水工混凝土

水工混凝土
水工混凝土

水工混凝土

姓名:陈林海学号:131601206指导老师:张鸣

[摘要]文章对水工混凝土作出了详尽和全面的阐述,从概念入手,对其发展历史,原材料,配合比设计方法,技术性能,常见问题与解决方法等方面着重介绍,加深大家对水工混凝土的认识和理解。

[关键词]水工混凝土发展历史原材料配合比设计方法技术性能常见问题与解决方法

[引言]水工混凝土是指经常性或周期性地受水作用的建筑物(或建筑物的一部分)所用的并能保证建筑物在上述条件下长期正常使用的混凝土。

常用于水上、水下和水位变动区等部位。因其用途不同,技术要求也不同:常与环境水相接触时,一般要求具有较好的抗渗性;在寒冷地区、特别是在水位变动区应用时,要求具有较高的抗冻性;与侵蚀性的水相接触时,要求具有良好的耐蚀性;在大体积构筑物中应用时,为防止温度裂缝的出现,要求具有抵热性和低收缩性;在受高速水流冲刷的部位使用时,要求具有抗冲刷、耐磨及抗气蚀性等。长期的施工实践证明,在水工混凝土中掺入具有减水、缓凝及增加耐久性的外加剂,如木质素磺酸盐减水剂、糖蜜塑化剂、松香皂引气剂(在有抗冻性要求的地区或部位必须掺入),以及掺入适量的优质掺合料,如粉煤灰等,对改善混凝土拌合物的和易性及提高耐久性都具有明显效果。

本文将从水工混凝土的发展历史、原材料、配合比设计方法、技术性能、常见问题与解决方法这五个方面来分析这种建筑材料。

[正文]

一.水工混凝土的发展历史

20 世纪30 年代,美国着手建设坝高211m 的胡佛坝,对水工混凝土进行全面研究,形成了一套完整的水工混凝土材料配制体系和柱状法坝体浇筑技术,实现了创世纪的技术创新。自1936 年胡佛坝建成半个多世纪,水工混凝土技术又有了很大发展,其中主要有: ①在水工混凝土中掺入掺和料、引气剂和减水剂; ②

提高混凝土的耐久性; ③采用更有效的温控措施; ④采用不分纵缝的通仓浇筑法;

⑤发展强力高频振动设备。至20 世纪70 年代,国际上提出了混凝土坝快速施工的讨论,一改过去坝体惯用的柱状法浇筑技术,将土石坝施工大型机械水平摊铺和碾压技术引入混凝土坝施工,而形成碾压混凝土筑坝技术,将

混凝土坝建设工期缩短一半,而造价减少1 /4 ~1 /5。

水工混凝土作为混凝土的一种,在最近几十年内得到很大的发展。混凝土结构是在19世纪中期开始得到应用的,由于当时水泥和混凝土的质量都很差,同时设计计算理论尚未建立,所以发展比较缓慢。直到19世纪末以后,随着生产的发展,以及试验工作的开展、计算理论的研究、材料及施工技术的改进,这一技术才得到了较快的发展。目前已成为现代工程建设中应用最广泛的建筑材料之一。

在19世纪末20世纪初,我国也开始有了钢筋混凝土建筑物,如上海市的外滩、广州市的沙面等,但工程规模很小,建筑数量也很少。解放以后,我国在落后的国民经济基础上进行了大规模的社会主义建设。随着工程建设的发展及国家进一步的改革开放,混凝土结构在我国各项工程建设中得到迅速的发展和广泛的应用。

混凝土结构在水利工程、桥隧工程、地下结构工程中的应用也极为广泛。用钢筋混凝土建造的水闸、水电站、船坞和码头在我国已是星罗棋布。如黄河上的刘家峡、龙羊峡及小浪底水电站,长江上的葛州坝水利枢纽工程及正在建设的三峡工程等。而水工混凝土则在这些水利工程中起到了至关重要的作用。

从几十年的发展过程和今后的发展趋势来看,国外水工混凝土的中心研究课题是:在保证或改善质量的前提下,采取各种有效措施,合理地降低水泥用量,减少发热量,降低最高温升,提高抗裂性和耐久性,革新施工方法和设备,加快施工进度,

降低工程造价,以便安全、经济、快速地进行水工建设。长期以来,温度裂缝一直威胁着大体积混凝土的整体性和安全性,是混凝土快速连续施工的障碍,也是降低混凝土造价、缩短工期的最大障碍。为了解决这一问题,许多国家从各个方面进行了大量的工作,大致可以归纳为两方面的问题:一是从组成混凝土材料方面研究解决,二是改革施工工艺。

二.水工混凝土的原材料

近代科学技术的进步使筑坝技术对混凝土工程有新的更高的要求, 如水工混

凝土应满足抗压、抗拉、抗渗、抗冻、抗裂、抗冲耐磨和抗侵蚀等要求。《规范》中要求采用新技术、新工艺、新材料和新设备。很多方面要通过原材料的选用和控制来达到设计要求。

2.1 水泥

水泥是水利水电工程混凝土结构的主要建筑材料。水工建筑物在不同的环境下对水泥的品种质量有不同的要求。众所周知,硅酸盐水泥熟料含有四种主要矿物,它们所占成分比例不同将影响水泥的性能,致水泥水化速度、水化热、强度都不相同。水工建筑物大体积混凝土使用的水泥熟料中铝酸三钙(C3A)含量过高,混凝土的抗磨性差、干缩率大、水化热高、脆性大,所以水工建筑物的施工还要控制水泥熟料中的铝酸三钙(C3A)含量。降低混凝土水化热、收缩率,减少水泥熟料中铝酸三钙(C3A)含量,可提高混凝土的抗裂和抗耐磨性能。对于不同要求的水工建筑物,水工混凝土中所用水泥要求不同,如大体积混凝土常用中低热硅酸盐水泥、复合硅酸盐水泥、粉煤灰硅酸盐水泥等;环境水对混凝土有侵蚀时,应根据侵蚀类型及程度采用高抗硫酸盐水泥、中抗硫酸盐水泥、硅酸盐水泥掺30%以上的Ⅰ或Ⅱ粉煤灰。水泥细度对水泥的水化速度、水泥的需水量、放热速度以及强度都有较大影响,水泥颗粒愈细,水化反映越快而且充分,水泥早期强度也越高,但是水泥颗粒越细,其发热量也越大,而且放热速度快,体积收缩率大。目前我国大多数水泥磨的比较细、早期强度高、水化热大、混凝土的自收缩和干燥收缩大,水泥中的粗颗粒减少,就会减少稳定体积的未水化颗粒,因而影响到混凝土的长期性能。水泥细度还会影响混凝土的抗冻性、抗裂性,水泥细度对水工建筑物大体积混凝土施工质量的影响更为明显。

2.2 掺和料

掺和料在水工混凝土中广泛使用,包括粉煤灰、硅粉、磨细矿渣粉、磷渣粉、火山灰等活性掺和料及石灰石粉、凝灰岩粉等非活性掺和料。粉煤灰是水工混凝土最常用的掺和料。众多大型水利水电工程同时建设,优质粉煤灰供不应求。某巨型水电站的粉煤灰供应厂家多达11个,另一巨型水电站曾在同一个浇筑仓面上使用2个厂家的粉煤灰。某巨型水电站使用两种不同厂家的I级灰时,达到同样的含气量所需的引气剂掺量相差一倍。在中小型水利水电工程中,用准I级灰或II 级灰的情况比较普遍。这对混凝土的用水量、坍落度及其损失、含气量都带来明

显影响。

2.3 砂石骨料

水利水电工程由于混凝土方量大、浇筑强度高,砂石骨料必须就地取材;出于经济和环保考虑,很多时候需要使用坝基和洞室的开挖料。这导致不同工程所用骨料母岩不断出现新品种,不同母岩或者不同开采部位的同一母岩的岩性变化范围很大,这给施工质量控制带来难度。多个工程在施工过程中出现骨料加工能力不足的情况,只好天然骨料和人工骨料混合使用,或交替使用,或不同人工骨料交替使用,也带来混凝土质量控制问题。部分工程采用皮带机长距离运输人工骨料。这减少了骨料运输过程中由于转运、跌落所产生的逊径量,但尚未解决运输过程中的温度回升(比汽车运输的运输时间长、温度回升高)、防雨(造成含水率波动)、生产和到下料仓环节造成含粉量(俗称裹粉)增多。

骨料分为粗细两种:

对于粗骨料,石料的质量对混凝土性能的影响主要有以下几个方面:

①颗粒级配:碎石的级配对于混凝土的和易性、强度、抗渗性、抗冻性以及经济性等都有一定的影响。级配良好的碎石,可以配出水泥用量较低的混凝土。碎石粒径越大需要湿润的比表面积越小,大体积混凝土应尽量采用较大粒径的石子,可以降低砂率、混凝土用水量与水泥用量,提高混凝土强度,减少混凝土升温及干缩裂缝。

②含泥量及泥块含量:泥在混凝土中其比表面积大、吸水性大、体积不稳定,吸水湿润时膨胀,干燥时收缩;黏土含量多对混凝土强度、干缩、徐变、抗渗、抗冻融及抗磨损等均产生不良影响。

③碎石强度和压碎值:石子的强度和压碎值指标直接影响混凝土的强度和变形性能,对高强度混凝土的影响更为明显。对于细骨料,水工混凝土常用的细骨料有天然砂(河砂、山砂等)、人工砂及混合料(人工砂与天然砂混合而成)等三种。砂料的品质对水工混凝土性能的影响主要有以下几个方面:

①颗粒级配:砂的颗粒级配合理与否直接影响到混凝土拌合物的稠度。合理的砂粒级配,可以减少拌合物的用水量,得到流动性、均匀性及密实性较好的混凝土,同时可以降低水泥用量。

