正交异性板疲劳裂纹形成寿命研究和数值计算

正交异性板疲劳裂纹形成寿命研究和数值计算
正交异性板疲劳裂纹形成寿命研究和数值计算

西南交通大学

硕士研究生选题报告

姓名吴月峰学号12011142

导师姓名卜一之职称教授

专业桥梁与隧道工程

研究方向现代桥式及桥梁结构设计理论

题目正交异性板疲劳裂纹形成寿命

实验分析研究和数值计算

2013年10 月10 日

开题报告的内容应包括

(1)课题的研究意义、国内外现状分析。

(2)课题研究目标、研究内容、拟解决的关键问题。

(3)拟采取的研究方法、技术路线、试验方案及其可行性

研究。

(4)课题的创新性。

(5)计划进度、预期进展和预期成果。

注:(1)开题报告由各院(系、所、中心)组织实施,专家组成员由副高以上人员组成,邀请导师和督导组相关专家参加,导师担任组长。

(2)专家组的作用是帮助导师和研究生执行选题论证,论证意见以“通过”、

“不通过”结论。通过者按计划开展论文工作,不通过者,在半年内需

重新开题。

。局部应力应变法进行疲劳寿命的计算结果对疲劳缺口系数

而材料的

正交异性桥面板设计参数和构造

正交异性桥面板设计参数和构造 细节的疲劳研究进展 1 背景 第二次世界大战后,一方面大量被战争毁坏的桥梁急需修复,另一方面建筑材料非常短缺。在此情况下,欧洲的工程师们开始尝试采用一种新型的桥面结构形式——正交异性钢桥面板。它由面板、纵肋和横肋组成,三者互相垂直,通过焊缝连接成一体共同工作。它以自重轻、极限承载力大、施工周期短等优点,成为世界上大、中跨度现代钢桥通常采用的桥面结构形式。从20世纪50年代德国最先使用这种桥面板至今,欧洲已有1000多座各种形式的正交异性钢桥面板桥梁,日本有将近250座正交异性钢桥面板桥梁,北美有100余座正交异性钢桥面板桥梁[1]。 我国正交异性钢桥面板我国正交异性钢桥面板的研究和应用起步较晚,直到20世纪70年代初,才建成第一座钢桥面板桥——潼关黄河铁路桥。改革开放以来,国内正交异性钢桥面板桥呈现出迅猛发展势头。迄今为止,我国已建造的采用正交异性钢桥面板的桥梁有30余座。正在建造的采用正交异性钢桥面板的铁路钢桥有郑州黄河公铁两用桥和京沪高速铁路南京大胜关长江大桥等。 正交异性钢桥面板有其独特的优点,但同时钢桥面板疲劳开裂的事例也在许多国家的钢桥中出现。最早报道的是英国Seven桥,该桥1966年建成通车后,分别于1971年和1977年发现了3种焊接细节的疲劳裂纹。德国的Haseltal和Sinntal桥投入使用后不久,钢桥面板也都出现了疲劳裂纹。此外,法国、日本、美国、荷兰等国也都发现了钢桥面板疲劳开裂事例。钢桥面板在我国使用的时间虽然不长,但是已经在某些桥中发现了钢桥面板疲劳开裂的现象。这些疲劳裂纹严重影响了桥梁的使用寿命,因此,对正交异性桥面板疲劳问题的研究是目前桥梁建设中的关键和热点,各国学者在此领域取得了一系列研究成果。国内在20世纪80年代初,铁道科学研究院等相关单位以西江大桥为研究背景,对公路正交异性钢桥面板参与主桁共同工作时的结构特性进行了较为全面的分析及试验研究[2]。1995年,同济大学童乐为在博士论文中对采用开口肋形式的钢桥面板的疲劳性能进行了较为系统的分析[3]。时至今日,正交异性桥面板的结构形式较当初已经发生很大变化,大量新的研究成果相继涌现。 2 正交异性桥面板设计参数的疲劳研究 2.1 面板 面板的最小厚度一般取决于其在轮载作用下的允许变形,为保证桥面铺装层不产生裂纹,纵肋之间面板的竖向挠曲变形不大于0.4mm。基于上述原 则,面板厚度t d可由Kloeppel公式计算: 式中:a为开口截面纵肋间距或闭口截面纵肋腹板最大间距,mm;p 为轮载面压力,kPa。 同时各国规范根据各自的车辆荷载及桥面铺装层情况,为保证钢桥面板的施

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

正交异性板简支钢梁桥建模(algor,ansys)

现代钢桥设计与计算理论参考材料 正交异性板简支梁桥空间模型计算孙秀贵孟续东陈艳秋唐毅周刚郑凯锋 西南交通大学

第一篇正交异性板简支钢梁桥ALGOR建模计算一、打开aglor软件和设定基本操作说明 将桌面上或相应目录中的algor的图标双击打开程序。 选择新建>FEM模型,分析类型选择>线性材料模型的静应力,点击新建,如下图。 弹出“另存为”对话框,确定文件名以及文件的保存路径,最后点击保存。

