食品中二氧化硫的测定

食品中二氧化硫的测定
食品中二氧化硫的测定

食品中二氧化硫的测定

商云 10级食品工程

摘要:本文简要介绍了二氧化硫的性质及其在食品添加剂领域的应用,阐释了利用盐酸副玫瑰苯胺光度法、碘量法以及蒸馏滴定法测定二氧化硫含量的方法,对于认识二氧化硫及测定二氧化硫的含量具有借鉴意义。

关键词:二氧化硫;测定;盐酸副玫瑰苯胺光度法;碘量法;蒸馏滴定法

引言

二氧化硫已成为现在食品安全的大敌,大批二氧化硫超标的食品被曝光,而且几乎涉及所有的食品种类。从近几年市场上食品检测结果看,超过50%的不合格项目与二氧化硫有关,且一部分产品的超标率呈上升趋势。二氧化硫在食品加工或储存中扮演着重要的角色,影响围甚广:干腌制蔬菜时,二氧化硫等于防腐剂;在脱皮蔬菜中,二氧化硫可用作抗氧化剂,可以抑制氧化酶的活性,从而抑制酶性褐变;在米、面、年糕等制品中,二氧化硫相当于“美白粉”,可起漂白作用;在香蕉、龙眼等水果中,二氧化硫可用作催熟剂,用以把生的水果催熟。而二氧化硫本身并没有什么营养价值,也非食品中不可缺少的部分,而且还有一定的腐蚀性,若用量超标,将对人体健康产生极大的危害,所以,加强对二氧化硫的监管和检测具有重要现实意义。

1 二氧化硫简介

二氧化硫,又称亚硫酸酐,其相对分子质量为64.07,是由燃烧的硫磺或黄铁矿制得。在常温下,二氧化硫为一种无色的气体,但有强烈的刺激臭,有窒息性,熔点—76.1℃,沸点—10℃。在—10℃时冷凝成无色的液体。二氧化硫易溶于水或乙醇,对水的溶解度为22.8﹪(0℃)、5﹪(50℃)。二氧化硫溶于水后,一部分水化合成亚硫酸,亚硫酸极不稳定,即使在常温下,特别是暴露在空气中时,很容易分解,当加热时更为迅速地分解而放出二氧化硫。

二氧化硫可能是目前已知的最有效的非酶褐变抑制剂,但其抑制非酶褐变的化学机制尚未完全搞清,或许涉及酸式亚硫酸与活性羰基的作用。酸式亚硫酸能与还原糖和醛式中间体可逆地结合,因此阻止了含羧基的化合物与氨基酸的缩合反应,进而防止了由糖氨反应所造成的非酶褐变。这些酸式亚硫酸的加成产物和二氧化硫对类黑精色素的漂白作用共通有效地抑制了褐变的过程。亚硫酸和果蔬中糖的结合能力很强,其结合强弱顺序为:阿拉伯糖>葡萄糖>果糖>蔗糖。同样这种结合与pH值有着密切关系,pH值越低其结合速度越慢。

二氧化硫也能有效地抑制某些酶催化反应,特别是酶促褐变。植物组织中的酚类化合物在酶的催化下氧化产生褐色素,从而使某些新鲜果蔬在搬运或前加工时产生一系列质量问题。

然而,把添加了柠檬酸的亚硫酸盐或酸式亚硫酸盐喷洒或滴注在新鲜果蔬上,可有效地抑制去皮马铃薯、胡萝卜和苹果的酶促褐变。这主要是因为亚硫酸是一种强还原剂自身对氧化酶活性有很强的抑制作用,同时也正因为它的还原性,可以使酶促反应的某些中间体产生逆转。

在很多食品体系中,二氧化硫还具有显著的抗氧化作用。由于亚硫酸是强的还原剂,他能消耗组织中的氧,从而抑制了氧化酶的活性,对于防止果蔬中维生素C的破坏很有效,但通常并不以此为主要使用目的。啤酒中添加二氧化硫能明显抑制啤酒在储藏时产生的氧化风味。当二氧化硫存在时,鲜肉的红色能有效地得以保持,但食品法规并不许可使用这种方法,因为它可以掩蔽劣质肉制品。

二氧化硫在食品中添加应加以限制,1994年FAO/WHO规定了亚硫酸盐的ADI值为0—0.7mg/kg体重,并要求在控制食用量的同时还应严格控制二氧化硫的残留量。我们食品添加剂法规明文规定,不得以掩盖食品的腐败变质而使用食品添加剂,二氧化硫使用后二氧化硫最大残留量应符合GB2760的规定。

2 食品中二氧化硫的测定方法

测定二氧化硫的主要方法有:盐酸副玫瑰苯胺比色法、蒸馏滴定法、碘量法等。

2.1 盐酸副玫瑰苯胺光度法测定二氧化硫

2.1.1 原理:

二氧化硫(或来自亚硫酸盐)被四氯汞钠吸收后,生成稳定的络合物,再与甲醛和盐酸副玫瑰苯胺作用,并经分子重排后,生成紫红色的络合物。颜色的深浅与二氧化硫的浓度成正比,可以比色测定。

本方法使用于各类食品中游离型和结合型硫酸盐残留量的测定。方法操作

简单、快速、灵敏度高,再现性良好。

2.1.2 试剂:

(1)5mol/L氢氧化钠溶液;0.5mol/L硫酸溶液;12g/L氨基磺酸铵溶液。

(2)四氯汞钠吸收液:称取13.6g氯化高汞及6g氯化钠,溶于水中并稀释至1000m1,放置过夜,过滤后备用。

(3)甲醛溶液:吸取0.55m1无聚合沉淀的36%甲醛,加水99.45ml稀释,混匀。

(4)淀粉指示液:称取1g可溶性淀粉,用少量水调成糊状,缓缓倾入100m1沸水中,随加随搅拌,煮沸,放冷备用,此溶液临用时现配。

(5)亚铁氰化钾溶液:称取10.6g亚铁氰化钾[K4Fe(CN)6,·3H20],加水溶解并稀释至100m1。

(6)乙酸锌溶液:称取22g[Zn(CH3COO)2·2H20],溶于少量水中,加入3m1冰乙酸,加水稀释至100m1。

(7)盐酸副玫瑰苯胺溶液:称取0.1gC19H18N3Cl·4H20于研钵中,加少量水研磨使溶解并稀释至100ml。取出20ml,置于100ml容量瓶中,加盐酸溶液6mol/L,充分摇匀后使溶液由红变黄,如不变黄再滴加少量盐酸至出现黄色,再加水稀释至刻度,混匀备用(如无盐酸

副玫瑰苯胺可用盐酸晶红代替)。

盐酸副玫瑰苯胺的精制方法:称取20g盐酸副玫瑰苯胺于400m1水中,用50ml盐酸溶液2mol/L酸化,徐徐搅拌,加4—5g活性炭,加热煮沸2min。将混合物倒入大漏斗抽滤,过滤(用保温漏斗趁热过滤)。滤液放置过夜,出现结晶,然后再用布氏漏斗抽滤,将结晶再悬浮于1000ml乙醚—乙醇(10:1)的混合物中,振摇3—5min,以布氏漏斗抽滤,再用乙醚反复洗涤至醚层不带色为止。于硫酸干燥器中干燥,研细后储存于棕色瓶中保存。

(8)0.1mol/L碘溶液。

(9)0.1mol/L硫代硫酸钠标准滴定溶。

(10)二氧化硫标准储备溶液:称取0.5g亚硫酸钠,溶于200m1四氯汞钠吸收液中,放置过夜,上清液用定量滤纸过滤备用。

吸取10m1亚硫酸氢钠—四氯汞钠溶液于250ml碘量瓶中,加100m1水,准确加水20m1碘溶液和5m1冰乙酸,摇匀,放置暗处2min后,迅速以硫代硫酸钠标准滴定溶液0.1mol/L 滴定至淡黄色。加0.5ml淀粉指示剂,继续滴至无色。另取100m1水,准确加入20ml碘溶液,加5ml冰乙酸,按同一方法做空白试验。