②细度模数:砂的细度模数是衡量砂子粗细程度的重要参数,人工砂的细度模数

为2.4-2.8,天然砂的细度模数为2.2-3.0,用此模数砂子拌制的混凝土和易性、均匀性较好,强度也较高。

③含泥量及泥块含量:砂中的含泥若包裹在砂表面,不利于砂与水泥的黏结,将会影响混凝土强度及耐久性,若含的泥是以松散颗粒存在,由于其颗粒细与表面积大,会增加混凝土的用水量,特别是黏土的体积不稳定,干燥时收缩、潮湿时膨胀,对混凝土有干湿体积变化效应的破坏作用。

2.4 外加剂

在拌制混凝土时掺入少量外加剂,以改善混凝土的性能。水工混凝土掺入引气、减水功能的外加剂有改善混凝土拌合物性能,提高混凝土的流动性,改善和易性,降低耗能和改善劳动条件的作用。水工混凝土掺入各种减水剂,在维持拌合物和易性与胶凝材料不变的条件下,可降低用水量,减少水灰比,提高混凝土强度。掺入引气剂还可以提高混凝土抗冻性能,水工混凝土中,由于游离水的蒸发和温度变化,形成不均匀的温度场,产生温度应力而引起混凝土收缩,导致其体积不稳定。混凝土中掺入膨胀剂可以提高混凝土的体积稳定性,有效补偿收缩变形。

三.水工混凝土配合比设计方法

1.基本原则

①水工混凝土配合比设计,应满足设计与施工要求,确保混凝土工程质量且经济合理。

②进行混凝土配合比设计时,应收集相关工程设计资料,明确设计要求:1.混凝土强度等级及强度保证率。2.混凝土的抗渗、抗冻等级和其他性能指标。3.混凝土的工作性。4.骨料的最大粒径。

③进行混凝土配合比设计时,应收集有关原材料的资料,并按有关标准对水泥、掺合料、外加剂、砂石骨料、拌和水等性能进行检验,并符合标准要求。

2.混凝土配合比的计算

①计算配置强度:

f cu,0=f

cu,k

+tσ

式中: f

cu,0

——混凝土配制强度(MPa);

f

cu,k

——混凝土设计龄期立方体抗压强度标准值(MPa);

t——保证率系数,

σ——混凝土强度标准差(MPa)。

保证率和保证率系数的关系

保证率P(%) 70.0 75.0 80.0 84.1 85.0 90.0 95.0 97.7 99.9

保证率系数t 0.525 0.675 0.840 1.0 1.040 1.280 1.645 2.0 3.0

混凝土抗压强度标准差σ,宜按同品种混凝土抗压强度统计资料确定,

当无近期同品种混凝土抗压强度统计资料时,σ值可按下表取用。

设计抗压强度(MPa)≤15 20~25 30~35 40~45 50

标准差σ 3.5 4.0 4.5 5.0 5.5 ②选定水胶比

根据混凝土配置强度计算水胶比:

W/(C+P)= A×f

ce / (f

cu,0

+ A×B×f

ce

)

式中:A 、B——回归系数;A=0.46、B=0.07

f

cu,0

——混凝土配制强度(MPa)。

f

ce

——水泥28天抗压强度实测值(MPa)。

根据《水工混凝土施工规范》DL/T5144-2001对最大水胶比的限值,选取3~

5个水胶比。

水胶比最大允许值

部位严寒地区寒冷地区温和地区上、下游水位以上(坝体外部)0.50 0.55 0.60

上、下游水位变化区(坝体外部)0.45 0.50 0.55

上、下游最低水位以下(坝体外部)0.50 0.55 0.60

基础0.50 0.55 0.60

内部0.60 0.65 0.65

受水流冲刷部位0.45 0.50 0.50 注:在有环境水侵蚀情况下,水位变化区外部及水下混凝土最大允许水胶比(或水灰比)应减小0.05。

③选取混凝土用水量

应根据骨料最大粒径、坍落度、外加剂、掺合料及适宜的砂率通过试验确定。当无试验资料时,其初选用水量可按下表选取。

常态(普通)混凝土初选用水量表单位:kg/m3

混凝土坍落度

卵石最大粒径碎石最大粒径

20mm 40mm 80mm 150mm 20mm 40mm 80mm 150mm

10~30mm 160 140 120 105 175 155 135 120 30~50mm 165 145 125 110 180 160 140 125 50~70mm 170 150 130 115 185 165 145 130 70~90mm 175 155 135 120 190 170 150 135

注1:本表适用于细度模数2.6~2.8的天然中砂。当使用细砂或粗砂时,用水量需增加或减少3~5 kg/m3;

注2:采用人工砂,用水量增加5~10 kg/m3;

注3:掺入火山灰质掺合料时,用水量需增加10~20 kg/m3;采用Ⅰ级粉煤灰时,用水量可减少5~10 kg/m3;

注4:采用外加剂时,用水量应根据外加剂的碱水率作适当调整,外加剂的减水率应通过试验确定。

注5:本表适用于骨料含水状态为饱和面干状态。

④选取最优砂率

最优砂率应根据骨料品种、品质、粒径、水胶比和砂的细度模数等通过试验

选取。即在保证混凝土拌和物具有良好的粘聚性并达到要求的工作性时用水量最

小的砂率。

⑤石子级配的选取

石子最佳级配(或组合比)应通过试验确定,一般以紧密堆积密度最大、用

水量较小时的级配为宜。

⑥外加剂掺量

外加剂掺量按胶凝材料质量的百分比计,应通过试验确定,并符合国家和行

业现行有关标准的规定。

⑦掺合料的掺量

掺合料的掺量按胶凝材料质量的百分比计,应通过试验确定,并符合国家和

行业现行有关标准的规定。

⑧有抗冻要求的混凝土,应掺用引气剂,其掺量应根据混凝土的含气量要求通过

试验确定。混凝土的含气量不宜超过7%。

⑨混凝土各组成材料的计算

混凝土的胶凝材料用量(m

c +m

p

)、水泥用量m

c

和掺合料用量m

p

按下式计算:

m c +m

p

=m

w

/[w/(C+P)]

m c =(1-P

m

) (m

c

+m

p

)

m p =P

m

(m

c

+m

p

)

每立方米混凝土中砂、石采用绝对体积法按下式计算

V

s,g =1-[m

w

w

+m

c

c

+m

p

p

+α]

m

s = V

s,g

S

v

ρ

s

m g = V

s,g

(1-S

v

g

式中:V

s,g

—砂、石的绝对体积,m3

m

w

—每立方米混凝土用水量,kg

m

c

—每立方米混凝土水泥用量,kg

m

p

—每立方米混凝土掺合料用量,kg

m

s

—每立方米混凝土砂料用量,kg

m

g

—每立方米混凝土石料用量,kg

P

m

—掺合料掺量

α—混凝土含气量,%。

S

v

—体积砂率,%

ρw—水的密度kg/m3

ρc—水泥密度kg/m3

ρp—掺合料密度kg/m3

ρs—砂料饱和面干表观密度kg/m3

ρg—石料饱和面干表观密度kg/m3。

列出混凝土个组成材料的计算用量和比例,各级石料用量按选定的级配比例计算。

3.混凝土配合比的试配、调整和确定

①混凝土配合比的试配

按计算的配合比进行试拌,根据坍落度、含气量、泌水、离析等情况判断混凝土拌和物的工作性,对初步确定的用水量、砂率、外加剂掺量等进行适当调整。用选定的水胶比和用水量,变动4~5个砂率每次增减1%~2%进行试拌,坍落度最大时的砂率即为最优砂率。用最优砂率试拌,调整用水量至混凝土拌和物满足工作性要求。然后提出混凝土试验用配合比。

混凝土强度试验至少采用3个不同水胶比的配合比,其中一个应为确定的配合比,其他配合比的用水量不变,水胶比依次增减,变化幅度为0.05,砂率可相应增减1%,当不同水胶比的混凝土拌和物坍落度与要求值的差超过允许偏差时,

可通过增减用水量进行调整。

根据试配的配合比成型抗压试件,标准养护至规定龄期进行抗压强度试验。根据试验得出的抗压强度与其对应的水胶比的关系,用作图法或计算法求出与混凝土)相对应的水胶比。

配置强度(f

cu,0

②混凝土配合比的调整

按试配结果,计算混凝土各组成材料用量与比列

按确定的材料用量计算每立方米混凝土拌和物的质量。

按公式计算混凝土配合比校正系数:

δ=m c,t/m c,c

式中:δ—混凝土配合比校正系数;

m

—每立方米混凝土拌和物的质量计算值,kg;

c,c

—每立方米混凝土拌和物的质量实测值,kg;

m

c,t

按校正系数δ对配合比中每项材料用量进行调整,即为调整的设计配合比。

③混凝土配合比的确定

当混凝土有抗冻、抗渗和其他技术指标要求时,应用满足抗压强度要求的设计配合比,进行相关性能试验。如不满足要求,应对配合比进行适当调整,直到满足设计要求。

在使用过程中遇到下列情况之一时,应调整或重新进行配合比设计:

1)对混凝土性能指标要求有变化时。

2)混凝土原材料品种、质量有变化时。

④混凝土碱含量的计算方法

中热水泥混凝土碱含量:

混凝土中碱含量(kg/m3)=中热水泥碱含量(%)×水泥用量(kg/m3)+0.2×粉煤灰碱含量(%)×粉煤灰用量(kg/m3)+外加剂中碱含量(%)×外加剂用量(kg/m3)低热水泥混凝土碱含量:

混凝土中碱含量(kg/m3)=低热水泥熟料中碱含量(%)×水泥熟料用量(kg/m3)+0.5×矿渣中碱含量(%)×矿渣用量(kg/m3)+0.2×粉煤灰碱含量(%)×粉煤灰用量(kg/m3)+外加剂中碱含量(%)×外加剂用量(kg/m3)。

四.水工混凝土的技术性能

水工混凝土的技术性能有如下几点:

1.和易性

水工混凝土拌和物的和易性是指混凝土拌和物易于施工操作(搅拌、运输、浇筑、捣实),并能获得质量均匀、成型密实的性能,又称工作性。和易性是一项综合的技术性质,包括流动性、黏聚性和保水性等方面的含义。影响混凝土拌和物和易性的主要因素包括单位体积用水量,砂率,组成材料的性质、时间和温度等。

①流动性是指混凝土拌合物在自重或机械(振捣)力作用下能产生的流动并均匀密实地添满模板的性能。

②粘聚性是指混凝土拌合物各组成材料之间有一定的粘聚力,不致在施工过程中产生分层和离析的现象。

③保水性是指混凝土拌合物具有一定的保水能力,不致在施工过程中出现严重的泌水现象。

④泌水性则是指水泥浆体所含水分从浆体中析出的难易程度,又称析水性。

2.强度

强度是水工混凝土硬化后的最重要的力学性能,是指水工混凝土抵抗压、拉、弯、剪等应力的能力。水灰比、水泥品种和用量、集料的品种和用量以及搅拌、成型、养护,都直接影响混凝土的强度。混凝土按标准抗压强度(以边长为150mm的立方体为标准试件,在标准养护条件下养护28天,按照标准试验方法测得的具有95%保证率的立方体抗压强度)划分的强度等级,称为标号,分为C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75、C80、C85、C90、C95、C100共19个等级。混凝土的抗拉强度仅为其抗压强度的1/10~1/20。提高混凝土抗拉、抗压强度的比值是混凝土改性的重要方面。

①水工混凝土立方体抗压强度

按国家标准《普通混凝土力学性能试验方法标准》(GB/T50081-2002),制作边长为150mm的立方体试件,在标准条件(温度202℃,相对湿度95%以上)下,养护到28d龄期,测得的抗压强度值为混凝土立方体试件抗压强度,以fcu表示,单位为MPa.