二、设置单位体系 在主菜单中选择工具>单位 在“unit system”对话框中选择“Metric mks(SI)”; 进行同样操作,更改“unit system”对话框,选择“Custom”; 在“length”对话框中选择“mm”,其他对话框保持不变; 点击“ok”按钮。 三、建立材料库 主菜单>工具>管理材料库 选择“Create New Library”,输入自定义材料库文件的保存路径和名称,单击保存按钮。 再点击确定按钮。

根据本模型需要,建立两种材料:1、钢材;2、混凝土。 右击自定义的材料库,选择“Add New Material” “Material name”对话框中输入材料名称“steel”; “Material model”对话框中选择标准; 在单位体系对话框中选择米制,米千克秒(SI); 更改单位体系,为自定义,长度对话框中选择“毫米(mm)”,单击“ok”按钮。

进行上述相同操作,增加材料“concrete”自定义材料。建立两种材料后,如下图所示: 分别对新建的两种材料输入材料特性: concrete(采用C40混凝土): 质量密度(N/mm^3/g):2.548e-9 弹性模量(N/mm^2):3.25e+4 泊松比:0.2; 剪切弹性模量(N/mm^2):1..3e+4 线膨胀系数:1.0e-5 Steel: 质量密度(N/mm^3/g):7.85e-9

(完整版)一块简支正交各向异性板的振动模态分析

课程设计(论文)任务书 院系(教研室)年月日 学生姓名: 学号: 专业: 1 设计(论文)题目及专题:一块简支正交各向异性板的振动模态分析 2 学生设计(论文)时间:自月日开始至月日止 3 设计(论文)所用资源和参考资料: 1、弹性力学下册 2、ANSYS软件 3、有限元法 4 设计(论文)完成的主要内容: 1)利用有限元法,用ANSYS编程计算一块简支正交各向异性板的振动模态 2)应用板壳理论知识得到板的解析解,并对两种方法所得结果进行比较 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: 提交课程设计论文一本 6 发题时间:年月日 指导教师:(签名) 学生:(签名)

用ansys解法如下: 模态分析步骤 第1步:指定分析标题并设置分析范畴 选取菜单途径Main Menu>Preference ,单击Structure,单击OK 第2步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框, 单击Add出现Library of Element Types 对话框,选择Structural shell再右滚动栏选择Elastic 4node 63,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。第3步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material

Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>orthotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第4步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。 第5步:进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Blocklanczos模态提取法,在Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis 对话框,选择频率的起始值,其他保持不变,单击OK。 第6步:施加边界条件. 选取Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply或OK即可。

疲劳分析流程 fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 1.1国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N 曲线和疲劳极限的概念以来,国内外疲劳领域的研究已经产生了大量新的研究方法和研究成果。 结构疲劳设计中主要有两方面的问题:一是用一定材料制成的构件的疲劳寿命曲线;二是结构件的工作应力谱,也就是载荷谱。载荷谱包括外部的载荷及动态特性对结构的影响。根据疲劳寿命曲线和工作应力谱的关系,有3种设计概念:静态设计(仅考虑静强度);工作应力须低于疲劳寿命曲线的疲劳耐久限设计;根据工作强度设计,即运用实际使用条件下的载荷谱。实际载荷因为受到车辆等诸多因素的影响而有相当大的离散性,它严重地影响了载荷谱的最大应力幅值、分布函数及全部循环数。为了对疲劳寿命进行准确的评价,必须知道设计谱的存在概率,并且考虑实际载荷离散性,才可以确定结构可靠的疲劳寿命。 20世纪60年代,世界上第一条高速铁路建成,自那时起,一些国外高速铁路发达国家已经深入研究机车车辆结构轻量化带来的关键结构部件的疲劳强度和疲劳寿命预测问题。其中,包括日本对车轴和焊接构架疲劳问题的研究;法国和德国采用试验台仿真和实际线路相结合的技术开发出试验用的机车车辆疲劳分析方法;英国和美国对转向架累计损伤疲劳方面的研究等等。在这些研究中提出了大量有效的疲劳寿命的预测研究方法。 1.2、国内 1.2.1国内疲劳研究现状与方法 国内铁路相关的科研院所对结构的疲劳寿命也展开了大量的研究和分析,并且得到了很多研

疲劳强度计算.

疲劳强度计算 一、变应力作用下机械零件的失效特征 1、失效形式:疲劳(破坏)(断裂)——机械零件的断裂事故中,有80%为疲劳断裂。 2、疲劳破坏特征: 1)断裂过程:①产生初始裂反(应力较大处);②裂纹尖端在切应力作用下,反复扩展,直至产生疲劳裂纹。 2)断裂面:①光滑区(疲劳发展区);②粗糙区(脆性断裂区)(图2-5) 3)无明显塑性变形的脆性突然断裂 4)破坏时的应力(疲劳极限)远小于材料的屈服极限。 3、疲劳破坏的机理:是损伤的累笱 4、影响因素:除与材料性能有关外,还与γ,应力循环次数N ,应力幅a σ主要影响 当平均应力m σ、γ一定时,a σ越小,N 越少,疲劳强度越高 二、材料的疲劳曲线和极限应力图 疲劳极限)(N N γλτσ—循环变应力下应力循环N 次后材料不发生疲劳破坏时的最大应力称为材料的疲劳极限 疲劳寿命(N )——材料疲劳失效前所经历的应力循环次数N 称为疲劳寿命 1、疲劳曲线(N γσ-N 曲线):γ一定时,材料的疲劳极限N γσ与应力循环次数N 之间关系的曲线 0N —循环基数 γσ—持久极限 1)有限寿命区 当N <103(104)——低周循环疲劳——疲劳极限接近于屈服极限,可接静强度计算 )10(1043≥N ——高周循环疲劳,当043)10(10N N ≤≤时,N γσ随N ↑→N σσ↓ 2)无限寿命区,0N N ≥ γγσσ=N 不随N 增加而变化 γσ——持久极限,对称循环为1-σ、1-τ,脉动循环时为0σ、0τ 注意:有色金属和高强度合金钢无无限寿命区,如图所示。 3)疲劳曲线方程))10(10(04 3N N ≤≤ C N N m m N =?=?0γγσσ——常数