计算:C=[(V

—V1)×C1×32.03]/10

2

式中:C为二氧化硫标准溶液浓度(mg/m1);C1为硫代硫酸钠标准滴定溶液的浓度(mol

为试剂空白/L);V1为测定用二氧化硫标准溶液消耗硫代硫酸钠标准滴定溶液体积(m1);V

2

消耗硫代硫酸钠标准滴定溶液体积(ml);32.03为与1ml硫代硫酸钠标准滴定溶液S2O3)=1 mol /L]相当的二氧化硫的质量(mg)。

[c(Na

2

(11)二氧化硫标准使用溶液:临用前将二氧化硫储备溶液以四氯汞钠吸收液稀释成每毫升含2ug二氧化硫。

2.1.3 仪器:分光光度计。

2.1.4 操作方法:

(1)样品处理:水溶性固体样品如白糖等,可称取10g均匀样品(样

品量可视含量高低而定),以少量水溶解,置于100m1容量瓶中,加入4m1 0.5mol/L氢氧化钠溶液,5min后加入4 m1 0.5mol/L硫酸溶液,然后加入20m1四氯汞钠吸收液,以水稀释至刻度。

其他固体如饼干、粉丝等,称取5—10g研磨均匀的样品,以少量水湿润并移人100m1容量瓶中,然后加入20ml四氯汞钠吸收液,浸泡4h以上,若上层溶液不澄清,可加入亚铁氰化钾及乙酸锌溶液各2.5m1,最后用水稀释至刻度,过滤后备用。

液体样品如葡萄酒等:直接吸取血样品5—10ml,置于100 ml容量瓶中,以少量水稀释,加20ml四氯汞钠吸收液,最后加水到刻度,摇匀,必要时过滤备用。

(2)测定:吸取0.5—5m1上述样品处理液于25ml具塞比色管中。

另取0、0.2、0.4、0.6、0.8、1、1.5、2m1二氧化硫标准使用液(相当于0、0.4、0.6、0.8、1.2、1.6、2、3、4ug二氧化硫),分别置于25m1具塞比色管中。

于样品及标准管中各加四氯汞钠吸收液至10ml,然后加入1ml 12g/L氨基磺酸铵溶液、

1m1甲醛溶液及1m1盐酸副玫瑰苯胺溶液,摇匀,放置20min。用1cm比色杯以零管调节零点,于波长550nrn处测吸光度,并绘制标准曲线。

2.1.5 计算:

X=(m×1000)/[W ×V/100×1000×1000]

式中:X为测试样中二氧化硫的含量(g/kg);m为测定用样液中二氧化硫的质量;W为试样质量(g);V为测定用样液的体积(ml)

2.2 碘量法测定二氧化硫测定

2.2.1原理:

样品中的二氧化硫(包括游离型和结合型的),加入氢氧化钾破坏其结合状态,并使之稳定。加入硫酸又使二氧化硫游离,然后用碘标准滴定溶液滴定。到达终点时,过量的碘即与淀粉指示剂作用,生成蓝色碘—淀粉复合物。根据碘标准滴定溶液的消耗量计算出二氧化硫的含量。反应式如下:

SO

2+2KOH→K

2

SO

3

+H

2

O

K

2SO

3

十H

2

SO

4

→K

2

SO

4

+ H

2

O +SO

2

SO

2十2 H

2

O +I

2

→H

2

SO

4

十2HI

本方法适用于食品中游离型和结合型二氧化硫含量的测定。

2.2.2 试剂:

(1)1mol/L氢氧化钾溶液:称取57g氢氧化钾溶于蒸馏水中,加水至1000ml。

(2)25%硫酸溶液。

(3)0.1mol/L碘标准滴定溶液。

(4)10g/L淀粉溶液。

2.2.3仪器:250血碘量瓶。

2.2.4操作方法:

称取样品20g(固体样品研细),置于小烧杯中,用蒸馏水洗人250m1容量瓶中,加蒸馏水至总容量的二分之一,加塞振荡,再加水至刻度,摇匀。待瓶液体澄清后,用移液管吸取澄清液50ml注入250ml碘量瓶中,加入25m1 1mol/L氢氧化钾溶液。将瓶混合液用力振荡后放置10min,然后一边振摇一边加入10ml 25%硫酸溶液和淀粉溶液1ml,以碘标准滴定溶液滴至呈现蓝色并30s不褪色为止。同时以蒸馏水代替样品按上法做空白试验。

2.2.5计算:

X=[(V

1—V

2

)C×0.032×1000]/(W×V

4

/V

3

)

式中:X为样品中二氧化硫的含量(g/k8);C为碘标准滴定溶液的浓度(mol/L);V

1

滴定样品溶液消耗碘标准滴定溶液的体积(ml);V

2

为滴定空白溶液消耗碘标准滴定溶液的体

积(m1);W为样品质量(g); V

3为样品处理液总体积(ml);V

4

为测定用样品处理液体积(ml);

0.032为与1ml 1mol/L碘标准滴定溶液相当的二氧化硫的质量(g)。

2.3 蒸馏滴定法测定二氧化硫

2.3.1原理:

在密闭容器中对样品进行酸化并加热蒸馏,以释放出其中的二氧化硫,释放物用乙酸铅溶液吸收。吸收后用浓盐酸酸化,再以碘标准溶液滴定,根据所消耗的碘标准溶液量计算出样品中二氧化硫含量。

2.3.2测定方法:

固体样品用刀切或剪刀剪成碎末后混匀,称取约5.00g均匀样品(样品量可视含量高低而定)。液体样品可直接吸取5—10mL样品,置于500mL圆底蒸馏烧瓶中。将称好的样品置人圆底蒸馏烧瓶中,加入250mL水,装上冷凝装置,冷凝管下端应插入碘量瓶中的25mL乙酸铅(20g/L)吸收液中,然后在蒸馏瓶中加入10mL盐酸(1+1),立即盖塞,加热蒸馏。当蒸馏液约200mL时,使冷凝管下端离开液面,再蒸馏lmin。用少量蒸馏水冲洗插入乙酸铅溶液的装置部分。向取下的碘量瓶中依次加入10mL浓盐酸、lmL淀粉指示液(10g/L)。摇匀之后用碘标准滴定溶液(0.01mol/L)滴定至变蓝,且在30s不退色为止。在检测样品的同时要做空白试验。

2.3.3 计算:

计算公式如下:

X=[( V

1—V

2

)×0.01×0.032×100]/m

式中:X为样品中二氧化硫总含量(g/kg);V

1

为滴定样品所用碘标准滴定溶液的体积(mL);

V

2

为滴定试剂空白所用碘标准滴定溶液的体积(mL); m为样品质量(g);0.032为1/2 SO2

的毫摩尔质量g/mmol;0.01为滴定时所用I

2

标准溶液的浓度(mol/L)。

参考文献

水华.《食品分析》.中国轻工业.2007年8月第1版.

吴谋成.《食品分析与感官评定》.中国农业.2002年7月第1版.

水华.《食品分析实验》.化学工业.2006年1月第版.

车振明.《食品安全与检测》.中国轻工业.2007年9月第1版.