②水工混凝土立方体抗压标准强度与强度等级

混凝土强度等级是按混凝土立方体抗压标准强度来划分的,采用符号C与立方体抗压强度标准值(单位为MPa)表示。普通混凝土划分为Cl5、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80共14个等级,C30即表示混凝土立方体抗压强度标准值30MPa≤fcu,k<35MPa.混凝土强度等级是混凝土结构设计、施工质量控制和工程验收的重要依据。

③水工混凝土的轴心抗压强度

结构设计中,混凝土受压构件的计算采用混凝土的轴心抗压强度,更加符合工程实际。

④水工混凝土的抗拉强度

在结构设计中,抗拉强度是确定混凝土抗裂度的重要指标,有时也用它来间接衡量混凝土与钢筋的黏结强度等。

3.耐久性

在一般情况下,混凝土具有良好的耐久性。但在寒冷地区,特别是在水位变化的工程部位以及在饱水状态下受到频繁的冻融交替作用时,混凝土易于损坏。为此对混凝土要有一定的抗冻性要求。用于不透水的工程时,要求混凝土具有良好的抗渗性和耐蚀性。抗渗性、抗冻性、抗侵蚀性为混凝土耐久性。

①抗渗性:混凝土的抗渗性直接影响到混凝土的抗冻性和抗侵蚀性。混凝土的抗渗性主要与其密实度及内部孔隙的大小和构造有关。

②抗冻性:抗冻等级F50以上的混凝土简称抗冻混凝土。混凝土在使用过程中抵抗各种破坏因素作用的能力。混凝土耐久性的好坏,决定混凝土工程的寿命。它是混凝土的一个重要性能,因此长期以来受到人们的高度重视。冰冻-融解循环作用,是最常见的破坏作用,以致有时人们用抗冻性来代表混凝土的耐久性。冻融循环在混凝土中产生内应力,促使裂缝发展、结构疏松,直至表层剥落或整体崩溃。

③抗侵蚀性:是指混凝土抵抗外界因素的侵蚀能力,主要包括环境水的侵蚀,风化作用,中性化作用,钢筋侵蚀作用,以及碱-集料反应。环境水的作用:包括淡水的浸溶作用、含盐水和酸性水的侵蚀作用等。其中硫酸盐、氯盐、镁盐和酸类溶液在一定条件下可产生剧烈的腐蚀作用,导致混凝土的迅速破坏。环境水作用的破坏过程可概括成为两种变化:一是减少组分,即混凝土中的某些组分直接

溶解或经过分解后溶解;二是增加组分,即溶液中的某些物质进入混凝土中产生化学、物理或物理化学变化,生成新的产物。上述组分的增减导致混凝土体积的不稳定。风化作用:包括干湿、冷热的循环作用。在温度、湿度变幅大、变化快的地区以及兼有其他破坏因素(例如盐、碱、海水、冻融等)作用时,常能加速混凝土的崩溃。中性化作用:在空气中的某些酸性气体,如Cl2、H2S和CO2在适当温、湿度条件下使混凝土中液相的碱度降低,引起某些组分的分解,并使体积发生变化。钢筋锈蚀作用:在钢筋混凝土中,钢筋因电化学作用生锈,体积增加,胀坏混凝土保护层,结果又加速了钢筋的锈蚀,这种恶性循环使钢筋与混凝土同时受到严重的破坏,成为毁坏钢筋混凝土结构的一个最主要原因。碱-集料反应:最常见的是水泥或水中的(碱分Na2O、K2O) 和某些活性集料(如蛋白石、燧石、安山岩、方石英)中的SiO2起反应,在界面区生成碱的硅酸盐凝胶,使体积膨胀,最后能使整个混凝土建筑物崩解。这种反应又名碱-硅酸反应。此外还有碱-硅酸盐反应与碱-碳酸盐反应。

此外,有人将抵抗磨损、气蚀、冲击以至高温等作用的能力也纳入耐久性的范围。上述各种破坏作用还常因其具有循环交替和共存叠加而加剧。前者导致混凝土材料的疲劳;后者则使破坏过程加剧并复杂化而难于防治。

4.低热性,为防止大体积混凝土产生温度裂徒, 应提出低热性要求, 选用水化

热低的水泥, 井采取措施适当降低水泥用量。大体积混凝土应优先选用大坦水泥与大垠矿碴水泥, 对水泥永化热的要求见“标准草案”。

五.水工混凝土常见问题与解决方法

5.1常见问题

1.裂缝。裂缝的产生是由众多因素而导致的,通常为以下几种情况:(1)混凝土在水化的过程中,会由于这些热量得不到很好的散发而引起混凝土的极度变形而引发裂缝的产生;(2)由于受约束力因素的影响,而使得混凝土内部产生了温度应力,从而产生了温度裂缝;(3)在混凝土的搅拌过程中,由于各物质发生了一系列的化学反应在一定程度上也会导致裂缝的产生。(4)环境因素在一定程度也可能导致裂缝的产生,比如当其处在侵蚀性比较强的环境下的时候,由于混凝土本身存在的保护层是有限的,再加上混凝土密实性不是很好的情况下,就会导致混凝土因里面材质的膨胀而使其胀裂。

2.蜂窝。当混凝土结构局部出现酥松、砂浆少、石子多、石子之间形成空隙类似蜂窝状的窟窿,我们将这种现象称之为混凝土蜂窝。产生蜂窝的原因主要表现在以下几点一是由于在混凝土的搅拌过程中没有给予充足的搅拌,对混凝土的拌和也不够均匀,在振捣的过程中混凝土被振捣的不够密实所导致;二是,在下料的过程中处理不当,比如,刚下完料,还没有拌合均匀和振捣密实就又接着下料,这样就必然会使得混凝土不够结实。三是,在浇筑的过程到没有做到分层和分段,从而导致封堵效果不够好,并且容易导致漏浆和变形的现象出现。

3.麻面。麻面现象就是在混凝土的表现会出现一些凹凸不平的小坑和麻点,导致混凝土的表面比较粗糙。麻面的出现一般由于下列原因所导致的,一方面可能是因为模板的表面不够平滑或者是在浇筑的过程中有杂物没有清理干净;另一方面,浇水不足,使得混凝土的表面水分被吸走,从而导致混凝水因失去过多而出现麻面的现象;此外,还

可能因为在振捣的过程中没有振捣结实,或者模板拼缝的时候没有拼

合严实而出现局部漏浆的现象,从而形成表面的麻点。

4.露筋。露筋顾名思义就是钢筋暴露在混凝土表面的现象,露筋

一般由下列原因造成:(1)由于钢筋保护层垫块在灌注混凝土的过程中

固定的不够牢固而出现了位置移动或者是保护层垫块太少,致使钢筋

外露在混凝土表面。(2)混凝土振捣的不够密实,也容易使得钢筋出现

位移的现象,进而造成露筋。(3)模板浇水不充足,或者是脱模过早,而

导致在拆模时很可能出现缺棱掉角的后果,从而使钢筋暴露(4)混凝土

配合比不当,产生离折,模板部位缺浆或模板漏浆。

5.孔洞。孔洞就是混凝土结构内有空腔,局部没有混凝土或蜂窝

特别大,而导致的钢筋局部或者全部外露。孔洞是由于在下料、振捣、

浇筑、离析等施工环节处理的不得当,而出现的跑浆现象严重或者是混

凝土内部因有杂物掉入而被卡住等等,从而形成了我们现在所看到的

孔洞。

5.2处理方法

1.裂缝。治理裂缝的方法:(1)表面修补法,表面修补法是一种比较常见的修补裂缝的方法,通常的处理方法是在裂缝的表面涂抹一些水泥浆、玻璃纤维布、油漆、沥青等等材料。(2)灌浆法,它是利用一些相关设备将胶结材料压入到

混凝土存在的裂缝中去,从而达到加固并且封堵的目的。(3)嵌缝封堵法,嵌缝封堵法是在裂缝封堵的方法中最常用的一种,其具体的操作方法就是顺着混凝土出现裂缝的位置凿槽,然后在槽中注入相关的材料(比如,塑料油膏、丁基橡胶等等),从而达到封堵裂缝的目的。

2.蜂窝。针对蜂窝的处理方法,我们应该做到以下几点:(1)如果混凝土中出现的小蜂窝,我们可以采取先将其洗刷干净,然后再用1:2或1:2.5水泥砂浆将其抹平并且压牢;(2)如果出现的是较大的蜂窝,首先将出现蜂窝的比较酥松的部位和松散的颗粒去除掉,然后用清水冲洗干净,再用更高一级的细石混凝土进行振捣并捣实,提高其密实度。(3)对于一些存在较深蜂窝的混凝土,我们可以采取水泥压浆的方法进行处理。