大型钢箱梁正交异性板止裂孔尺寸对止裂效果的影响研究

大型钢箱梁正交异性板止裂孔尺寸对止裂效果的影响研究 发表时间:2019-08-27T11:32:37.813Z 来源:《基层建设》2019年第16期作者:李增光林小兵徐文德[导读] 摘要:文章考虑在裂缝尖端布置多种尺寸止裂孔,采用ANSYS软件对开裂模型进行线弹性有限元分析,通过对比不同止裂孔尺寸下模型裂缝尖端区域最大应力值,研究不同止裂孔尺寸对正交异形板裂缝发展控制的效果,结果表明:随着止裂孔尺寸的增大,裂缝位置附近最大应力值逐渐减小,但裂缝尾部位移也逐变大,对钢板界面强度的削弱作用也越严重,同时结合工程实际,验证了结论的合理性。 中交公路规划设计院有限公司北京 100010 摘要:文章考虑在裂缝尖端布置多种尺寸止裂孔,采用ANSYS软件对开裂模型进行线弹性有限元分析,通过对比不同止裂孔尺寸下模型裂缝尖端区域最大应力值,研究不同止裂孔尺寸对正交异形板裂缝发展控制的效果,结果表明:随着止裂孔尺寸的增大,裂缝位置附近最大应力值逐渐减小,但裂缝尾部位移也逐变大,对钢板界面强度的削弱作用也越严重,同时结合工程实际,验证了结论的合理性。关键词:钢箱梁;止裂孔尺寸;有限元法 0 引言 钢箱梁桥相比混凝土桥梁具有施工方便、自重较轻、强度高、空气动力性能好等特点,目前已成为大跨度桥梁的主流形式[1],我国于20世纪80年代开始建造钢箱梁桥,1984年简支钢箱梁桥马房北江大桥建成通车[2],随着大量大跨钢箱梁桥的投入使用,以及超载、车流量超出设计限值及焊接缺陷等问题在大型钢箱梁桥中频繁出现,钢箱梁疲劳病害问题已日益凸显严重。钢箱梁桥正交异性板是疲劳损伤多发的部位之一[3],在桥梁日常养护或检查中,若发现疲劳裂缝需及时进行修复,止裂孔是目前普遍采取的一种临时止裂修补措施,对裂缝的发展具有良好的抑制作用,可以通过对裂缝的跟踪观察,确定合适的时机进行统一修复[4]。止裂孔法的基本原理是消除裂缝尖端的应力集中区域,目前常用的方法是在裂纹尖端施打止裂孔,何云树[5]等人研究了止裂孔尺寸对航空器结构裂纹的止裂效果,但主要是针对铝合金包铝板材料;刘天筎[4]等人研究了止裂孔多孔布置方法对止裂效果的影响,针对裂纹尖端止裂孔尺寸对大型钢箱梁正交异性板止裂效果的影响研究较少,因此本文考虑不同止裂孔尺寸,通过有限元分析并结合工程实际,找出合理的止裂孔尺寸。 1 有限元分析模型 本文采用ANSYS 19.0软件,对止裂孔钢板进行线弹性有限元分析,计算止裂孔处的最大应力值,研究对象为40cm×20cm的钢板,裂缝长度3cm,材料弹性模量E=206GPa,泊松比ν=0.3。在线弹性分析中裂缝尖端具有奇异性,因此在裂缝尖端区域选用奇异单元,并采用8节点平面四边形单元PLANE183进行单元网格划分,在垂直于裂缝发展方向的边缘施加1MPa线荷载,平行于裂缝发展方向的一个板边缘施加X和Y方向约束,另一个板边缘施加Y方向约束[4]。考虑4种不同的止裂孔尺寸,止裂孔直径D分别为6mm、8mm、10mm、12mm,图1为1/2有限元网格图。 图1 1/2有限元网格图 2 计算结果分析 在裂缝尖端施打不同孔径的止裂孔,计算得到最大应力值和裂缝尾部位移,结果见表1,将结果云图关于Z-X平面对称,得到整体模型结果云图,如图2所示。 图2 孔径为6mm的模型应力云图 表1 不同止裂孔下模型裂缝尖端区域最大应力值和裂缝尾部位移值