二氧化硫残留量测定法

二氧化硫残留量测定法 本法系用酸碱滴定法、气相色谱法、离子色谱法分别作为第一法、第二法、第三法测定经硫黄熏蒸处理过的药材或饮片中二氧化硫的残留量。可根据具体品种情况选择适宜方法进行二氧化硫残留量测定。 第一法(酸碱滴定法) 本方法系将中药材以蒸馏法进行处理,样品中的亚硫酸盐系列物质加酸处理后转化为二氧化硫后,随氮气流带入到含有双氧水的吸收瓶中,双氧水将其氧化为硫酸根离子,采用酸碱滴定法测定,计算药材及饮片中的二氧化硫残留量。 仪器装置如图1。A为1000ml两颈圆底烧瓶;B为竖式回流冷凝管;C为(带刻度)分液漏斗;D为连接氮气流入口;E为二氧化硫气体导出口。另配磁力搅拌器、电热套、氮气源及气体流量计。 测定法取药材或饮片细粉约10g(如二氧化硫残留量较髙,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置两颈圆底烧瓶中,加水300~400ml。打开回流冷凝管开关给水,将冷凝管的上端E口处连接

一橡胶导气管置于100ml 锥形瓶底部。锥形瓶内加入3%过氧化氢溶液50ml 作为吸收液(橡胶导气管的末端应在吸收液液面以下)。使用前,在吸收液中加入3滴甲基红乙醇溶液指示剂(ml),并用L 氢氧化钠滴定液滴定至黄色(即终点;如果超过终点,则应舍弃该吸收溶液)。开通氮气,使用流量计调节气体流量至约min ;打开分液漏斗C 的活塞,使盐酸溶液(6mol/L)10ml 流入蒸馏瓶,立即加热两颈烧瓶内的溶液至沸,并保持微沸;烧瓶内的水沸腾小时后,停止加热。吸收液放冷后,置于磁力搅拌器上不断搅拌,用氢氧化钠滴定液(L)滴定,至黄色持续时间20秒不褪,并将滴定的结果用空白实验校正。 照下式计算: 供试品中一氧化硫残留量(μg/g)=W c B A 6 10032.0???-)( 式中 A 为供试品溶液消耗氢氧化钠滴定液的体积,ml ; B 为空白消耗氢氧化钠滴定液的体积,ml ; c 为氢氧化钠滴定液摩尔浓度,mol/L ; 为lml 氢氧化钠滴定液(lmol/L)相当的二氧化硫的质量,g ; W 为供试品的重量,g 。 第二法(气相色谱法) 本法系用气相色谱法(通则0521)测定药材及饮片中的二氧化硫残留量。 色谱条件与系统适用性试验采用GS-GasPro 键合硅胶多孔层开口管色谱柱(如GS-GasPro ,柱长30m ,柱内径或等效柱,热导检测器,检测器温度为250℃。程序升温:初始50°C,保持2分钟,以每分钟20℃:升至200°C,保持2分钟。进样口温度为200℃,载气为氦气,流速为每分钟。顶空进样,采用气密针模式(气密针温度为105°C)的顶空进样,顶空瓶的平衡温度为80°C,平衡时间均为10分钟。系统适用性试验应符合气相色谱法要求。 对照品溶液的制备 精密称取亚硫酸钠对照品500mg ,置10ml 量瓶中,加入含%甘露醇和%乙二胺四乙酸二钠的混合溶液溶解,并稀释至刻度,摇匀,制成每lml 含亚硫酸钠的对照品贮备溶液。分别精密量取对照品贮备溶液、、、lml 、

14.实验十四.大气中二氧化硫物质的采集与测试

实验十四.大气中二氧化硫物质的采集与测试 二氧化硫是主要大气污染物之一,为大气环境污染例行监测的必测项目。它来源于煤和石油等燃料的燃烧,含硫矿石的冶炼硫酸等化工产品生产排放的废气。二氧化硫是一种无色、易溶于水、有刺激性气味的气体,能通过呼吸进入气管,对局部组织产生刺激和腐蚀作用,是诱发支气管炎等疾病的原因之一,特别是当其它烟尘等气溶胶共存时,可加重对呼吸道粘膜的损害。废气与空气中二氧化硫都是必测内容之一。 表14-1.常用废气二氧化硫手工分析方法及性能比较 测定空气中SO2常用方法有四氯汞盐吸收一副玫瑰苯胺分光光度法、甲醛吸收一副玫瑰苯胺分光光度法等。 两种方法的对比见表14-2

表14-2.环境空气二氧化硫分析方法及性能比较 本实验采用四氯汞盐吸收—副玫瑰苯胺分光光度法。 一.实验目的: 掌握四氯汞钾溶液吸收,盐酸副玫瑰苯胺分光光度法测定大气中二氧化硫浓度的分析原理和操作技术,掌握采样器的使用。 二.实验原理: 空气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,分为两种操作方法。方法一:含磷酸

量少,最后溶液的pH值为1.6±0.1,呈红紫色,最大吸收峰在548nm 处,方法灵敏度高,但试剂空白值高。方法二:含磷酸量多,最后溶液的pH值为1.2±0.1,呈蓝紫色,最大吸收峰在575nm处,方法灵敏度较前者低,但试剂空白值低,是我国广泛采用的方法。本实验采用方法二测定。方法原理的反应式: HgCl2+2NaCL=Na2HgCl4(四氯汞钠) HgCl2+2KCL=K2HgCl4(四氯汞钾)〔HgCl4〕2-+SO2+H2O→〔HgCl2SO3〕2-+2Cl-+2H+(二氯亚硫酸汞的络离子)此结合物中加入盐酸付玫瑰苯胺和甲醛的溶液后,先与甲醛反应:〔HgCl2SO3〕2+HCHO十2H+→HgCl2+HOCH2SO3H(羟基甲基磺酸) 盐酸付玫瑰苯按在有盐酸存在时,首先褪色成PRA无色酸。 PRA无色酸与HO-CH2-SO3H进一步反应,形成PRA甲基磺酸,呈现玫瑰紫红色。 三.实验仪器与试剂:

二氧化硫的测定方法

二氧化硫的测定方法 1.原理 在密闭容器中对样品进行酸化并加热蒸馏,以释放出其中的二氧化硫(7446-09-5),释放物用乙酸铅溶液吸收。吸收后用浓盐酸酸化,再以碘标准 溶液滴定,根据所消耗的碘标准溶液量计算出样品中的二氧化硫(7446-09-5)含量。本法适用于色酒及葡萄糖糖浆、果脯。 2.试剂 2.1 盐酸(1+1):浓盐酸用水稀释1倍。 2.2 乙酸铅溶液(20g/L):称取2g乙酸铅,溶于少量水中并稀释至100mL. 2.3 碘标准溶液[c(1/2I2=0.01mol/L)]:将碘标准溶液(0.1mol/L)用水稀释10倍。 2.4 淀粉指示液(10g/L):称取1g可溶性淀粉,用少许水调成糊状,缓缓倾入100mL沸水中,随加随搅拌,煮沸2min,放冷,备用,此溶液应临用时新制。 3.仪器 全玻璃蒸馏器、碘量瓶、酸式滴定管。 4.分析步骤 4.1样品处理 固体样品用刀切或剪刀剪成碎末后混匀,称取约5.00g均匀样品(样品量可视含量高低而定)。液体样品可直接吸取5.0~10.0mL样品,置于500mL圆底蒸馏烧瓶中。 4.2测定 4.2.1 蒸馏:将称好的样品置入圆底蒸馏烧瓶中,加入250mL水,装上冷凝装置,冷凝管下端应插入碘量瓶中的25mL乙酸铅(20g/L)吸收液中,然后在蒸馏瓶中加入10mL盐酸(1+1),立即盖塞,加热蒸馏。当蒸馏液约200mL时,使冷凝管下端离开液面,再蒸馏1min。用少量蒸馏水冲洗插入乙酸铅溶液的装置部分。在检测样品的同时要做空白试验。