3.麻面。麻面的处理方法相对来说还是比较简单的,我们只需要将混凝土表面比较粗糙的部位进行清洗,待其充分湿润后再用水泥素浆或1:2的水泥砂浆进行抹平压实。

4.露筋。露筋的处理方法:一方面我们要清除掉钢筋暴露处的混凝土,然后将钢筋慢慢的植入到混凝土的内部,在此,我们一定要保证混凝土的保护层是足够的,接着,清除掉留在混凝土表面的污迹,待将其彻底冲洗干净之后,我们在用水泥砂浆在其表面按照1:2或者1:2.5的比例进行抹平并压实。另一方面,针对露筋比较突出的部分,我们应该先除掉暴露在混凝土上的突出颗粒,待清洗干净后,再用比原来混凝土更高一级的混凝土进行填平压实。

5.孔洞。针对孔洞的处理办法如下:第一步,基层处理,首先凿除疏松位置的混凝土至坚硬混凝土处,打磨去除混凝土表面浮浆。第二步界面处理在此我们可以采用加固型界面剂做相关的界面处理,增强界面的粘合力。第三步混凝土耐久性修复我们应该采用一些耐久性能比较强的修补材料进行孔洞的修复。第四步面层处理面层修补:24小时后表面再刮一层耐久性薄层修补料保证面层美观度。

【结语】

随着30 年来混凝土科学技术的迅猛发展,出现了高性能混凝土,水工混凝土是建设水利建筑物时必不可少的重要材料之一,是水利工程中,尤其是大型水利工程中最主要的建筑材料。水工混凝土建筑结构的形式、设计方法和体积均变化

不大,因此水工混凝土性能仍保持原有的古典特性。水工混凝土的发展路径与建筑工程不同,重点不是追求更高的强度等级,而是研究提高混凝土的抗裂性和耐久性,其发展表现在以下几方面: ①充分发挥水泥活性,拌制高质量混凝土; ②外加剂品种增加,减水率和耐久性均增高; ③掺和料开发日趋完善,其特性得到充分利用; ④骨料由天然骨料为主转向人工骨料为主,增加了环保效益; ⑤近年来低水泥用量的碾压混凝土坝工程量已超过常规混凝土坝; 低发热量和低强度的胶凝砂砾石混凝土坝得到开发和应用,表征了水工混凝土的发展动向。

[参考文献]

[1]马虎臣.建筑工程质量监督与控制[M].中国建筑工业出版社,2001.

[2]王杰.钢筋混凝土质量通病防治措施[J].山西建筑,2006.

[3]李树平.混凝土工程施工中的质量通病防治[J].山西建筑,2006.

[4]韩晓征.常见混凝土工程质量通病及防治措施[J].中国科技博览,2008.

[5]汪娟, 水工混凝土常见质量缺陷及处理方法[B].四川水力发电,2009

[6]姜福田,水工混凝土的性能和发展前景[A].施工技术,2013

[7]姜福田.水工混凝土性能及检测[M].郑州: 黄河水利出版

社,2

[8]李学用. 水工混凝土常见问题处理办法探讨[J].经营管理者,2012.

[9]知网

水工钢筋混凝土结构学复习整理汇总

水工钢筋混凝土结构学复习整理 一、填空题 1、钢筋混凝土结构用钢筋要求具有较高的强度、一定的塑性、良好的可焊性能以及与混凝土之间必须有足够的粘结性。 2、钢筋按力学的基本性质来分,可分为两种类型:软钢、硬钢。硬钢强度高,但塑性差,脆性大。从加载到拉断,不像软钢那样有明显的阶段,基本上不存在屈服阶段。设计中一般以协定流限作为强度标准。 3、我国混凝土结构设计规范规定以边长为mm 150的立方体,在温度为℃320 、相对湿度不小于%90的条件下养护28天,用标准实验方法测得的具有%95保证率的立方体抗压强度标准值cuk f 作为混凝土强度等级,以符号C 表示,单位为2/mm N 。 4、混凝土双向受压时,一向抗压强度随另一向压应力增大而增大。双向受拉时的混凝土抗拉强度与单向受拉强度基本一样,一向受拉一向受压时,混凝土的抗压强度随一向的拉应力的增加而降低。 5、混凝土的变形有两类:一类是由外荷载作用而产生的受力变形;一类是由温度和干湿变化引起的体积变形。 6、混凝土在荷载长期持续作用下,应力不变,变形也会随着时间而增长,这种现象称为混凝土的徐变。 7、钢筋与混凝土之间的粘结力主要由以下三部分组成:○1水泥凝胶体与钢筋表面之间的胶结力;○2混凝土收缩,将钢筋紧紧握固而产生的摩擦力;○3钢筋表面不平整与混凝土之间产生的机械咬合力。 8、影响粘结强度的因素除了钢筋的表面形状以外,还有混凝土的抗拉强度、浇筑混凝土时钢筋的位置、钢筋周围的混凝土厚度等。 9、为了保证光圆钢筋的粘结强度可靠性,规范规定绑扎骨架中的受拉光圆钢筋应在

末端做成 180弯钩。 10、接长钢筋的三种办法:绑扎搭接、焊接、机械连接 11、工程结构设计的基本目的是使结构在预定的使用期限内能满足设计所预定的各项功能要求,做到安全可靠和经济合理。 12、工程结构的功能要求主要包括三个方面:(1)安全性(2)适用性(3)耐久性 13、安全性、适用性、耐久性统称为结构的可靠性。 14、结构抗力是结构或结构构件承受荷载效应S 的能力,指的是构件截面的承载力、构件的刚度、截面的抗裂性等,常用符号R 表示。 15、根据功能要求,通常把钢筋混凝土结构的极限状态分为承载能力极限状态和正常使用极限状态两类。 16、荷载代表值主要有永久荷载或可变荷载的标准值,可变荷载的组合值、频遇值和准永久值等。 17、荷载标准值是指荷载在设计基准期内可能出现的最大值。荷载标准值是荷载的基本代表值,荷载的其他代表值都是以它为基础再乘以相应的系数后得出的。 18、正常使用极限状态验算时,荷载的材料强度均取用为标准值。其原因是正常使用极限状态验算时,它的可靠度水平要低一些。 19、混凝土的强度等级即是混凝土标准立方体试件用标准试验方法测得的具有95%保证李的立方体抗压强度标准值cuk f 。 20、受弯构件设计时,既要保证构件不得沿正截面发生破坏,又要保证构件不得沿斜截面发生破坏,因此要进行正截面承载力与斜截面承载力的计算。 21、梁的高度h 通常可由跨度0l 决定,简支梁的高跨比0/l h 一般为1/8—1/12。梁的高 宽比b h /一般为2—3.5。 22、厚度不大的板,其厚度约为板跨的1/12—1/35。 23、为了便于混凝土的浇捣并保证混凝土与钢筋之间有足够的粘结力,梁内下部纵

Sl水工碾压在混凝土施工规范

水工碾压在混凝土施工规范 SL 53-94 主编单位:中国水利水电工程总公司 批准部门:中华人民共和国水利部 目录 1 总则 2 材料 3 配合比设计 4 施工 5 质量管理和评定 附录A 名词解释 附加说明 中华人民共和国水利部 关于发布《水工碾压混凝土施工规范》SL53—94的通知 水建[1994]95号 为适应水工碾压混凝土施工的需要,我部委托中国水利水电工程总公司为主编单位,对《水工碾压混凝土施工暂行规定》SDJS14-86进行了修订。经审查,现批准为中华人民共和国行业标准,其名称与编号为《水工碾压混凝土施工规范》SL53-94,自一九九四年七月一日起施行。《水工碾压混凝土施工暂行规定》SDJS14-86;同时废止。 各地在执行中应注意总结经验,如有问题请函告水利部建设司和主编单位。 本规范由水利部建设司负责解释,水利电力出版社出版发行。 一九九四年三月三十一日

1 总则 1.0.1 本规范适用于大、中型水利水电工程岩基上Ⅰ、Ⅱ、Ⅲ级坝的碾压混凝土施工;其它碾压混凝土施工可参照执行。 1.0.2 碾压混凝土施工,除应遵守本规范外,对于本规范未涉及的部分.仍应执行《水工混凝土施工规范》SDJ 207-82和现行有关国家及行业标准。 1.0.3 施工前应通过现场碾压试验验证碾压混凝土配合比的适应性,并确定其施工工艺参数。 1.0.4 根据碾压混凝土所处部位的工作条件,碾压混凝土的性能应分别满足强度、抗渗性、耐久性等设计要求。 1.0.5 碾压混凝土施工中,应重视温度控制,并应做到优质、经济、安全。 2 材料 2.0.1 凡符合国家标准的硅酸盐系列水泥均可用于碾压混凝土。 2.0.2 水泥品种及标号应与掺和料的品质、掺量一起经技术经济论证后确定。2.0.3 碾压混凝土施工所用水泥宜定厂、定品种供应,不宜在施工中途更换水泥厂家和水泥品种。 2.0.4 碾压混凝土施工前必须进行掺合料料源的调查研究和品质试验。 2.0.5 粉煤灰及火山灰质材料均可作为碾压混凝土的掺合料。应选用符合《粉煤灰混凝土应用技术标准》GBJ146一90质量指标的粉煤灰,不符合上述指标的粉煤灰应经试验论证。 2.0.6 人工骨料及天然骨料均可用于碾压混凝土,如两者经济指标相差不大,宜优先选用人工骨料。 2. 0.7 不得使用刚筛洗的骨料拌制碾压混凝土。细骨料在成品料场堆放时间应不少于48h。若细骨料含水率大于6%.应采取脱水措施。 2.0.8 细骨料的细度模数宜控制在2.2~3.0。使用人工砂时,砂中石粉(d≤0.16mm 的颗粒)含量以8%~17%为宜,超过17%应经试验论证;使用天然砂时,可经试验论证后掺入适量惰性掺合料。 2.0.9 粗骨料的最大粒径以不大于80mm为宜,使用最大粒径超过80mm的粗骨料应进行技术经济论证。不宜采用间断级配。 2.0.10 碾压混凝土中应掺用外加剂,并必须进行外加剂对水泥和掺合料的适应性试验。 3 配合比设计 3.0. 1 碾压混凝土的配合比应满足工程设计的各项指标及施工厂艺要求。 3.0.2 配合比设计参数选定: (1)掺合料掺量:掺合料的掺量应综合考虑水泥、掺合料和砂子品质等因素,并通过试验确定,宜取30%~65%(掺合料掺量中应包括水泥中已掺的混合材数量),掺量超过65%时,应做专门试验论证。 (2)水胶比:应根据设计提出的混凝土强度和耐久性要求确定水胶比,其值宜小于0.70。 (3)砂率:应通过试验选取最佳砂率值。使用天然砂石料时,三级配碾压混凝土砂率宜为28%~32%,二级配宜为32%~37%;使用人工砂石料时,砂率应增加3%~6%。 (4)单位用水量:单位用水量可根据施工要求的工作度(VC值)、骨料的种类及