疲劳寿命设计方法

寿命设计方法 -王光建

目录 …什么是疲劳失效 …无限寿命设计方法 ?S-N曲线(wohler curve)及疲劳极限?基于疲劳极限的评判 ?考虑平均应力的损伤修正…有限寿命设计方法 ?Miner法则(疲劳损伤线性累积) ?雨流计数法?寿命计算…疲劳寿命仿真计算 …疲劳寿命计算的不足

疲劳失效 …疲劳是一种机械损伤过程 …特点: 在这一过程中即使名义应力低于材料屈服强度;破坏前无明显塑性变形,突然发生断裂…本质: ?交变载荷+金属缺陷?金属的循环塑性变形(微观) ?疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程 ?疲劳是损伤的累积 金属内部缺陷微裂纹产生裂纹扩展断裂 (晶体位错) 疲劳发生过程 …疲劳的判断: 金属材料的疲劳断裂口上,有明显的光滑区域与颗粒区域,光滑区域是疲劳断裂区,颗粒区域是脆性断裂区 粗糙的脆性断裂区 光滑的疲劳区 裂纹源

-S-N曲线(Wohler curve)及疲劳极限…S-N曲线是根据材料的疲劳强度实验数据得出的应力和疲劳寿命N的关系曲线 …S-N曲线用于描述材料的疲劳特性 σ S-N curve 1871年,Wohler首先对铁路车轴进行了系统的疲劳研究,发展了S-N曲线及疲劳极限概念

-S-N曲线(Wohler curve)及疲劳极限…疲劳极限:一般规定,循环次数107所对应的最大应力为疲劳极限 σ σ limit S-N curve

-基于疲劳极限的评判 …Alternating stress 作为判断应力 Alternating stress=(σ - σmin)/2 max …判断标准 σAlternating stress<σ limit σσ limit σ √ 2 S-N curve σ × 1

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

钱冬生--关于正交异性钢桥面板的疲劳

关于正交异性钢桥面板的疲劳 ——对英国在加固其塞文桥渡时所作研究的评介 钱冬生3 提 要 对英国塞文桥渡正交异性板构造的疲劳裂纹产生的原因、所作试验及对其疲劳寿命计算作了介绍,并进行了探讨。 关键词 英国 塞文桥渡 钢正交异性板 疲劳 3教授,610031,西南交通大学 1 塞文桥渡的原结构 塞文桥渡包含:中跨988m 的塞文悬索桥,中跨 234.7m 的瓦埃斜拉桥,跨度61.7~64.0m 的连续梁(引桥)。其钢梁为全部采用正交异性钢桥面板的单室单箱截面梁。 钢正交异性板桥面是在第二次世界大战之后于50年代初期出现的。开始时纵肋用开口截面,在60年代逐渐改为闭口截面。由于制造工艺使闭口纵肋长度受到限制,其设计长度以相邻两横梁之间的距离来决定。在塞文桥渡,此长度为4.572m (悬索桥范围内)和4.267m (其余部分)。纵梁两端抵住横梁,用角焊缝作连接(横梁实质上由横肋及横隔板组成,将箱梁的部分顶板和底板 当作横梁的翼缘使用;横梁高度与箱梁高度相同。)。按照悬索桥的设计说明,强度和刚度都不控制加劲 梁。因此,钢材厚度主要按制造和安装要求决定。面板厚度为11.5mm ,纵肋厚度为6.4mm ,角焊缝焊脚为6mm 。图1为英国TRRL (T ran spo rt and Road R esearch L abo rato ry ,运输和道路研究试验所)所用试件的截面,其中(a )完全按塞文桥渡各钢梁的尺寸办理,(b )表示改进方案,将纵肋截面从梯形改为V 形; 在纵 图1 TRRL 试件截面 肋同横梁相遇处,在横梁开孔,让纵肋穿过。 还需指出:塞文悬索桥在压低造价方面有些过火。它省去储梁场地,省去运梁驳船;只是需要在梁段端头敞口处,用一厚5mm 的横隔板充当“封头板”,使梁段变成浮体;既可在水上储存,又可用拖船直接将它推顶到桥位。这样一来,封头板上端便同梯形纵肋下缘相焊,而这一焊接构造就使纵肋在运营中开裂。2 英国桥规BS 5400第10篇 英国B S 5400第10篇是1980年公布的。其译本见文献[1],对其主要部分、特别是其从文献[3]制订焊接构造分级的经过,见文献[2]。 此规范的优点,在于讲明基本原理,那就是凭借荷载频值谱来推算验算点的应力频值谱,再用M iner 的线性积伤规则,将应力频值谱换算成常幅加载的应力,借以同验算点的疲劳抗力相比,若前者不大于后者,则验算就是通过。文献[1]p 182的插页内的表11,或文献[2]p 84的插页内的图3-11,都是该规范的典型营业车荷载。而文献[1]p 181的图10-17则是迹线分布频数图,这就是说,当某验算点的应力在横桥方向的影响线很短而纵标变化剧烈时,需要将横向影响线按100mm 宽度划分成10多份,按这图所给分布频数推算各份之内的车数,再按影响线纵标推算相应的应力,从而推出应力频值谱。文献[4]p 1所介绍的疲劳检算方法,就指出了要使用文献[1]的表11和图10-17。 关于验算点的疲劳抗力,文献[1]在第10篇附录H 用表17a 、b 、c 的图和文字说明了各种构造按疲劳抗力所进行的分级,包含A 、B 、C 、D 、E 、F 、F 2和G 以及W ,而附录A 则用S 2N 关系(致伤应力脉—加载次数)表达不同分级构造对疲劳的抗力。由文献[2]所介绍的制订这项构造分级的经过可知:所用作依据的疲劳试验的试件,一般是承受轴向力的小试件。因此,在这一规范正文第5.4条(见文献[1]p 115)明确指出:表17中的各分级不适用于公路桥正交异性钢桥面板的焊接构造。 8 桥梁建设 1996年第2期