4.2.2 滴定:向取下的碘量瓶中依次加入10mL浓盐酸、1mL淀粉指示液(10g/L)。摇匀之后用碘标准滴定溶液(0.01mol/L)滴定至变蓝且在30s内不褪色为止。 4.3 计算 式中:X3——样品中的二氧化硫(7446-09-5)总含量,g/kg; A2——滴定样品所用碘标准滴定溶液(0.01mol/L)的体积,mL; B——滴定试剂空白所用碘标准滴定溶液(0.01mol/L)的体积,mL; m2——样品质量,g; 0.032——与1mL碘标准溶液[c(1/2I2)=1.000mol/L]相当的二氧化硫(7446-09-5)的质量,g

(环境管理)环境空气二氧化硫的测定

环境空气二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法 GB/T 15262-94 Ambient air—Determination of sulfur dioxide— Formaldehyde absorbing-pararosaniline spectrophotometry 1 主题内容与适用范围 1.1 主题内容 本标准规定了甲醛副玫瑰苯胺分光光度法测定环境空气中的二氧化硫。 1.2 适用范围 1.2.1 本标准适用于环境空气中二氧化硫的测定。 1.2.2 测定下限: 当用10mL吸收液采样30L时,本法测定下限为0.007mg/m3;当用50mL吸收液连续24h采样300L时,空气中二氧化硫的测定下限为0.003mg/m3。 1.2.3 干扰与消除: 主要干扰物为氮氧化物、臭氧及某些重金属元素。样品放置一段时间可使臭氧自动分解;加入氨磺酸钠溶液可消除氮氧化物的干扰;加入CDTA可以消除或减少某些金属离子的干扰。在10mL样品中存在50μg钙、镁、铁、镍、镉、铜等离子及5μg二价锰离子时,不干扰测定。 2 原理 二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、甲醛作用,生成紫红色化合物,用分光光度计在577nm处进行测定。 3 试剂 除非另有说明,分析日十均使用符合国家标准的分析纯试剂和蒸馏水或同等纯度的水。 3.1 氢氧化钠溶液,c(NaOH)=1.5mo1/L。 3.2 环已二胺四乙酸二钠溶液,c(CDTA-2Na)=0.05mo1/L。

称取1.82g反式1,2-环已二胺四乙酸[(trans-l,2-cyclohexylen edinitilo) tetraacetic acid,简称CDTA,加入氢氧化钠溶液(3.4)6.5mL,用水稀释至100mL。 3.3 甲醛缓冲吸收液贮备液。吸取36%~38%的甲醛溶液5.5mL,CDTA-2Na溶液(3.2)20.00mL;称取2.04g邻苯二甲酸氢钾,溶于小量水中;将三种溶液合并,再用水稀释至100mL,贮于冰箱可保存1年。 3.4 甲醛缓冲吸收液。 用水将甲醛缓冲吸收液贮备液(3.3)稀释100倍而成。临用现配。 3.5氨磺酸钠溶液,0.608/100mL。 称取0.60g氨磺酸(H2NS03H)置于100mL容量瓶中,加入4.0mL氢氧化钠溶液(3.1),用水稀释至标线,摇匀。此溶液密封保存可用10天。 3.6 碘贮备液,c=(1/2I2);0.1mol/L。 称取12.7g碘(I2)于烧杯中,加入40g碘化钾和25mL水,搅拌至完全溶解,用水稀释至1000mL,贮存于棕色细口瓶中。 3.7 碘溶液,c(1/2I2)=0.05mol/L。 量取碘贮备液(3.6)250mL,用水稀释至500mL,贮于棕色细口瓶中。 3.8 淀粉溶液,0.58/100mL。 称取0.5g可溶性淀粉,用少量水调成糊状,慢慢倒入100mL沸水中,继续煮沸至溶液澄清,冷却后贮于试剂瓶中。临用现配。 3.9 碘酸钾标准溶液,c(1/6KIO 3 )=0.1000mol/L。 称取3.5667g碘酸钾(KIO3优级纯,经110℃干燥2h)溶于水,移入1000m1容量瓶中,用水稀释至标线,摇匀。 3.10 盐酸溶液(1+9)。 3.11 硫代硫酸钠贮备液,c(Na 2S 2 O 3 )=0.10mol/L。 称取25.0g硫代硫酸钠(Na 2S 2 O 3 ·5H 2 O),溶于1000mL新煮沸但已冷却的水中,加 入0.2g无水碳酸钠,贮于棕色细口瓶中,放置一周后备用。如镕液呈现混浊,必须过滤。 3.12 硫代硫酸钠标准溶液,c(Na 2S 2 O 3 )=0.05mol/L。

大气中二氧化硫的去除方法

大气中二氧化硫的去除方法 一、实验背景: 二氧化硫是我国工矿城市最主要的大气污染物之一。严重的大气二氧化硫污染会对人体健康产生危害,也是形成酸雨的主要原因。对此,一方面应加强对工厂二氧化硫废气治理工程的建设,另一方面应积极开展绿化,大力推广种植对二氧化硫抗性和吸收都强的树种,以净化大气,保护和改善环境质量。 二、实验目的: 通过本实验,学习植物叶片中二氧化硫含量的测定方法以及测定不同植物对二氧化硫的吸收效果。 三、实验原理: 二氧化硫是当前污染大气的主要有害因子之一, 它主要来源于烟气中二氧化硫的排放, 烟气中二氧化硫以气态和尘态两种形式存在。据国内外有关资料报道, 植物叶片中硫主要从大气中吸收, 一般主要积累在叶片中, 不转移到其他部位。而植物的根从土壤中吸收的硫, 一般很少向叶片转移。因此, 测定出植物叶片中硫含量, 就可判断出大气二氧化硫污染情况。本文对包头市区内的多种植物叶片含硫量进行测定, 同时测定大气中二氧化硫的污染状况。 四、实验材料 杨树叶、桑树叶、龙柏树叶、槐树叶、聚乙烯塑料袋、甲醛缓冲溶液、U型玻板吸收管、玻璃珠、浓硝酸、小漏斗、酒精灯、滤纸五、实验步骤

1、采样点的设置 根据包头市大气污染状况, 选择4个采样点, 并以其中一处作为对照点。选取4种包头市区常见、并对二氧化硫有较强吸附累积性的植物叶片为测试对象, 依次为杨树叶、桑树叶、龙柏树叶、槐树叶。 2、样品的采集与制备 (1)植物样品采集与制备 将每个采样点采集的样品分装在不同的聚乙烯塑料袋, 将每种样品(30g)分为2份, 其中1份清洗, 晾干备用; 另1份不清洗。将样品在空气中风干后, 去除主脉, 经粉碎机磨碎, 过80目筛, 储存于干燥的聚乙烯塑料瓶中备用。 (2)大气样品的采集 用内装10ml甲醛缓冲溶液作为吸收液的U型玻板吸收管, 以0.5l/min的流量采样, 采样时吸收液温度应保持在23-29c范围内。3、样品含硫量的测定 (1)植物叶片含硫量的测定 称量0.2500g样品(0.5mm)于50ml 刻度试管, 加人玻璃珠两个和浓硝酸3ml 。管口加盖小漏斗, 放置过夜。 将试管插入消煮器中加热至150c, 消煮1h,通过小漏斗加人60%-70%HCLO4 2ml, 慢慢加温至235c消煮2h。 除去漏斗, 加HCL 1ml , 在150c下加热20min。自消煮器中取出试管, 冷却, 加35c水和10ml缓冲盐溶液, 定容至50ml。 用滤纸过滤至150ml 烧杯中, 加0.3gBaCl2.2H2O 晶粒, 于