水工混凝土结构设计

现阶段水工混凝土结构设计相关问题分析【摘要】现代施工中,水利工程比重越来越大,水工建筑结构的设计在整个过程中非常重要,它的质量影响到整个工程的质量。水工混凝土结构主要用于保护水利设施,其结构设计直接影响到使用安全。现代水工混凝土结构建筑数量正在不断增多,在设计阶段面临着一些问题。文章结合水工混凝土结构的特点、材料以及裂缝、止水等相关的问题进行探讨,并针对这些问题提出一定的解决方案,通过监控达到有效提高水工混凝土结构质量的目的。 文章对水工混凝土结构设计中出现的问题进行系统总结,并就这些问题提出相应的解决措施。 1.水工混凝土结构具有以下5个特点: ①结构尺寸大,跨度相对较小。 ②配筋率会小于一般的混凝土结构设计中的最小值,不过数量仍然很大。 ③由于大体积的混凝土结构水泥水化热大,当外界有温度变化时,会发生一些温度裂缝,需要配置较多的温度钢筋。 ④有的结构需要完全浸入水中,或者处于承压的状态,甚至冻融等,它的耐久性相对差一些。 ⑤非杆件体系不利于进行极限强度理论配筋分析计算。 2.水工混凝土结构中原材料的选择 水工建筑物采用的都是碎石、泥沙、高强度水泥等有机融合的混凝土作为主要施工原材料。不同的混凝土其自身的性能也不一样,水

工建筑要选用高强度的混凝土,在使用之前必须要经过科学的检验,如果混凝土的性能指数不能达到国家标准,也不能满足水工建筑工程的施工要求,那么水工混凝土结构的质量就无法得到有效的保障。 水工混凝土结构当中的主要原材料就是水泥,水泥有一个显著的特征就是会产生水化反应,具体表现为碎石灰中所含的有害物质严重超标,粘结性能难以达到预期的效果,降低了水工混凝土结构的强度以及刚度。实践证明,在水泥当中掺入适当数量的粉煤灰或者是早强剂都可以有效解决水化反应。此外,在原材料的配比过程当中,需要设计人员在设计的过程当中,反复计算,反复试验,得到最合理的配比数据以及配比方案。泥沙一般取自河里,含水量非常大,这时就必须要求将泥沙自然风干,或者是使用人工干炒法来使其干燥,同时,记录其含水量,作为制定配比方案的参数依据。 在混凝土的搅拌过程中,原材料的配比非常重要,这时需要质量管理人员根据现场需求对这一比例进行检验测试,符合实际要求的配比才是最适合的。对于砂子中的含水率可以采用现场干炒法来进行,根据得出的含水率及时对混凝土的配合比进行调整 3.水工混凝土结构设计的原则性 3.1水工混凝土结构设计的最大承载能力 水工混凝土结构的最大承载能力是指所用材料的强度以及刚度无法荷载巨大的破坏压力,以至于水工混凝土结构的内部钢筋构件发生严重的变形,无法达到承载要求。水工建筑一般是用作挡水以及蓄水的用途,在此情况下,由于庞大的水量会产生巨大的压迫力和冲击

水工钢筋混凝土结构A 及答案

注:装订线内禁止答题,装订线外禁止有姓名和其他标记。 东北农业大学成人教育学院考试题签 水工钢筋混凝土结构(A) 一、填空题(每空1分,共20分) 1、钢筋冷拉后()并没有提高,只提高()。 2、钢筋的粘结力()( )、( ) 三部分组成。 3、钢筋混凝土梁的钢筋骨架中( )和 ( )统称为腹筋,配置腹筋的目的是为了保证梁的( )承载力。 4、钢筋混凝土受弯构件的( )计算是为了保证构件安全工作,而对构件进行( ) 是为了保证构件预期的( )和 ( ) 。 5、区别大、小偏心受压的关键是远离轴向压力一侧的钢筋先( ),还是靠近轴心压力一侧的混凝土先被压碎,先( )者为大偏心受压,先( )者为小偏心受压。 6、在偏心受压构件两侧配置( )的钢筋,称为对称配筋。对称配筋虽然要( )一些钢筋,但构造( ),施工( )。特别是构件在不同的荷载组合下,同一截面可能承受( )的正负弯矩时,更应该采用对称配筋。 二、选择题(把正确答案填在括号内,每题2分,共20分) 1、可利用多次重复加载卸载后应力应变关系趋于直线的性质来求弹性模量,既加载至( )后下载至零,重复加载卸载5次,应力应变曲线渐趋稳定并接近于一条直线,该直线的正切即为混凝土的弹性模量。 (A) 0.4f c (B) 0.3f c (C) 0.43f c (D) 0.5f c 2、混凝土应力越大,徐变越大,当应力( )时,徐变与应力成正比,称为线性徐变。 (A) cσ<0.5 f c (B) cσ≤ (0.5 ~ 0.8) f c (B) cσ≤ (0.6 ~ 0.65) f c (C) cσ≤ (0.55 ~ 0.65) f c 3、混凝土保护层厚度是指( )。 (A) 箍筋的外皮至混凝土外边缘的距离 (B) 受力钢筋的外皮至混凝土外边缘的距离 (C) 受力钢筋截面形心至混凝土外边缘的距离 4、下列不属于影响混凝土立方体抗压强度的因素的是( )。 (A) 试验方法 (B) 试验气温 (C) 试件尺寸 (D) 混凝土的龄期 5、下列( )项破坏形态不会发生在梁的剪弯区段。 (A) 偏压破坏 (B) 斜压破坏 (C) 剪压破坏 (D) 斜拉破坏 6、弹性方法设计的连续梁、板各跨跨度不等,但相邻两跨计算跨度相差<10%,仍作为等跨计算,这时,当计算支座截面弯矩时,则应按( )计算。

水工混凝土施工规范

水工混凝土施工规范 SDJ 207—82

水工混凝土施工规范 SDJ 207—82 第一章总则--------------------------------------- 3 第二章模板工程----------------------------------- 4 第三章钢筋工程----------------------------------- 14 第四章混凝土工程--------------------------------- 29 第五章混凝土温度控制的措施----------------------- 54 第六章低温季节混凝土的施工----------------------- 58 第七章止排水、伸缩缝和预埋件的施工 ----------------- 61 附录一大体积混凝土模板及支架的计算荷载 ------------- 65 附录二钢筋的主要机械性能------------------------- 68 附录三工地混凝土强度保证率和匀质性指标计算方法----------70

中华人民共和国水利电力部 关于颁发《水工混凝土施工规范》的通知 (82)水电水建字第7 号 为了加强技术管理,提高工程质量,更好地进行水利水电工程建设,我部组织有关单位对一九六三年颁发的《水工建筑物混凝土及钢筋混凝土工程施工技术暂行规范》进行了修订。修订后的规范定名为《水工混凝土施工规范》SDJ 207--82,现予颁发,自一九八二年十月一日起执行,原规范同时作废。 各单位在执行本规范过程中,要注意总结经验,积累资料,如发现问题,请将意见和有关资料报部。 一九八二年四月五日

水工混凝土试验规程Sd10582a

水工混凝土试验规程 SD 105-82 (一)~(二) 第一章水泥 第二章混合材 水利电力部文件 关于颁发《水工混凝土试验规程》的通知 (82)水电技字第23号 以一九六二年水电部颁《水工混凝土试验方法》为基础,补充修订的《水工混凝土试验规程》(编号为SD105-82)已经审查通过,现予颁发,自一九八三年一月起实施。执行中有何意见与问题,可与水利水电科学研究院直接联系。 一九八二年六月十八日

编写说明 自一九六二年水利电力部颁发《水工混凝土试验方法》(试行)以来,在水利水电建设中发挥了积极作用。二十年来,我国水利水电事业得到了迅速的发展,水工混凝土的试验研究工作也取得了新的成果,国际上的混凝土试验技术和标准化工作也有较大的发展。一九七七年水利电力部组织成立《水工混凝土试验方法》修订小组,由水利水电科学研究院,长江水利水电科学研究院及南京水利科学研究所共同负责,并协同水电一局、五局、八局、东北勘测设计院、成都勘测设计院,天津勘测设计院、三三〇工程局,〇〇六一九部队,河北省大黑汀水库,广西大化水电工程指挥部,安徽省水利科学研究所,华东水利学院,武汉水利电力学院,华北水利水电学院,北京市水利局等,共18个单位,对《水工混凝土试验方法》进行重新修订工作。 本《规程》是以一九六二年部颁试行的《水工混凝土试验方法》为基础,总结了国内多年来水工混凝土试验研究的成果,又吸取了国内外同类方法的部分长处,并通过一定的补充、验证而修订的。一九八〇年初提出《水工混凝土试验方法》送审稿及《水工混凝土试验方法编写说明》,发至全国水利水电系统各单位征求意见。同年九月,水利部科技局、电力部科技委共同召开《水工混凝土试验方法》送审稿的审查会议,对该送审稿提出了修改意见,并定名为《水工混凝土试验规程》,一致同意经修改后报部审批。 新编的《水工混凝土试验规程》包括水泥、混合材、骨料、混凝土拌合物、混凝土、砂浆、水质分析、外加剂等八章。并列有三个附录,共121项。其中92项经长期实践证明,方法比较成熟可靠,正式列为部颁项目;另有17项,方法虽较成熟,但本部门使用经验不足,列为部颁试行项目,这些项目名称的右方以[试行]标注。还有12项(包括附录部分),从方法本身到使用实践,在本部门均不够成熟,但实际工作中还有需要,因此仍列入本《规程》,但仅作参考。此类项目编号的左上方注有“*”号以示标记。 先后参加本《规程》修订工作的有:水利水电科学研究院关英俊、李金玉、沙慧文,长江水利水电科学研究院朱兴华,南京水利科学研究所郭飞骐,东北勘测设计院黄立中,天津勘测设计院王足献,水电八局高家训,水电一局王泽民、肖长玉,成都勘测设计院黎尚周,安徽省水利科学研究所方定正,交通部科学研究院蔡正咏等同志。 《水工混凝土试验现程》内容较多,涉及面较广,本次修订工作只是基于目前的条件和水平进行的,今后还需要不断地补充和完善。为此,请读者提出宝贵意见或建议,并请函寄北京市木樨地水利水电科学研究院 结构材料所。 《水工混凝土试验规程》修订小组 1982年6月