李乔说桥-13:正交异性钢桥面板

李乔说桥-13:正交异性钢桥面板 1让人爱、让人恨的桥面板形式对正交异性钢桥面板,大家都很熟悉,这是钢桥尤其是大跨度钢桥结构中采用最多的一种桥面板结构形式,也是现代钢桥结构重要的标志性成果之一。但这种桥面结构同时也是钢桥领域里最令人头痛的结构之一,可以说是既“让人爱”又“让人恨”的一种桥面结构形式。让人爱,是因为这种结构具有众多的优点,如重量轻、承载力高、适用性强等,是目前为止仍然不能用其他形式桥面板取代的主要结构形式。而让人恨,则是因为它服役几十年以来,不断地出现令人头痛的疲劳开裂和桥面铺装破坏问题,而且成为了一个出现概率很高的普遍性病害、至今也没有公认的既经济又有效的解决措施的病害。 一般的正交异性钢桥面板指在桥面的面板下面采用纵横加 劲肋加强的构造形式,而目前应用最为广泛的正交异性钢桥面板是采用U形纵向加劲肋的构造形式。如图1所示,它由面板(顶板)、U形纵向加劲肋以及横向加劲肋或横隔板组成。目前世界各国已建成的采用正交异性钢桥面板的各类桥梁已超过1500座,我国正在运营和在建中的该类型桥梁数量已达200余座。(a)大跨度钢箱梁斜拉桥(b) 采用正交异性钢桥面板的钢箱梁横断面(c) 正交异性钢桥面板构造示意图及疲劳开裂统计图1 大跨度钢桥及正交异性钢桥面板

2 两大病害最早在大跨度钢桥上发现正交异性钢桥面板疲 劳开裂的是英国Severn桥,该桥开通运营仅5年即发现其 正交异性钢桥面板出现疲劳裂纹。此后,正交异性钢桥面板结构在包括欧洲、美国、日本及我国等世界范围内相继出现了大量的疲劳开裂案例。例如国内某大桥通车数年后即发现大量疲劳裂缝,经过维修加固,再经过几年的运营,又出现了更多的疲劳开裂。这种现象在很多类似结构的桥面板中出现,给桥梁的安全和耐久性带来巨大影响。由于桥面铺装的存在,这种发生在桥面板上的裂缝在开裂初期不容易被发现,一旦发现就已经贯穿顶板了。而且这种裂缝较难修复加固,多数情况下必须中断交通并拆除桥面铺装才能进行。 根据日本对东京2条代表性高速公路中约7000个闭口纵肋正交异性钢桥面板的疲劳病害进行的统计分析结果,主要疲劳裂纹类型及其构成如图1(c)所示。图中带圆圈的编号表示疲劳开裂的部位及类型,圆饼图表示各类型开裂所占的比例。由图可见,占比例最大的为②、③、④类,分别为纵向U肋与横隔板、竖向加劲肋与纵腹板以及纵向U肋与顶板的焊缝开裂。其中的第③类开裂对应的构造现在基本不再采用,所以目前出现最多的是②、④两类。 除了钢桥面板开裂以外,这种结构带来的另一个通病是桥面铺装过早损坏(图2),并成为每座同类桥面板结构的大桥设计时让人颇为纠结的问题。从我国90年代修建的此类结构