游离二氧化硫的测定—直接碘量法

FSPJLPG012 葡萄酒(果酒) 游离二氧化硫的测定 直接碘量法 F_SP_JL_PG_012 葡萄酒(果酒)—游离二氧化硫的测定—直接碘量法 1 范围 本方法采用直接碘量法测定葡萄酒(果酒)中游离二氧化硫的含量。 本方法适用于葡萄酒(果酒)中游离二氧化硫的测定,结果表示为mg/L ,保留整数。 2 原理 利用碘可以与二氧化硫发生氧化还原反应的性质,用碘标准溶液作滴定剂,淀粉作指示剂,测定样品中二氧化硫的含量,反应式如下: I 2+SO 2+2H 2O === 2I -+SO 42-+4H + 3 试剂 3.1 碘化钾 3.2 重铬酸钾 3.3 硫酸溶液,1+3 取50mL 硫酸(ρ约1.84g/mL ),慢慢加入到150 mL 水中。 3.4 硫酸溶液,1+4 取50mL 硫酸(ρ约1.84g/mL ),慢慢加入到200 mL 水中。 3.5 硫代硫酸钠标准溶液,c (Na 2S 2O 3?5H 2O)= 0.1mol/L 3.5.1配制 称取26g 硫代硫酸钠(Na 2S 2O 3?5H 2O)(或16g 无水硫代硫酸钠) ,用新煮沸且已冷却的蒸馏水溶解,并稀释至1000mL ,混匀。贮于棕色瓶中,放置两周后使用。 3.5.2标定 称取0.15g 于120℃烘至恒重的基准重铬酸钾,精确至0.0001g 。置于碘量瓶中,加入25 mL 水使之溶解,加2g 碘化钾及20mL 硫酸溶液(1+4),混匀,于暗处放置10分钟,加入150 mL 水,用硫代硫酸钠标准溶液(0.1mol/L)滴定。近终点时加0.5mL 淀粉指示剂溶液(10g/L),继续滴定至溶液由蓝色变为亮绿色。同时作空白试验。 3.5.3计算 按下式计算硫代硫酸钠标准溶液的浓度: C =04903 .0)(21×?V V m 式中:C —硫代硫酸钠标准溶液的浓度,mol/L ; m —重铬酸钾的质量,g ; V 1—滴定时所消耗硫代硫酸钠标准溶液的体积,mL ; V 2—空白试验消耗硫代硫酸钠标准溶液的体积,mL ; 0.04903 —与1.00mL 硫代硫酸钠标准溶液[c(Na 2S 2O 3)=1.000mol/L]相当的以克表 示的重铬酸钾的质量。 3.6 碘标准溶液,c (I 2)= 0.1mol/L 3.6.1 配制 称取6.5g 碘及17.5g 碘化钾,溶于50mL 水中,稀释至500 mL ,混匀。保存于棕色具塞瓶中。 3.6.2 标定 准确量取30.00-35.00 mL 配制好的碘标准溶液(0.1mol/L ),置于碘量瓶中,加入150 mL 水,用硫代硫酸钠标准溶液(0.1mol/L )滴定,近终点时加0.5 mL 淀粉指示剂溶液(10g/L ),

二氧化硫检测方法

Determination of Added Sulfites in Dried Allium (Modified Monier-Williams Method) Purpose:This modification of the Monier-Williams method is suitable specifically for detection of sulfites in dried allium (i.e. garlic, onion, shallot, leek, and chive) (Reference 1). Organosulfur components are removed in a toluene trap before sulfur dioxide is collected and oxidized to sulfuric acid with hydrogen peroxide in a second trap. Sulfuric acid is titrated with standard sodium hydroxide solution. The limit of quantitation is 10 μg/g. Sulfites in non-allium foods should be analyzed by the optimized Monier-Williams method as described in AOAC 990.28 or EN 1988-1. A. Apparatus 1. Distillation apparatus: as described in EN 1988-1 (1998) or AOAC 990.28 (2000) and with a dual bubble-through system (see Figure). 2. 1000 mL round-bottom flask with three 29/32 (or 24/40) tapered joints (vertical arms) and appropriate heating mantle. 3. 250 mL dropping funnel with stopcock and tapered joint to fit round bottom flask. 4. 25 mL buret. 5. Graduated cylinders of 25, 50, 100 and 500 mL. 6. 1 L volumetric flask. 7. 3 mL graduated pipet. 8. Cryostat set at - 5°C. 9. pH meter. B. Reagents 1. Deionized water. 2. 0.01 N NaOH solution. 3. Indicator: Dissolve 250 mg of methyl red in 100 mL of ethanol (analytical grade). This indicator is red for pH < 4.4 and yellow for pH value > 6.2. 4. 30% w/w or 3% w/w hydrogen peroxide H2O2 solution, analytical grade. 5. 37% concentrated hydrochloric acid HCl for analysis. 6. 85% phosphoric acid H3PO4 for analysis.

环境监测实验 大气中二氧化硫的测定

实验五 大气中二氧化硫的测定 (盐酸副玫瑰苯胺分光光度法) 一、原 理 大气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,其颜色深浅与SO 2含量成正比,用分光光度法在波长575 nm 处测吸光度。 HgCl 2 + 2KCl = K 2[HgCl 4] [HgCl 4]2- + SO 2 + H 2O = [HgCl 2SO 3]2- + 2H + + 2Cl - [HgCl 2SO 3]2- + HCHO + 2H + = HgCl 2 + HOCH 2SO 3H (羟基甲基磺酸) 二、仪器 (方法二测定) 1.多孔玻板收吸管(用于短时间采样),多孔玻板吸收瓶(用于24h 采样)。 2.空气采样器:流量0~1L/min 。 按照所用的盐酸副玫瑰苯胺使用液含磷酸多少分 方法一:(含H 3PO 4少):最终显色PH = 1.6±0.1,显色后溶液呈红紫色,最大吸收波长在548 nm 处,最低检 方法二:(含H 3PO 4多):最终显色PH = 1.2±0.1,显 色后容液呈蓝紫色,最大吸收波长575nm 处,最低检C Cl HCl ·H 2N NH 2HCl NH 2·HCl+HOCH 2SO 3H → H 2N C NH 2 H -N +-CH 2SO 3H (紫红色络合物) Cl+H 2O+3H ++3Cl - SO 2↑、颜色↑、吸光值↑ 0.75μg/25m L

3.分光光度计。 三、试剂 1.0.04 mol/L四氯汞钾(K2[HgCl4])吸收液:称取10.9gHgCl2、6.0gKCl和0.070g乙二胺四乙酸二钠盐(EDTA-Na,用于消除或减少某些金属离子的干扰)溶于水,稀释至1000mL,密闭贮存,可稳定6个月,如发现沉淀,不能再用。 2.2.0 g / L甲醛溶液:量取36 ~ 38 %甲醛溶液1.1mL,用水稀释至200mL,临用现配。 3.6.0 g / L氮基磺酸铵溶液:称取0.60 g氨基磺酸铵(H2NSO3NH4),溶于100mL水中,临用现配。 4.碘贮备液(C1/2I2= 0.10mol/L):称取12.7g碘于烧杯中,加入40g碘化钾和25mL 水,搅拌至全部溶解后,用水稀释至1000mL,贮于棕色试剂瓶中。 5.碘使用液(C1/2I2= 0.010mol/L):量取50mL碘贮备液,用水稀释至500mL,贮于棕色试剂瓶中。 6.2g/L淀粉指示剂:称取 0.20g可溶性淀粉,用少量水调成糊状,慢慢倒入100mL 沸水中,继续煮沸直至溶液澄清,冷却后贮于试剂瓶中。 7.碘酸钾标准溶液(C1/6KIO3= 0.1000mol/L): 称取3.5668g碘酸钾(KIO3,优级纯,110℃烘干2h),溶解于水,移入1000mL容量瓶中,用水稀释至标线。 8.盐酸溶液(HCl = 1.2mol/L):量取100mL浓盐酸,用水稀释至1000mL。 9.硫代硫酸钠贮备液(Na2S2O3 ≈0.1 mol / L),称取25g硫代硫酸钠(Na2S2O3、5H2O),溶于1000mL新煮沸并已冷却的水中,加0.20g无水碳酸钠,贮于棕色瓶中,放置一周后标定其浓度。若溶液呈现浑浊时,应该过滤。 *标定方法:吸取碘酸钾标准溶液25.00mL,置于250mL碘量瓶中,加70mL新煮沸并已冷却的水,加1.0 g碘化钾,振荡至完全溶解后,再加1.2mol/L盐酸溶液10.0mL,立即盖好瓶塞,混匀。在暗处放置5min后,用硫化硫酸钠溶液滴定至淡黄色,加淀粉指标剂5mL,继续滴定至蓝色刚好消失。