水工混凝土施工规范标准

水工混凝土施工规(新版) Specifications for hydraukic concrete construction 主编单位:中国长江三峡开发总公司 中国洲坝水利水电工程集团公司 批准部门:中华人民国国家经济贸易委员会 批准文号:国家经济贸易委员会公告二00一年第31号

中国电力出版社 2002年 1 围 本标准规定了水工混凝土施工行为和质量的基本要求,适用于大、中型水电水利工程中1、2、3级水工建筑物的混凝土和钢筋混凝土的施工。 2 引用标准 下列标准所包含的条文,在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修改,使用本标准的各方应探讨使用下列标

准的最新版本的可能性。 GB 175—1999 硅酸盐水泥、普通硅酸盐水泥 GB/T 176—1996 水泥化学分析方法 GB 200-1989 中热硅酸盐水泥、低热矿渣硅酸盐水泥 GB 748-1996 抗硫酸盐硅酸盐水泥 GB/T 750—1992 水泥压蒸安定性试验方法 GB 1344—1999 矿渣硅酸盐水泥、火山灰质硅酸盐水泥及 粉煤灰硅酸盐水泥 GB/T 1345—1991 水泥细度检验方法 GB/T 1346—1989 水泥标准稠度用水量、凝结时间、安定 性检验方法 GB/T 2022—1980 水泥水化热试验方法(直接法) GB/T 2059-2000 铜及铜合金带材 GB/T 2847—1996 用于水泥中的火山灰质混合材料 GB 2938-1997 低热微膨胀水泥 GB 5749-1985 生活饮用水质标准 GB/T 6645—1986 用于水泥中的粒化电炉磷渣 GB 8076—1997 混凝土外加剂 GB/T 9142-2000 混凝土搅拌机

水工钢筋混凝土结构习题集2-2

第四章钢筋混凝土受弯构件斜截面承载力计算 一、思考题 1.钢筋混凝土无腹筋梁斜裂缝发生前后梁内应力状态有何变化?其应力重分布表现在哪些方面? 2.钢筋混凝土无腹筋梁的斜截面受剪破坏的主要形态有哪几种?它们的破坏原因和破坏过程有何不同?在设计中采用什么措施加以防止? 3.何谓剪跨比?它对无腹筋梁斜截面承载力及斜截面破坏形态有何影响?对有腹筋梁的斜截面破坏形态影响怎样? 4.钢筋混凝土梁的斜截面承载力的计算公式是建立在哪种破坏形态之下的?如何避免其他斜截面破坏形态的发生? 5.影响无腹筋梁斜截面受剪承载力的主要因素有哪些?这些因素对斜截面承载力有什么影响? 6.何谓配箍率?箍筋在钢筋混凝土受弯构件中的作用是什么?箍筋配箍率有无限制? 7.梁的斜截面受剪承载力计算公式有什么限制条件?为什么要有这样的限制? 8.在进行梁的斜截面受剪承载力计算时,其截面位置是怎样确定的? 9.什么是梁的抵抗弯矩图?它与设计弯矩图是什么关系?抵抗弯矩图是怎样画出的(以伸臂梁为例)? 10.请解释什么是梁的斜截面受弯承载力?在什么情况下才考虑梁的斜截面受弯承载力问题?梁的斜截面受弯承栽力是怎样保证的? 11. 纵向受拉钢筋的弯起、截断和锚固应满足哪些要求? 12. 当梁中配有计算所需要的受压钢筋时,其箍筋设置应注意哪些问题?为什么? 13. 试述受弯构件斜截面受剪承载力的计算步骤,并写出有关的计算公式。 14.画出图4-1所示钢筋混凝土梁裂缝出现的大致位置和方向。 图4-1 二、选择题

1.无腹筋梁斜截面受剪破坏形态主要有三种,这三种破坏的性质( )。 (A)都属于脆性破坏 (B)都属于塑性破坏 (C)剪压破坏属于塑性破坏,斜拉和斜压破坏属于脆性破坏 (D)剪压和斜压破坏属于塑性破坏,斜拉破坏属于脆性破坏 2.无腹筋梁斜截面受剪主要破坏形态有三种。对同样的构件就其受剪承载力而言( )。 (A)斜拉破坏>剪压破坏>斜压破坏 (B)斜拉破坏<剪压破坏<斜压破坏 (C)斜压破坏>剪压破坏>斜拉破坏 (D)剪压破坏=斜压破坏>斜拉破坏 3.在进行受弯构件斜截面受剪承载力计算时,对于一般梁(0.4/≤b h w ),若d c bh f V γ/25.00>,可采取的解决办法有( )。 (A)箍筋加密或加粗 (B)增大构件截面尺寸 (C)加大纵筋配筋率 (D)提高混凝土强度等级 4.当0.4/≤b h w 时,对一般梁截面尺寸符合d c bh f V γ/25.00>是为了( )。 (A)防止发生斜压破坏 (B)防止发生剪压破坏 (C)避免构件在使用阶段过早地出现斜裂缝 (D)避免构件在使用阶段斜裂缝开展过大 5.纵筋弯起时弯起点必须设在该钢筋的充分利用点以外不小于0.5h 0的地方,这一要求是为了保证( )。 (A)正截面抗弯强度 (B)斜截面抗剪强度 (C)斜截面抗弯强度 (D)钢筋的锚固要求 6.承受均布荷载的钢筋混凝土悬臂梁,可能发生弯剪裂缝的是( )。

水工混凝土施工规范

《水工混凝土施工规范》SDJ207—82 文章来源:互联网添加人:水工建筑信息网发布时间:2008-1-4 2.1.2模板及支架必须符合下列要求: 1)保证混凝土浇筑后结构物的形状、尺寸与相互位置符合设计规定; 2)具有足够的稳定性、刚度和强度; 3)应尽量做到标准化、系列化,装拆方便,周转次数高,有利于混凝土工程的机械化施工; 4)模板表面应光洁平整,接缝严密,不漏浆,以保证混凝土表面的质量。 2.1.3模板工程采用的材料及制作、安装等工序的成品均应进行质量检查,合格后,才能进行下一工序的施工。 2.2.3木材种类可按各地区供应情况选用,其质量宜达到Ⅱ、Ⅲ等材的标准。腐朽、严重扭曲或脆性的木材不应使用。 木材宜提前备料,干燥后使用,湿度宜为18%~23%。水下施工用的木材,湿度宜为23%~45%。2.3.2重要结构物的模板,承重模板,移动式、滑动式、工具式及永久性的模板,均须进行模板设计,并提出对材料、制作、安装、使用及拆除工艺的具体要求。 设计图纸应标明设计荷载及控制条件,如混凝土的浇筑顺序、速度、施工荷载等。 2.3.7除悬臂模板外,竖向模板与内倾模板都必须设置内部撑杆或外部拉杆,以保证模板的稳定性。2.4.1模板制作的允许误差,应符合模板设计规定,一般不得超过表2.4.1的规定。 表2.4.1 模板制作的允许误差 注:①异型模板(蜗壳、尾水管等),滑动式、移动式模板,永久性模板等特种模板的允许偏差,按模板

设计文件规定执行。 ②定型组合钢模板,可按冶金部有关规定执行。 2.5.8模板安装的允许偏差,应根据结构物的安全、运行条件、经济和美观等要求确定,一般不得超过表2.5.8的数值。 高速水流区,尾水管和门槽等要求较高的特殊部位,其模板的允许偏差,应由设计、施工单位共同研究决定。 表2.5.8 大体积混凝土木模板安装的允许偏差(m) 注:一般混凝土及钢筋混凝土梁、柱的模板安装允许偏差,按国家建委《钢筋混凝土工程施工及验收规范》执行。 3.1.1钢筋混凝土结构用的钢筋,其种类、钢号、直径等均应符合有关设计文件的规定。 3.1.3钢筋应有出厂证明书或试验报告单。使用前,仍应作拉力、冷弯试验。需要焊接的钢筋尚应作好焊接工艺试验。钢号不明的钢筋,经试验合格后方可使用,但不能在承重结构的重要部位上应用。3.1.6水工结构的非预应力混凝土中,不应采用冷拉钢筋。 3.3.10对于直径为l0mm或l0mm以上的热轧钢筋,其接头采用搭接、帮条电弧焊时,应符合下列要求: (1)搭接焊、帮条焊的接头应做成双面焊缝。对于I级钢筋的搭接或帮条的焊缝长度不应小于钢筋直径的4倍。对于Ⅱ、Ⅲ级钢筋和5号 钢筋,其搭接或帮条的焊缝长度不应小于钢筋直径的5倍。只有当不能做双面焊缝时,才允许采用单面焊,其搭接或帮条的焊缝长度应增加1倍(见图3.3.10—1)。 (2)帮条的总截面面积应符合下列要求:当主筋为I级钢筋时,不应小于主筋截面面积的1.2倍;当主筋为Ⅱ、Ⅲ级钢筋和5号钢筋时,不应小于主筋截面面积的1.5倍。为了便于施焊和使帮条与主筋的中心线在同一平面上,帮条宜采用与主筋同钢号、同直径的钢筋制成。如帮条与主筋级别不同时,应按设计强度进行换算。