正交各向异性单层板

正交各向异性单层板 对于复合材料,由于复合材料是由基体和增强纤维组成的多相非均质材料,因此 复合材料具有明显的各向异性性质。一般来说,确定复合材料力学性能有两种方法: 物理机理的力学分析方法和唯象理论方法。物理机理的力学分析方法是通过细观或微 观力学理论建立描述复合材料物理力学性能的各参数之间关系表达的方法,唯象理论 方法是将非均质多相复合材料作为均ABC电子质连续介质(以非均质多相复合材料与均质连续介质单相材料建立宏观上物理力学性能的等效模型),在实验的基础上建立复合材料以总体宏观强度性能为特征的破坏准则(强度条件)。两种方法的主要区别在于; 物理机理的力学分析方法通过分折复合材料破坏过程的物理机理,从而给出复合材料 物理力学性能的各参数之间关系表达式;唯象理论方法则是通过实验,以实验为基础,从而给出复合材料以总体宏观强度性能为特征的破坏准则(强度条件)。 显然,唯象理论方法虽然能够在各种载荷条件下给出复合材料的破坏准则强度条件,但其所给出的复合材料的破坏准则(强度条件)不能解释复合材料破坏过程的物理 机理。尽管唯象理论方法不能解释复合材料何时从何处开始破坏,以及从局部开始破 坏到最终整体破坏的复杂过程,但唯象理论方法能够提供各种载荷(各种复杂应力状态)下的强度破坏指标,且该指标正是工程设计个保证所设计构件(或罗部件)安全的基本 指标。因此,基于唯象理论方法的破坏准则研究仍然是复合材料强度理论研究的一个 重要方向。本章关于复合材料强度理论的分析属于唯象理论方法范畴。正夹各庙异性 单层扳强魔理论的路本IC现货商概念各向同性线弹性体的一个显著特点是:各向同性线弹性体内同一点各个方向强度等同,且强度与方向无关。 如所示各向同性(均质)线弹性体,在各向同性(均质)线弹性体内两个不同方向取和舶试件进行试验。实验结果表明和两试件所呈现的力学性能在宏观统计学意义上完全 相同,即各向同性(均质)线弹性体内任意点、任意方向上具有完全相同的力学性能(包 括完全相同的强度)。对于复合材料,如图所示。由于纤维增强复合材料的各向异性,在纤维增强复合材料内冕个不同方向取和比试件进行试验。显然,由于沿增强纤维方向,因此具有较其他方向更高的强度;由于沿与增强纤维正交方向因此具有较其他方 向更低的强度;而介于和两方向艾博希电子之间,其强度也介于两者之间。由此可知,复合材料的强度与方向有关复合材料内同一点不同方向的极限应力不相同,即复合材 料的强度是方向的函数。在采用唯象理论方法分析复合材料单层板的强度时,增强纤 维复合材料单层板可看做是(均质)正交各向异性线弹性体。增强纤维复合材料单层板 只承受中面内裁荷时,增强纤维复合材料单层板可视为平面应力状态下的正交各向异 性单层板。cjmc%ddz

疲劳寿命理论及应用

3.疲劳寿命理论及应用 (1)疲劳损伤发生在受交变应力(或应变)作用的零件和构件,如起重机的桥架和其他结构件、压力容器、机器的轴和齿轮等,它导致零件或构件的过大变形或断裂。零件和构件在低于材料屈服极限的交变应力(或应变)的反复作用下,经过一定的循环次数以后,在应力集中部位萌生裂纹。裂纹在一定条件下扩展,最终突然断裂,这一失效过程称为疲劳破坏。材料在疲劳破坏前所经历的应力循环数称为疲劳寿命。 (2)常规疲劳强度计算是以名义应力为基础的,可分为无限寿命计算和有限寿命计算。零件的疲劳寿命与零件的应力、应变水平有关,它们之间的关系可以用应力一寿命曲线(e-n曲线)和应变一寿命曲线(δ-n曲线)表示。应力一寿命曲线和应变一寿命曲线统称为s-n曲线。根据试验可得其数学表达式。在疲劳试验中,实际零件尺寸和表面状态与试样有差异,常存在由圆角、链槽等引起的应力集中,所以,在使用时必须引入应力集中系数k、尺寸系数ε和表面系数β。 (3)循环应力的特性用最小应力e min与最大应力e max的比值r=e min/e max表示,r称为循环特征。对应于不同循环特征,有不同的s-n曲线、疲劳极限和条件疲劳极限。对不同方向的应力,可用正负值加以区别,如拉应力为正值,压应力为负值。当r=-1,即e min=e max 时,称为对称循环应力;当r=0,即e min=0时,称为脉动循环应力;当r=+1,即e min=e max 时,应力不随时间变化,称为静应力;当+1>r>-1时,统称为不对称循环应力。对应于不同循环特征,有不同的s-n曲线、疲劳极限和有限寿命的条件疲劳极限。 材料疲劳极限可从有关设计手册、材料手册中查出。缺乏疲劳极限数据时,可用经验的方法根据材料的屈服极限es,和断裂极限eb计算。 零件的疲劳极限erk和τrk是根据所使用材料的疲劳极限,考虑零件的应力循环特性、尺寸效应、表面状态应力集中等因素确定。 (4)疲劳损伤积累理论认为:当零件所受应力高于疲劳极限时,每一次载荷循环都对零件造成一定量的损伤,并且这种损伤是可以积累的;当损伤积累到临界值时,零件将发生疲劳破坏。较重要的疲劳损伤积累理论有线性疲劳损伤积累理论和非线性疲劳损伤积累理论。线性疲劳损伤积累理论认为,每一次循环载荷所产生的疲劳损伤是相互独立的,总损伤是每一次疲劳损伤的线性累加,它最具代表性的理论是帕姆格伦一迈因纳定理。 (5)迈因纳(palmgren-miner)定理 设在载荷谱中,有应力幅为e1, e2…ei…,等各级应力,其循环数分别为n1、n2…ni…从材料的s-n曲线,可以查到对应于各级应力的达到疲劳破坏的循环数n1、n2…ni…根据疲劳损伤积累为线性关系的理论,比值ni/ni为材料受到应力ei的损伤率。发生疲劳破坏,即损伤率达到100%的条件为: P/g nJZ(~ .|&G€ E9 [ 本资料来源于贵州学习网财 https://www.360docs.net/doc/3315628062.html, ] P/g nJZ(~ .|&G€ E9 会考试注册资产评估师 4.损伤零件寿命估算 计算带缺陷零件的剩余自然寿命一般采用断裂力学理论,通过建立裂纹扩展速率与断裂力学参量之间的关系来进行计算。断裂力学理论认为:零件的缺陷在循环载荷作用下会逐步扩大,当缺陷扩大到临界尺寸后将发生断裂破坏。这个过程被称为疲劳断裂过程。 疲劳断裂过程大致可分为四个阶段,即成核、微观裂纹扩展、宏观裂纹扩展及断裂。 损伤零件疲劳寿命的估算主要应用帕利斯(paris)定理。 帕利斯(paris)定理主要内容是:对裂纹扩展规律的研究,断裂力学从研究裂纹尖端附近的应力场和应变场出发,导出裂纹体在受载条件下裂纹尖端附近应力场和应变场的特征量来进行。这个特征量用应力强度因子k表示。k值的变化幅度也是控制裂纹扩展速度da/dn的主要参量。在考虑材料性能参量对裂纹扩展速度的影响后,帕利斯提出了以下裂纹扩展速度的半经验公式:

正交异性板

正交异性板 正交异性版即正交异性钢桥面板,是用纵横向互相垂直的加劲肋(纵肋和横肋)连同桥面盖板所组成的共同承受车轮荷载的结构。这种结构由于其刚度在互相垂直的二个方向上有所不同,造成构造上的各向异性。 细部构造 对于大跨度悬索桥和斜拉桥,钢箱梁自重约为PC箱梁自重的1/5,1/6.5。正交异性钢板结构桥面板的自重约为钢筋混凝土桥面板或预制预应力混凝土桥面板自重的1/2,1/3。所以,受自重影响很大的大跨度桥梁,正交异性板铜箱梁是非常有利的结构形式。 通常在钢桥面板上铺装沥青混凝土铺装层,其主要作用是保护钢桥面板和有利于车辆的行走性。近代正交异性钢桥面板的构造细节如图回所示,由钢面板纵助和横肋组成,且互相垂直。钢面板厚度一般为12mm,纵肋通常为U形肋或球扁钢肋 或板式助,U形肋板厚一般为6mm或8mm,横梁间距一般为3.4,4.5m,两横梁之间设一横肋。 制造时,全桥分成若干节段在工厂组拼,吊装后在桥上进行节段间的工地连接。通常所有纵向角焊缝(纵向肋和纵隔板等)贯通,横隔板与纵向焊缝、纵肋下翼缘相交处切割成弧形缺口与其避开。 分析方法 正交异性板除作为桥面外,还是主梁截面的组成部份,它既是纵横梁的上翼缘,又是主梁的上翼缘。传统的分析方法是把它分成三个结构体系加以研究,即: (1)主梁体系:由盖板和纵肋组成主梁的上翼缘,是主梁的一部份。 (2)桥面体系:由纵肋、横梁和盖板组成,盖板成为纵肋和横梁的共同上翼缘。 (3)盖板体系:仅指盖板,它被视为支承在纵肋和横梁上的各向同性连续板。

计算方法 解析法是将正交异性钢桥面板结构作为弹性支承连续正交异性板分析的较为成熟的经典计算方法。根据所取的计算模型不同,解析法计算又可分为以下几种: (1)把板从肋的中间分开,并归并到纵横肋上去,构成格子梁体系。它的缺点是未能考虑板的剪切刚度。 (2)把纵横梁分摊到板上,也就是将板化成一种理想的正交异性板。当荷载作用在横肋上时,这种方法是较好的,但当荷载作用在两横肋中间时,此法的精度就差了。 (3)对法2的改进,即将作用有荷载的那个节间单独处理,令节间的横向抗弯刚度等于盖板的抗弯刚度,其余节间解同法2 (4)Pelikan-Esslinger法。此法是将纵肋均分摊到盖板上,而将横肋作为刚性支承,求解后再将横肋的弹性支承计入。 随着计算机技术的发展,正交异性板的求解又有了很多新的数值法。目前较有成效的是有限差分法、有限条法和有限单元法。疲劳问题 钢桥面板作为主梁的上翼缘,同时又直接承受车辆的轮载作用。如上所述,钢桥面板是由面板、纵肋和横助三种薄板件焊接而成,在焊缝交叉处设弧形缺口,其构造细节很复杂。当车辆通过时,轮载在各部件上产生的应力,以及在各部件交叉处产生的局部应力和变形也非常复杂,所以钢桥面板的疲劳问题是设计考虑的重点之一。自1966年英国Severn桥(悬索桥)采用扁平钢箱梁以来,钢桥面板陆续出现许多疲劳裂纹,主要产生的部位有纵助与面板之间的肋角焊缝、纵横肋交叉的弧形缺口处,U形肋钢衬垫板对接焊缝处等,其中梁段之间钢桥面板工地接头是抗疲劳最薄弱的部位。 由于钢桥面板不可能更换,产生裂纹后修补又比较困难,50年来(通过一系列的试验研究和有限元分析,以及实