最新14实验十四大气中二氧化硫物质的采集与测试汇总

14实验十四大气中二氧化硫物质的采集与 测试

实验十四.大气中二氧化硫物质的采集与测试二氧化硫是主要大气污染物之一,为大气环境污染例行监测的必测项目。它来源于煤和石油等燃料的燃烧,含硫矿石的冶炼硫酸等化工产品生产排放的废气。二氧化硫是一种无色、易溶于水、有刺激性气味的气体,能通过呼吸进入气管,对局部组织产生刺激和腐蚀作用,是诱发支气管炎等疾病的原因之一,特别是当其它烟尘等气溶胶共存时,可加重对呼吸道粘膜的损害。废气与空气中二氧化硫都是必测内容之一。 表14-1.常用废气二氧化硫手工分析方法及性能比较 测定空气中SO2常用方法有四氯汞盐吸收一副玫瑰苯胺分光光度法、甲醛吸收一副玫瑰苯胺分光光度法等。 两种方法的对比见表14-2 表14-2.环境空气二氧化硫分析方法及性能比较

本实验采用四氯汞盐吸收—副玫瑰苯胺分光光度法。 一.实验目的: 掌握四氯汞钾溶液吸收,盐酸副玫瑰苯胺分光光度法测定大气中二氧化硫浓度的分析原理和操作技术,掌握采样器的使用。二.实验原理: 空气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,分为两种操作方法。方法一:含磷酸量少,最后溶液的pH值为1.6±0.1,呈红紫色,最大吸收峰在548nm处,方法灵敏度高,但试剂空白值高。方法二:含磷酸量多,最后溶液的pH值为1.2±0.1,呈蓝紫色,最大吸收峰

在575nm处,方法灵敏度较前者低,但试剂空白值低,是我国广泛采用的方法。本实验采用方法二测定。方法原理的反应式: HgCl2+2NaCL=Na2HgCl4(四氯汞钠) HgCl2+2KCL=K2HgCl4(四氯汞钾)〔HgCl4〕2-+SO2+H2O→〔HgCl2SO3〕2-+2Cl-+2H+(二氯亚硫酸汞的络离子)此结合物中加入盐酸付玫瑰苯胺和甲醛的溶液后,先与甲醛反应:〔HgCl2SO3〕2+HCHO十2H+→HgCl2+HOCH2SO3H(羟基甲基磺酸) 盐酸付玫瑰苯按在有盐酸存在时,首先褪色成PRA无色酸。

食品中二氧化硫的测定

食品中二氧化硫的测定 商云 10级食品工程 摘要:本文简要介绍了二氧化硫的性质及其在食品添加剂领域的应用,阐释了利用盐酸副玫瑰苯胺光度法、碘量法以及蒸馏滴定法测定二氧化硫含量的方法,对于认识二氧化硫及测定二氧化硫的含量具有借鉴意义。 关键词:二氧化硫;测定;盐酸副玫瑰苯胺光度法;碘量法;蒸馏滴定法 引言 二氧化硫已成为现在食品安全的大敌,大批二氧化硫超标的食品被曝光,而且几乎涉及所有的食品种类。从近几年市场上食品检测结果看,超过50%的不合格项目与二氧化硫有关,且一部分产品的超标率呈上升趋势。二氧化硫在食品加工或储存中扮演着重要的角色,影响围甚广:干腌制蔬菜时,二氧化硫等于防腐剂;在脱皮蔬菜中,二氧化硫可用作抗氧化剂,可以抑制氧化酶的活性,从而抑制酶性褐变;在米、面、年糕等制品中,二氧化硫相当于“美白粉”,可起漂白作用;在香蕉、龙眼等水果中,二氧化硫可用作催熟剂,用以把生的水果催熟。而二氧化硫本身并没有什么营养价值,也非食品中不可缺少的部分,而且还有一定的腐蚀性,若用量超标,将对人体健康产生极大的危害,所以,加强对二氧化硫的监管和检测具有重要现实意义。 1 二氧化硫简介 二氧化硫,又称亚硫酸酐,其相对分子质量为64.07,是由燃烧的硫磺或黄铁矿制得。在常温下,二氧化硫为一种无色的气体,但有强烈的刺激臭,有窒息性,熔点—76.1℃,沸点—10℃。在—10℃时冷凝成无色的液体。二氧化硫易溶于水或乙醇,对水的溶解度为22.8﹪(0℃)、5﹪(50℃)。二氧化硫溶于水后,一部分水化合成亚硫酸,亚硫酸极不稳定,即使在常温下,特别是暴露在空气中时,很容易分解,当加热时更为迅速地分解而放出二氧化硫。 二氧化硫可能是目前已知的最有效的非酶褐变抑制剂,但其抑制非酶褐变的化学机制尚未完全搞清,或许涉及酸式亚硫酸与活性羰基的作用。酸式亚硫酸能与还原糖和醛式中间体可逆地结合,因此阻止了含羧基的化合物与氨基酸的缩合反应,进而防止了由糖氨反应所造成的非酶褐变。这些酸式亚硫酸的加成产物和二氧化硫对类黑精色素的漂白作用共通有效地抑制了褐变的过程。亚硫酸和果蔬中糖的结合能力很强,其结合强弱顺序为:阿拉伯糖>葡萄糖>果糖>蔗糖。同样这种结合与pH值有着密切关系,pH值越低其结合速度越慢。 二氧化硫也能有效地抑制某些酶催化反应,特别是酶促褐变。植物组织中的酚类化合物在酶的催化下氧化产生褐色素,从而使某些新鲜果蔬在搬运或前加工时产生一系列质量问题。

实验一大气中二氧化硫的测定盐酸副玫瑰苯胺分光光度法

实验一大气中二氧化硫的测定(盐酸副玫瑰苯胺分光光度法)一、实验目的 1.掌握二氧化硫测定的基本方法; 2.熟练大气采样器和分光光度计的使用。 二、实验原理 大气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,分为两种操作方法。方法一:含磷酸量少,最后溶液的pH值为1.6±0.1;方法二:含磷酸量多,最后溶液的pH值为1.2±0.1,是我国暂选为环境监测系统的标准方法。本实验采用方法二测定。 三、仪器 1.多孔玻板吸收管(用于短时间采样);多孔玻板吸收瓶(用于24h采样)。 2.空气采样器:流量0—1L/min。 3.分光光度计。 四。、试剂 1.蒸馏水 25℃时电导率小于1.0μΩ/cm。pH值为6.0—7.2。检验方法为在具塞锥形瓶中加500mL蒸馏水,加1mL浓硫酸和0.2mL高锰酸钾溶液(0.316g/L),室温下放置1h,若高锰酸钾不褪色,则蒸馏水符合要求,否则应重新蒸馏(1000mL蒸馏水中加1gKMnO7及1gBa(OH)2,在全玻璃蒸馏器中蒸馏)。 2.甲醛吸收液(甲醛缓冲溶液) (1)环已二胺四乙酸二钠溶液C(CDTA-2Na)=0.050mol/L:称取1.82g反应-1,2-环已二胺四乙酸[(trans-1,2-Cyclohexylenedinitrilo)tetracetic acid简称CDTA],溶解于1.50mol/LNaOH 溶液6.5mL,用水稀释至100ml。 (2)吸收储备液:量取36%--38%甲醛溶液 5.5mL,加入 2.0g邻苯二甲酸氢钾及0.050mol/LCDTA-2Na20.0mL溶液,用水稀释至100mL,贮于冰箱中,可保存一年。 (3)甲醛吸收液:使用时,将吸收贮备液用水稀释100倍。此溶液每毫升含0.2mg甲醛。 3.0.60%(m/v)氨磺酸钠溶液 称取0.60g氨磺酸(H2NSO3H),加入1.50mol/L氢氧化钠溶液4.0mL,用水稀释至100mL密