水工混凝土施工工艺设计技术交底大全

武警水电三总队拉洛工程指挥所施工质量技术交底记录表

交底容:水利水电混凝土工程施工工艺技术 一、施工准备 混凝土施工准备工作的主要项目有:基础处理、施工缝处理、设置卸料入仓的辅助设备、模板、钢筋的架设、预埋件及观测设备的埋设、施工人员的组织、浇筑设备及其辅助设施的布置、浇筑前的检查验收等。 (一)基础处理 土基应先将开挖基础时预留下来的保护层挖除,并清除杂物,然后用碎垫底,盖上湿砂,再进行压实,浇8~12cm厚素混凝土垫层。砂砾地基应清除杂物,整平基础面,并浇筑10~20cm厚素混凝土垫层。 对于岩基,一般要求清除到质地坚硬的新鲜岩面,然后进行整修。整修是用铁撬等工具去掉表面松软岩、棱角和反坡,并用高压水冲洗,压缩空气吹扫。若岩面上有油污、灰浆及其粘结的杂物,还应采用钢丝刷反复刷洗,直至岩面清洁为止。清洗后的岩基在混凝土浇筑前应保持洁净和湿润。 当有地下水时,要认真处理,否则会影响混凝土的质量。处理法是:做截水墙,拦截渗水,引入集水井排出;对基岩进行必要的固结灌浆,以封堵裂缝,阻止渗水;沿边打排水,导出地下水,在浇筑混凝土时埋管,用水泵抽出积水,直至混凝土初凝,7d后灌浆封;将底层砂浆和混凝土的水灰比适当降低。 (二)施工缝处理 施工缝是指浇筑块之间新老混凝土之间的结合面。为了保证建筑物的整体性,在新混凝土浇筑前,必须将老混凝土表面的水泥膜(又称乳皮)清除干净,并使其表面新鲜整洁、有子半露的麻面,以利于新老混凝土的紧密结合。但对于要进行接缝灌浆处理的纵缝面,可不凿毛,只需冲洗干净即可。 施工缝的处理法有以下几种。

(1)风砂枪喷毛。将经过筛选的粗砂和水装入密封的砂箱,并通入压缩空气。高压空气混合水砂,经喷砂喷出,把混凝土表面喷毛。一般在混凝土浇后24~48h开始喷毛,视气温和混凝土强度增长情况而定。如能在混凝土表层喷洒缓凝剂,则可减少喷毛的难度。 (2)高压水冲毛。在混凝土凝结后但尚未完全硬化以前,用高压水(压力0.1~0.25MPa)冲刷混凝土表面,形成毛面,对龄期稍长的可用压力更高的水(压力0.4~0.6MPa),有时配以钢丝刷刷毛。高压水冲毛关键是掌握冲毛时机,过早会使混凝土表面松散和冲去表面混凝土;过迟则混凝土变硬,不仅增加工作困难,而且不能保证质量。一般春秋季节,在浇筑完毕后10~16h开始;夏季掌握在6~10h;冬季则在18~24h后进行。如在新浇混凝土表面洒刷缓凝剂,则延长冲毛时间。 (3)刷毛机刷毛。在大而平坦的仓面上,可用刷毛机刷毛,它装有旋转的粗钢丝刷和吸收浮渣的装置,利用粗钢丝刷的旋转刷毛并利用吸渣装置吸收浮渣。喷毛、冲毛和刷毛适用于尚未完全凝固混凝土水平缝面的处理。全部处理完后,需用高压水清洗干净,要求缝面无尘无碴,然后再盖上麻袋或草袋进行养护。 (4)风镐凿毛或人工凿毛。已经凝固混凝土利用风镐凿毛或工工具凿毛,凿深约1~2cm,然后用压力水冲净。凿毛多用于垂直缝。 仓面清扫应在即将浇筑前进行,以清除施工缝上的垃圾、浮渣和灰尘,并用压力水冲洗干净。 (三)仓面准备 浇筑仓面的准备,包括机具设备、劳动组合、照明、风水电供应、所需混凝土原材料的准备等,应事先安排就绪仓面施工的脚手架、工作平台、安全网、安全标识等应检查是否牢固,电源开关、动力线路是否符合安全规定。

9《水工混凝土试验规程》附录5.7 (水工混凝土配合比设计方法)

附录A 水工混凝土配合比设计方法 A.1 基本原则 A.1.1水工混凝土配合比设计,应满足设计与施工要求,确保混凝土工程质量且经济合理。 A.1.2 混凝土配合比设计要求做到: 1应根据工程要求,结构型式,施工条件和原材料状况,配制出既满足工作性、强度及耐久性等要求,又经济合理的混凝土,确定各组成材料的用量; 2 在满足工作性要求的前提下,宜选用较小的用水量; 3 在满足强度、耐久性及其他要求的前提下,选用合适的水胶比; 4宜选取最优砂率,即在保证混凝土拌和物具有良好的粘聚性并达到要求的工作性时用水量最小的砂率; 5 宜选用最大粒径较大的骨料及最佳级配。 A.1.3 混凝土配合比设计的主要步骤: 1 根据设计要求的强度和耐久性选定水胶比; 2 根据施工要求的工作度和石子最大粒径等选定用水量和砂率,用水量除以选定的水胶比计算出水泥用量; 3 根据体积法或质量法计算砂、石用量; 4 通过试验和必要的调整,确定每立方米混凝土材料用量和配合比。 A.1.4进行混凝土配合比设计时,应收集有关原材料的资料,并按有关标准对水泥、掺和料、外加剂、砂石骨料等的性能进行试验。 1 水泥的品种、品质、强度等级、密度等; 2 石料岩性、种类、级配、表观密度、吸水率等; 3 砂料岩性、种类、级配、表观密度、细度模数、吸水率等; 4 外加剂种类、品质等; 5 掺合料的品种、品质等; 6 拌和用水品质。 A.1.5 进行混凝土配合比设计时,应收集相关工程设计资料,明确设计要求: 1 混凝土强度及保证率; 2 混凝土的抗渗等级、抗冻等级等; 3 混凝土的工作性; 4 骨料最大粒径。

A.1.6 进行混凝土配合比设计时,应根据原材料的性能及混凝土的技术要求进行配合比计算,并通过试验室试配、调整后确定。室内试验确定的配合比尚应根据现场情况进行必要的调整。 A.1.7 进行混凝土配合比设计时,除应遵守本标准的规定外,还应符合国家现行有关标准的规定。 A.2 混凝土配制强度的确定 A.2.1 目前水工混凝土设计龄期立方体抗压强度标准值采用两种方式。一种以强度等级“C ”表示,与国际标准ISO3892接轨,龄期28d ,强度保证率为95%,如C20;另一种是惯用的强度标号“R ”表示,龄期90d 或180d ,强度保证率为80%,如R 9015或R 18015。不论哪种方式表示,混凝土设计龄期立方体抗压强度标准值系指按照标准方法制作养护的边长为150mm 的立方体试件,在设计龄期用标准试验方法测得的具有设计保证率的抗压强度,以MPa 计。 A.2.2 混凝土配制强度按公式(A.2.2-1)或公式(A.2.2-2)计算: σt f f k cu cu +=,0, (A.2.2-1) v k cu cu tc f f -= 1,0, (A.2.2-2) 式中 f cu,0——混凝土配制强度,MPa ; f cu,k ——混凝土设计龄期立方体抗压强度标准值,MPa ; t ——概率度系数,由给定的保证率P 选定,其值按表A.2.2选用; σ——混凝土立方体抗压强度标准差,MPa ; c v ——变异系数。 表A.2.2 保证率和概率度系数关系 A.2.3 混凝土抗压强度标准差σ 和变异系数c v ,宜按同品种混凝土抗压强度统计资料确定。 1 统计时,混凝土抗压强度试件总数应不少于30组; 2 根据近期相同抗压强度、生产工艺和配合比基本相同的混凝土抗压强度资料,混凝土抗压强度标准差σ按公式(A.2.3-1)计算:

水工混凝土 第4章作业答案

1、已知一钢筋混凝土矩形截面简支梁,其截面面积尺寸mm mm h b 550250?=? (mm h 5100=),支座处的剪力设计值V=136kN ,采用C25混凝土,箍筋采用HPB235钢筋。若不设弯起钢筋,试确定箍筋的直径、肢数和间距。 解:由附录2表1和表3查得211.9N/mm c f =,2 1.27N/mm t f =,2210N/mm yv f =,由表2-7查得II 级安全级别,基本组合时的安全系数 1.2K =,剪力设计值136kN V =。按SL 191-2008规范计算: (1)截面尺寸验算 0510w h h mm ==,/510/250 2.04 4.0w h b ==<,由式(4-16)得 300.250.2511.925051010379.3kN>K 1.2136163.2kN c f bh V -=????==?= 故截面尺寸满足要求。 (2)验算是否需要计算确定腹筋 300.70.7 1.2725051010113.4kN=? 由式(4-9),得 00330.7 1.25101 0.7 1.2725051010 1.2521051010200 113.4+67.6=181kN>K 163.2kN sv c sv t yv A V V f bh f h s V --+=+=????+????== 所以不需弯起钢筋,满足受剪承载要求。 2、一钢筋混凝土矩形截面简支梁(II 级安全等级,一类环境条件),截面尺寸为=?h b mm mm 600250?; 在使用阶段承受均布荷载标准值q k =43.5kN/m ,恒载标准值g k =10.2kN/m (不包括梁自重),梁的净跨l n =5.65m 。采用C25混凝土,纵筋采用HRB335钢筋,箍筋采用HPB235钢筋,经计算,受拉区配有8Φ22的纵筋。若全梁配有双肢Φ6@150mm 的箍筋,试验算此梁的斜截面受剪承载力,若不满足要求,配置该梁的弯起钢筋。