正交异性板钢桥面(3.14)2

正交异性板钢桥面结构应用技术工艺的探讨 The structural characteristics and manufacturing craft of steel box girder with an orthotropic steel bridge deck 叶翔叶觉明 ( Ye Xiang Ye Jue-ming ) 中铁大桥局武汉桥梁科学研究院武汉 430034 ( Bridge Science Research Institute, Major Bridge Engineering Bureau of China Railways, Wuhan 430034) 摘要: 正交异性钢桥面板是钢结构桥梁的重要结构件,正交异性钢桥面板由钢板、U肋和横隔板组成。以钢箱梁正交异性钢桥面板为例,介绍正交异性钢桥面板结构特点和组拼、 焊接和工地连接工艺特点,探讨在目前焊接和组装工艺条件下,延长正交异性钢桥面板 使用寿命的加工技术和工艺。 abstract: The orthotropic steel bridge deck is important structural of the steel structure bridge, the orthotropic steel bridge deck made is composed by the steel plate、 the U-shaped stiffener and the cross spacer . Taking the steel box girder deck plate as research object, the orthotropic steel bridge deck unique feature and craft characteristic for assembling、welding and site connection of the plate elements was deal with。 under the condition of the current welding and assembling workmanship, technology and technique to prolong the service life of orthotropic steel bridge deck was researched and discussed. 关键词: 正交异性钢桥面板板单元横隔板 U肋焊接工艺焊接残余应力 Key word: orthotropic steel bridge deck plate element cross spacer U-shaped stiffener welding technology Weld residual stress 对于大跨度悬索桥和斜拉桥,钢箱梁是非常有利的结构形式。钢箱梁以面板、底板、腹板、纵横隔板及加劲结构件为主要构成。其中面板钢板一般刚度较小,在轮载作用下易发生较大的变形,因此需要一定的钢板厚度,同时在面板上安装纵肋和垂直于纵肋的横隔板加劲,这是一种典型的正交异性桥面板。钢桥面板结构在桥梁上是不可能更换的,如果产生缺陷或裂纹扩展后修补又比较困难,需要从结构和实用焊接加工技术工艺等方面予以重视,延长桥面板的安全使用寿命。 1.正交异性桥面板结构和制造加工特点

钢桁梁正交异性板桥面施工工艺

钢桁梁正交异性板桥面施工工艺 7.6.1 工艺概述 本施工工艺适用于钢桁梁正交异性板桥面施工。 7.6.2 作业内容 钢桁梁正交异性板桥面施工主要包括桥面板焊接和桥面板安装。 7.6.3 质量标准及检验方法 《铁路钢桥制造规范》(TB10212-2009) 《铁路桥涵工程施工质量验收标准》(TB10415—2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) 《客货共线铁路桥涵工程施工技术指南》(TZ203-2008) 《铁路钢桥保护涂装》(TB/T1527-2004) 7.6.4 工艺流程图 桥面板架设采用桥面系同步安装方案施工。 7.6.5 工艺步骤及质量控制 一、板桁组合桥面板焊接 板桁组合桥面板焊接采用单面焊双面成型工艺保证焊缝熔透。桥面板焊缝下部采用CO2气体保护电弧焊打底,上部采用埋弧焊。桥面板横向焊缝应顺桥向打磨匀顺,纵向焊缝应横桥向打磨匀顺。焊接工艺需符合设计要求,坡口熔透焊应按规范的要求进行无损检查。

二、桥面板安装 桥面板安装应在本节间主桁杆件安装完毕后进行,安装时应在连接接头上打入40%的冲钉,穿60%的高强度螺栓并初拧,逐步用高强度螺栓换下所有的冲钉并初拧,待焊缝施焊完毕后,再将所有的高强度螺栓终拧。桥面板安装后纵向焊缝在下一个节间钢梁安装时焊完,横向焊缝可适当滞后1~2 个节间施焊。有运输道的桥面板纵横缝的焊接,在下一个节间钢梁安装时必须焊完。最前端桥面板应先连接纵梁(肋)、横梁(肋)的螺栓,之后再进行焊接。 三、桥面板安装注意事项: ⑴焊接工作环境湿度应小于80%,焊接低合金钢的环境温度不应低于5℃。焊接过程中,注意焊接部位需要挡风。 ⑵安装桥面板时,不得碰撞钢梁杆件。 ⑶桥面板施焊期间,尽量减少作用其上的动荷载。 ⑷桥面剪力钉和道砟槽的施工,应分别从各墩顶开始,向跨中方向施工。双幅桥面施工应同步进行。 ⑸道砟槽施工原则上应该在钢梁合龙后主结构(含平联杆件)全部安装完毕,吊索完全放松,结构处于一期恒载作用下施工。 四、桥面板焊接一般要求 ⑴进行正交异性板块焊接的焊工应持有焊工资格证书,具备钢桥焊接资格,且经监理认可并只能从事证书中认定范围内的工作。 ⑵焊工焊接前应检查所用焊接设备及仪表运行情况,确认准确无误后方可开工作业。 ⑶焊工必须熟悉本工艺规程和施工图,未经焊接主管工程师同意,不得更改本工艺规程、施工图对焊接的有关规定,并对所焊焊缝质量负责。

相关文档
最新文档