二氧化硫含量的测定方法

输韩中药材二氧化硫检测 一、试剂 1、甲基红指示剂:将250mg甲基红,用乙醇溶解成100ml. 2、30%的过氧化氢10ml加水成100ml,滴加3滴甲基红指示剂后,再加0.0099M 氢氧化钠溶液配置呈浅黄色(临用时配) 二、操作方法 将400ml水加入蒸馏瓶中,关闭分液漏斗塞,加入90ml 4M的盐酸。冷凝管中通凉水,气体导管中以0.21L/min的速度通过氮气。这时,接收器中加入3%的过氧化氢溶液30ml。 通氮气15min后,移去分液漏斗,精确称取约20g粉状试样,倒入烧瓶中,加入100ml 5%乙醇溶液,摇匀。安上分液漏斗并开启瓶盖,打开栓,4M的盐酸加入到烧瓶中,剩下几毫升为止。加热1小时45分钟后(保持微沸),取下接受器,用少量3%的过氧化氢溶液洗涤气体导管末端,并移入接收器中,使用碱式滴定管用0.01M氢氧化钠溶液滴定。滴定至黄色保持20秒不褪色。 同法作空白试验。(已测得空白试验,要消耗0.01M 氢氧化钠溶液0.01ml)0.01M氢氧化钠溶液1ml=320μg SO2 二氧化硫(mg/kg)=320*V*f/S V:0.01M 氢氧化钠溶液的消耗量(ml)[要减去空白试验的0.01ml] f:0.01M 氢氧化钠溶液的滴定度 S:称取的试样量(g) 二氧化硫(mg/kg)=320*V*f/S =320*10-6*(V’-0.01)*0.01 *103*100/S*10-3 =320*(V’-0.01) *0.0099 *100/S 三、注意事项: 1、通氮气一秒内冒2泡而定。 2、实验中要时不时观察通氮气,冷凝管上部,火的大小情况,防止出现暴沸, 倒吸。 3、最后2min,升温,加快通氮气速度,使瓶内残留气体通到接收器中。 4、实验完毕后,记得把冷凝管及其他管子都要用水冲洗干净。

二氧化硫的测定方法

二氧化硫的测定方法 1.? 原理 在密闭容器中对样品进行酸化并加热蒸馏,以释放出其中的二氧化硫(7446-09-5),释放物用乙酸铅溶液吸收。吸收后用浓盐酸酸化,再以碘标准溶液滴定,根据所消耗的碘标准溶液量计算出样品中的二氧化硫(7446-09-5)含量。本法适用于色酒及葡萄糖糖浆、果脯。 2.试剂 盐酸(1+1):浓盐酸用水稀释1倍。 乙酸铅溶液(20g/L):称取2g乙酸铅,溶于少量水中并稀释至100mL. 碘标准溶液[c(1/2I2=L)]:将碘标准溶液L)用水稀释10倍。 淀粉指示液(10g/L):称取1g可溶性淀粉,用少许水调成糊状,缓缓倾入100mL沸水中,随加随搅拌,煮沸2min,放冷,备用,此溶液应临用时新制。 3.仪器 全玻璃蒸馏器、碘量瓶、酸式滴定管。 4.分析步骤 样品处理 固体样品用刀切或剪刀剪成碎末后混匀,称取约均匀样品(样品量可视含量高低而定)。液体样品可直接吸取~样品,置于500mL圆底蒸馏烧瓶中。 测定 蒸馏:将称好的样品置入圆底蒸馏烧瓶中,加入250mL水,装上冷凝装置,冷凝管下端应插入碘量瓶中的25mL乙酸铅(20g/L)吸收液中,然后在蒸馏瓶中加入10mL盐酸(1+1),立即盖塞,加热蒸馏。当蒸馏液约200mL时,使冷凝管下端离开液面,再蒸馏1min。用少量蒸馏水冲洗插入乙酸铅溶液的装置部分。在检测样品的同时要做空白试验。 滴定:向取下的碘量瓶中依次加入10mL浓盐酸、1mL淀粉指示液(10g/L)。摇匀之后用碘标准滴定溶液L)滴定至变蓝且在30s内不褪色为止。 计算

式中:X3——样品中的二氧化硫(7446-09-5)总含量,g/kg; A2——滴定样品所用碘标准滴定溶液L)的体积,mL; B——滴定试剂空白所用碘标准滴定溶液L)的体积,mL; m2——样品质量,g; ——与1mL碘标准溶液[c(1/2I2)=L]相当的二氧化硫(7446-09-5)的质量,g

固定污染源排气中二氧化硫的测定 定电位电解法

固定污染源排气中二氧化硫的测定 定电位电解法 Determination of sulpur dioxide from exhausted gas of stationary source Fixed-potential electrolysis method HJ/T57-2000 1、范围 本标准规定了定电位电解法测定固定污染源排气中二氧化硫浓度以及测定二氧化硫排放总量的方法。 2、引用标准 下列标准所包含的条文,在本标准中引用构成本标准的条文,与本标准同效。 GB/TI6157—1996固定污染源排气中颗粒物测定和气态污染物采样方法 3、原理 烟气中二氧化硫(SO2)扩散通过传感器渗透膜,进入电解槽,在恒电位工作电极上发生氧化反应: SO2+2H2O=SO4-2+4H++2e 由此产生极限扩散电流i,在一定范围内,其电流大小与二氧化硫浓度成正比,即: 在规定工作条件下,电子转移数Z、法拉第常数F、扩散面积S、扩散系数D和扩散层厚度δ均为常数,所以二氧化硫浓度c可由极限电流i来测定。

测定范围:15mg/m3~14300mg/m3。测量误差±5%。 影响因素:氟化氢、硫化氢对二氧化硫测定有干扰。烟尘堵塞会影响采气流速,采气流速的变化直接影响仪器的测试读数。 4、仪器 41定电位电解法二氧化硫测定仪。 4.2带加热和除湿装置的二氧化硫采样管。 4.3不同浓度二氧化硫标准气体系列或二氧化硫配气系统。 4.4能测定管道气体参数的测试仪。 5、试剂 5.1二氧化硫标准气体。 6、步骤 不同测定仪,操作步骤有差异,应严格按照仪器说明节操作。 6.1开机与标定零点 将仪器接通采样管及相应附件。定电位电解二氧化硫测定仪在开机后,通常要倒计时,为仪器标定零点。标定结束后,仪器自动进入测定状态。 6.2测定 采样应在额定负荷或参照有关标准或规定下进行。 将仪器的采样管插入烟道中,即可启动仪器抽气泵,抽取烟气进行测定。待仪器读数稳定后即可读数。同一工况下应连续测定三次,取平均值作为测量结果。

二氧化硫和二氧化氮对大气的污染(上传教案)