水工钢筋混凝土结构综合练习题

综合练习题一 一.填空题 1.T截面连续梁在负弯矩段,由于翼缘处在受拉区,应按________截面计算;在正弯矩段,按________截面计算。 2.抗剪钢筋也称作腹筋,腹筋的形式可以采用________和________。 3.预应力和非预应力混凝土轴心受拉构件,在裂缝即将出现时,它们的相同之处是混凝土的应力达到__________,不同处是预应力构件混凝土的应力经历了从受_______到受_______的变化过程,而非预应力构件混凝土的应力是从_________变化到________。可见二者的抗裂能力是___________构件的大。 二.单选题 1.梁的受剪承载力公式是根据何破坏形态建立的() (A)剪压破坏(B)斜压破坏(C)斜拉破坏2.在正常使用极限状态计算中,短期组合时的内力值(N s、M s)是指由各荷载标准值所产生的荷载效应总和()。 (A)乘以结构重要性系数γ0后的值 (B)乘以结构重要性系数γ0和设计状况系数ψ后的值 (C)乘以设计状况系数ψ后的值 3.试决定下面属于大偏心受压时的最不利内力组合() (A)N max,M max (B)N max,M min (C)N min,M max 4.混凝土割线模量E cˊ与弹性模量E c的关系式E cˊ=νE c中的ν值当应力增高处于弹塑性阶段时() (A)ν>1 (B)ν=1 (C)ν<1 5.进行变形和裂缝宽度验算时() (A)荷载用设计值,材料强度用标准值 (B)荷载和材料强度都用标准值 (C)荷载和材料强度都用设计值 6.剪力和扭矩共同作用下的构件承载力计算,《规范》在处理剪、扭相关作用时()。(A)不考虑二者之间的相关性(B)混凝土和钢筋的承载力都考虑剪扭相关作用(C)混凝土的承载力考虑剪扭相关作用,而钢筋的承载力不考虑剪扭相关性 7.大偏心受拉构件设计时,若已知A's,计算出ξ>ξb,则表明()(A)A's过多(B)A's过少(C)A s过少 8.均布荷载作用下的弯、剪、扭复合受力构件,当满足()时,可忽略扭矩的影响。 (A)γd T≤0.175f t W t(B)γd T≤0.35f t W t (C)γd V≤0.035f c bh0 9.在下列减小受弯构件挠度的措施中错误的是() (A)提高混凝土强度(B)增大截面高度(C)增大构件跨度 10.所谓一般要求不出现裂缝的预应力混凝土轴心受拉和受弯构件,在荷载作用下() (A)允许存在拉应力(B)不允许存在拉应力(C)拉应力为零

Sl48水工碾压混凝土试验规程完整

水工碾压混凝土试验规程 SL 48-94 主编单位:中国水利水电工程总公司 批准部门:中华人民共和国水利部 目录 1 原材料 2 碾压混凝土拌和物 3 碾压混凝土试验 附录A 碾压混凝土配合比设计方法 名词解释 附加说明

中华人民共和国水利部 关于发布《水工碾压混凝土试验规程》SL 48—94的通知 水建「1994」97号 为适应我国水工碾压混凝土试验技术进步的需要,我部委托中国水利水电工程总公司为主编单位,对《水工碾压混凝土试验规程》SDJS10-86进行了修订。经审查,现批准为中华人民共和国水利行业标准,其编号为SL48-94,自一九九四年七月一日起施行。 各地在执行中应注意总结经验,如有问题请函告水利部建设司和主编单位。 本规程由水利部建设司负责解释,水利电力出版社出版发行。 一九九四年三月三十一日

1 原材料 1.1 胶凝材料 1. 1. 1 水泥试验方法。 水泥试验按有关国家标准及《水工混凝土试验规程》SD105-82的规定方法进行。 1.1.2 掺合料试验方法。 掺合料试验按《用于水泥和混凝土中的粉煤灰》GB1596-91和《水工混凝土试验规程》SD105-82的规定方法进行。 1. 1.3 胶凝材料水化热试验方法(直接法)。 1.1.3.1 目的及适用范围。在热量计周围温度不变的条件下,直接测定热量计内胶凝材料胶砂温度的变化,计算热量计内积蓄和散失热量的总和,从而求得胶凝材料水化热。本方法适用于7d内的胶凝材料水化热测定。 1.1.3.2 仪器设备。 (1)热量计。 1)保温瓶:可采用备有软木塞的2.27kg广口保温瓶,内深220mm,内径为85mm。 2)截锥形圆筒:用厚约0.5mm的黄铜(或白铁皮)制成,高170mm,上口直径75mm,底直径65mm,带盖,盖的中心有一个直

水工混凝土

水工混凝土 姓名:陈林海学号:131601206指导老师:张鸣 [摘要]文章对水工混凝土作出了详尽和全面的阐述,从概念入手,对其发展历史,原材料,配合比设计方法,技术性能,常见问题与解决方法等方面着重介绍,加深大家对水工混凝土的认识和理解。 [关键词]水工混凝土发展历史原材料配合比设计方法技术性能常见问题与解决方法 [引言]水工混凝土是指经常性或周期性地受水作用的建筑物(或建筑物的一部分)所用的并能保证建筑物在上述条件下长期正常使用的混凝土。 常用于水上、水下和水位变动区等部位。因其用途不同,技术要求也不同:常与环境水相接触时,一般要求具有较好的抗渗性;在寒冷地区、特别是在水位变动区应用时,要求具有较高的抗冻性;与侵蚀性的水相接触时,要求具有良好的耐蚀性;在大体积构筑物中应用时,为防止温度裂缝的出现,要求具有抵热性和低收缩性;在受高速水流冲刷的部位使用时,要求具有抗冲刷、耐磨及抗气蚀性等。长期的施工实践证明,在水工混凝土中掺入具有减水、缓凝及增加耐久性的外加剂,如木质素磺酸盐减水剂、糖蜜塑化剂、松香皂引气剂(在有抗冻性要求的地区或部位必须掺入),以及掺入适量的优质掺合料,如粉煤灰等,对改善混凝土拌合物的和易性及提高耐久性都具有明显效果。 本文将从水工混凝土的发展历史、原材料、配合比设计方法、技术性能、常见问题与解决方法这五个方面来分析这种建筑材料。 [正文] 一.水工混凝土的发展历史 20 世纪30 年代,美国着手建设坝高211m 的胡佛坝,对水工混凝土进行全面研究,形成了一套完整的水工混凝土材料配制体系和柱状法坝体浇筑技术,实现了创世纪的技术创新。自1936 年胡佛坝建成半个多世纪,水工混凝土技术又有了很大发展,其中主要有: ①在水工混凝土中掺入掺和料、引气剂和减水剂; ②

水工钢筋混凝土结构学习题

第一章 钢筋混凝土结构的材料 [思考题1-1] 钢筋的伸长率和冷弯性能是标志钢筋的什么性能? [思考题1-2] 检验钢筋的质量有哪几项要求? [思考题1-3] 混凝土的强度等级的怎样确定的?有什么用途?《规范》中混凝土强度等级是如何划分的? [思考题1-4] 混凝土的立方体抗压强度cu f 是如何测定的?它的标准值的用途是什么?试件尺寸的大小为何影响混凝土的立方体抗压强度? [思考题1-5] 混凝土在单向压应力及剪应力共同作用下,混凝土的抗剪强度是如何变化? [思考题1-6] 什么是混凝土的徐变?徐变对混凝土结构有哪些影响? [思考题1-7] 什么是混凝土的收缩? 如何减少混凝土收缩? [思考题1-8] 在大体积混凝土结构中,能否用钢筋来防止温度裂缝或干缩裂缝的出现? [思考题1-9] 保证钢筋在混凝土中不被拔出,应使钢筋在混凝土中有足够的锚固长度a l ,锚固长度a l 是如何确定? [思考题1-10] 光面钢筋与变形钢筋粘结机理有何不同?变形钢筋的粘结破坏形式怎样? [思考题1-11] 加大保护层厚度和增加横向配筋来提高粘结强度为什么有上限? [思考题1-12] 影响粘结强度的主要因素有哪些?《规范》在保证粘结强度方面有哪些构造措施? 第二章 钢筋混凝土结构设计计算原则 [思考题2-1]结构的极限状态的定义? [思考题2-2] 以概率论为基础的极限状态设计法的基本思路?目前国际上以概率论为基础的设计方法分为哪三个水准?我国《水工混凝土设计规范》(DL/T5057—2009)采用了哪一水准的设计方法? [思考题2-3] 失效概率的物理意义? 失效概率与可靠概率之间有何关系? [思考题2-4] 结构在设计基准期内安全、可靠、经济合理。则失效概率与允许失效概率或可靠指标与目标可靠指标之间应符合什么条件? [思考题2-5] 水工建筑物的级别和水工建筑物的结构安全级别与结构重要性系数有什么关系? [思考题2-6] 什么是荷载的标准值?它们的保证率是多少? [思考题2-7] 什么是荷载的标准值?它们的保证率是多少? [思考题2-8] 什么是材料强度的标准值?它们的保证率是多少? [思考题2-9] 简述水工混凝土结构设计规范的主要特点?在设计表达式中采用了哪些系数来保 结构的可靠度? [习题2-1] 已知一轴心受拉构件,轴向拉力N 的平均值为122kN ,标准差为8kN ;截面承载能力R 的平均值为175kN ,标准差为14.5kN(荷载效应N 和结构抗力R 均为正态分布)。试求该轴心受拉构件的可靠度指标。若构件属延性破坏,结构安全级别为Ⅰ级,该构件是否安全可靠。 [习题2-2] 某水闸工作桥桥面由永久荷载标准值引起的桥面板跨中截面弯矩M Gk =13.23kNm ;活荷载标准值引起的弯矩M Qk =3.8kNm ;HRB335安全级别。试求桥面板跨中截面弯矩设计值。

相关文档
最新文档