半轴轴线,滚柱轴承可沿球销移动,还由平行槽带动运动。还由平行槽带动运动。

汽车球笼式等速万向节及其总成

. 汽车球笼式等速万向节及其总成评论3等速驱动轴 2008-07-27 09:20 阅读216 小中字号:大一,概况球笼式等速万向节是利用若干钢球分别置于与两轴联接的外星轮槽,以实现两轴转速同步的万向联轴器。其结构主要由外壳(俗称钟形壳或外轮),传力钢球,星形轮(俗称星形套或轮)和球笼保持架等四部份组成。.分类1 等速万向节按工作性能分为固定型和伸缩型。等速万向节按在汽车中安装型式和形状分为末端封闭型,轴套型,法兰型,轮盘型。等速万向节传动轴总成分为前轮驱动和后轮驱动两种。 2.结构型式 1a)分:中心固定型等速万向节(见图型GE)--球道与钢球的接触形状呈球底面接触;及型(图)--球道与钢球的接触形状呈90 度四点接触;RF1c型(图BJ1b )。(图2 )。型(图6)和三球销;及4)--VL型(图5GI型(图钢球;)型(图伸缩型等速万向节分:DOJ3--TJ 3.安装部分的形式和形状 10987末端封密型(图),轴套型(图),法兰型(图),轮盘型()。. . .等速万向节转动轴总成结构分:4 前轮驱动总成型的组合型RF+TJBJ型+TJ型或型+VL型或RF型+VL型的组合(图12););型BJ+DOJ型或RF型+DOJ型的组合(图11BJ 13)。(图后轮驱动总成型TJ型的组合(图+VL17);+TJ 的组合(图16);VL型型型的组合(图BJ型+DOJ型或RF型+DOJ15);BJ型+TJ型或RF )。+TJ型的组合(图18 标准。5.技术要求,性能要求,外观质量要求,出厂检验和型式检验,标志、包装等要求按JB/T 10189-2000 型球笼万向节的制造二, BJ(RF),型球笼万向节(俗称外球笼)主要由外轮(钟形壳),星形轮(轮),保持架,钢球四个零件组成。其中所用钢球BJ(RF) 外轮、轮、保持架坯料一般属外购件,车、铣、搓、磨等为自主加工。)型球笼式等速万向节的过程中,决定品质优劣的主要关键:一是必须严格控制外轮和轮三对球道两钢球距离RFBJ(在加工的公差要求;二是必须严格控制外轮六条球道和轮六条球道六等分的公差要求;三是必须严格控制外轮球面中心高与球道中心高和轮外球面中心高和球道中心高两者偏心距的公差要求;四是严格控制外轮球面和六条球道的同轴度,轮外球面和六条球道的同轴度公差要求;五是必须符合原车型对外轮螺栓、外花键及其总长度的装配要求和轮花键与芯轴的配合要求。上述一、二、三、四点是为了保证球笼万向节组装后旋转灵活,无松动,无异常声响;五是为了保证与整车的装配。以下分别对外轮,轮,保持架的生产流程、加工过程中的质量监控以及必需注意的事项逐一于以阐述。 (坯料)→粗车→精车→铣球道→花键螺杆→热处理→磨外圆→磨球道→磨球外轮加工流程:锻件锻坯:㈠外表有无缺料、裂痕、夹灰等不良现象。编写验收报告备,对外购坯料在入库前须进行抽检 ,检查重点:型号规格是否符合案。粗车:㈡ )夹坯料小端柄部,粗)三爪(或弹簧夹具等, C618①车床(或其他普通车床仪表车床端口、外倒角。2/3以上即可),

42_汽车制动性能检测项目检测方法及有关标准

汽车制动性能检测项目检测方法及有关标准 一、台试检验制动性能 1 制动性能台试检验的主要检测项目: (1)制动力; (2)制动力平衡要求; (3)车轮阻滞力; (4)制动协调时间。 2 制动性能检测方法 (1)用反力式滚筒试验台检验 制动试验台滚筒表面应干燥,没有松散物质即油污。驾驶员将车辆驶上滚筒,位置摆正,变速器置于空档,启动滚筒,使用制动,测取各轮制动力、每轴左右轮在制动力增长全过程中的制动力差、制动协调时间、车轮阻滞力和驻车制动力等参数值,并记录车轮是否抱死。 在测量制动时,为了获得足够的附着力以避免车轮抱死,允许在车辆上增加足够的附加质量和施加相当于附加质量的作用力(附加质量和作用力不计入轴荷;也可采取防止车轮移动的措施(例如加三角垫块或采取牵引等方法)。 (2)用平板制动试验台检验 制动试验台平板表面应干燥,没有松散物质或油污。驾驶员以5km/h~10km/h的速度将车辆对正平板台并驶上平板,置变速器于空档,急踩制动,使车辆停住,测得的各轮制动力、每轴左右轮在制动力增长全过程的制动力差、制动协调时间、车轮阻滞力和驻车制动力等参数值。 3 制动性能台试检验的技术要求

(1) (1) 制动性能台试检验车轴制动力的要求见表4-1。 表4-1 车辆类型制动力总和整车质量的百分比% 前轴制动力于轴荷 的百分比%空载满载 汽车、汽车列车 60 50 60* 注:空、满载状况下测试应满足此要求。 (2)制动力平衡要求 在制动力增长全过程中,左、右轮制动力差与该左、右轮中制动力大者比较对前轴不得大于20%,对于后轴不得大于24%。 (3)车轮阻滞力 汽车和无轨电车车轮阻滞力均不得大于该轴轴荷5%。 (4)驻车制动性能检验 当采用制动试验台检验车辆驻车制动的制动力时,车辆空载,乘坐一名驾驶员,使用驻车制动装置,驻车制动了的总和应不小于该车在测试状态下整车重量的20%。对总质量为整备质量1.2倍以下的车辆此值为15%。 (5)机动车制动完全释放时间限制 机动车制动完全释放时间(从松开制动踏板到制动消除所需要的时间)对单车不得大于0.8s。 根据GB7528-2003《机动车运行安全技术条件》中6.15.3的规定,当汽车经台架检验后对制动性能有质疑时,可用道路试验检验,并以满载的检验结果为准。 二、路试检验制动性能 1 制动性能路试检验项目 制动性能路试检验的主要检测项目

相关文档
最新文档