二氧化硫和二氧化氮对大气的污染(上传教案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

二氧化硫和二氧化氮对大气的污染 英德中学高一化学组梁瑞朝 一、教学目标: 1.使学生从情感上认识到酸雨的危害、酸雨的来源以及成分 2.通过本节课的学习,使学生的爱国主义态度得到了增强; 3.帮助学生树立了正确的社会价值观。 二、教学重点:二氧化硫和二氧化氮对大气的污染 三、教学难点:酸雨的成分及形成 四、教学过程 【导入】同学们,平时你们尝过雨水的味道吗那味道如何呢通常雨水都是没有味道的,但是在某种特定的环境下,从大气中雨水却是酸的,pH 值也小于 5.6,那么在化学上我们称这中大气降雨是酸雨。那为什么雨水从无色无味变成了酸的呢这就是我们这节课所要探索的内容。 【演示】多媒体设备投影酸雨的影片(内容有关一场重庆的黑雨) 【提问】影片当中重庆的酸雨的pH 值居然达到了3.9,那么这场雨真是彻彻底底的一场酸雨了,那我有个问题想要提问大家,那么酸雨是怎么形成的呢( 学生回答) 【讲述】其实酸雨都是由于大气的主要污染物:二氧化硫和二氧化氮造成的,那么其中的作用机理是那些呢?请同学们互相讨论一下,酸雨中的“酸”究竟是什么呢? 【讨论】叫学生分成一个个四人小组,分别讨论酸雨是怎样形成的以及其中的酸是什么物质。 【讲述】经过大家的讨论,大家得出的结论是多种多样的,其中也不乏有创造性的思维得出的结论,这些答案虽然并不完全正确,但是都体现着大家的集体智慧;但是究竟酸雨在形成过程中出现什么样的作用机理呢? 【多媒体演示】酸雨形成的作用机理 3222SO H O H SO ?+ 4223222SO H O SO H =+ NO HNO O H NO +=+3223 【讲述】所以酸雨的幕后黑手就是二氧化硫和二氧化氮,但是酸雨中硫酸的成分较大。酸雨的危害非常巨大。它们能够直接危害人体健康,引起呼吸道疾病,严重时会使人死亡;还会直接破坏农作物、森林、草原、使土壤、湖泊酸化,还会加速建筑物、桥梁、工业设备、运输工具及电信电缆的腐蚀。

葡萄酒中二氧化硫测定方法

葡萄酒中二氧化硫测定方法 游离二氧化硫 (1)氧化法 1. 原理:在低温条件下,样品中的游离二氧化硫与过氧化氢过量反应生成硫酸,再用碱标准溶液滴定生成的硫酸。由此可得到样品中游离二氧化硫的含量。 2. 试剂和材料 ①过氧化氢溶液(0.3 %):吸取1 mL3班月过氧化氢(开启后存于冰箱),用水稀释至100 mL使用当天配制。 ②磷酸溶液(25 %):量取295 mL85%磷酸,用水稀释至1000 mL。 ③氢氧化钠标准滴定溶液[c(NaOH)=0.01 mal/L」:准确吸取100 mL氢氧化钠标准滴定溶液(同电位滴定法中标准滴定溶液),以无二氧化碳水定容至500 mL。存放在橡胶塞上装有钠石灰管的瓶中,每周重配。 ④甲基红-次甲基蓝混合指示液:按GB/T 603配制。 3. 仪器 二氧化硫测定装置见图1。 加1 I耳m虫详f号=至更J■竝气仔) 图1二氧化硫测定装置 4. 分析步骤 ①按图1所示,将二氧化硫测定装置连接妥当,I管与真空泵(或抽气管)相接,D管通 人冷却水。取下梨形瓶(G)和气体洗涤器(H),在G瓶中加人20 mL过氧化氢溶液、H管中加入5 mL过氧化氢溶液,各加3滴混合指示液后,溶液立即变为紫色,滴入氢氧化钠标准溶 液,使其颜色恰好变为橄榄绿色,然后重新安装妥当,将A瓶浸人冰浴中。 ②吸取20.00 mL样品(液温20 C ),从C管上口加入A瓶中,随后吸取10 mL磷酸溶液,亦从C管上口加人A瓶中。 ③开启真空泵(或抽气管),使抽入空气流量1 000 mL/min---1 500 mL/min,抽气10 min。 取下G瓶,用氢氧化钠标准滴定溶液滴定至重现橄榄绿色即为终点,记下消耗的氢氧化钠标 准滴定溶液的毫升数。以水代替样品做空白试验,操作同上。一般情况下,H管中溶液不应 变色,如果溶液变为紫色,也需用氢氧化钠标准滴定溶液滴定至橄榄绿色,并将所消耗的氢 氧化钠标准滴定溶液的体积与G瓶消耗的氢氧化钠标准滴定溶液的体积相加。 5. 结果计算 样品中游离二氧化硫的含量按式计算。 式中:

空气中二氧化硫监测

空气中二氧化硫(SO2)监测 甲醛缓冲溶液吸收—盐酸副玫瑰苯胺分光光度法 一.监测目的 1、掌握大气采样器的使用方法。 2、用分光光度法测定SO2的方法。 3、通过对环境空气中二氧化硫的监测,判断空气质量是否符合标准,为空气质量状况评价提供标准。 4、根据校园SO2分布情况,追踪寻找污染源,并提出规划建议。 二.基础资料收集 改革开发以来,我国经济社会得到了全面发展,与此同时,由于污染物排放大量增加,大气环境面临着巨大的压力。而SO2作为环境空气污染的主要因子之一,每次都是环境空气质量监测中的必测项目。成都市位于四川省中部,四川盆地西缘,成都平原的腹心地。它东西长192km,南北宽166km,幅员总面积12,378km2。成都市是四川省省会,全省政治、经济、金融、科学文化和交通信息的支撑中心。本市属亚热带湿润季风气候。其特点:四季分明,冬无严寒,夏无酷暑;风速小、日照少、阴天多、湿度大;多年平均降水量900~1000mm,多年平均相对湿度82%,平均气压956hpa;常年主导风向为北北东风,平均风速在112m/s以下,多年静风频率46%。本市区范围内热岛效应明显,逆温频繁,城市区域大气气象条件对大气污染物的扩散存在明显的不利影响。成都主要污染物为二氧化硫,二氧化氮,可吸入颗粒物。实验室目前常用的测定环境空气中SO2主要方法为甲醛缓冲溶液吸-盐酸副玫瑰苯胺分光光度法。自从1990年此方法在全国推广应用以来,取代了我国监测领域只能用四氯汞钾法测定的历史。甲醛法与汞法相比具有试剂无剧毒、价廉易得、甲醛标准溶液和样品溶液稳定性好等优点。 三.监测内容 监测空气中的二氧化硫浓度。我们小组负责二氧化硫的监测。是利用甲醛吸收-副玫瑰苯胺分光光度法监测SO2。通过监测数据绘制标准曲线,并分析校区二氧化硫的含量及污染情况。最后汇总空气质量情况。 四.监测方案的制定 1.采样地点 根据布设采样点原则。要离污染源50m以外,同时附近要有适当的车辆通道。校园的污染源主要有锅炉房。考虑各方面的综合因素(仪器电源,污染源距离等)将不布点设在校门口的警务室附近10m远处。 2.采样频率及采样时间 根据天气预报的情况,确定采样时间。采样连续三天,每天采样三次,时间分别为8:30-9:30;10:30-11:30,13:30-14:30。每次采样1h 3.采样方法 采用内装10ml 吸收液的多孔玻板吸收管,以0.3L/min 的流量采气60min。吸收液温度保持在23℃~29℃范围。样品采集过程中应避免阳光照射。 现场空白:将装有吸收液的采样管带到采样现场,除不采气之外,其他环境条件与样品相同。

相关文档
最新文档