QSY1506-2012钻井液液气分离器

QSY1506-2012钻井液液气分离器
QSY1506-2012钻井液液气分离器

Q/SY 中国石油天然气集团公司企业标准

Q/SY 1506—2012

钻井液液气分离器

Driling fluid liquid gas separator

2012—07—03发布 2012—09—01实施

中国石油天然气集团公司发布

Q/SY 1506- 2012

目次

前言 (Ⅱ)

1 范围 (1)

2 规范性引用文件 (1)

3 型号与基本参数 (1)

3.1 型号表示方法 (1)

3.2 分离器基本参数 (2)

4 基本要求 (2)

4.1材料 (2)

4.2设计、制造要求 (2)

4.3安全阀 (4)

4.4压力表 (4)

4.5涂装 (4)

5 试验方法及检验规则 (4)

5.1 试验方法 (4)

5.2 检验规则 (4)

5.3 判定规则 (5)

6 标志、包装、运输及贮存 (5)

6.1 标志 (5)

6.2 包装、运输及贮存 (6)

Q/SY 1506- 2012

前言

本标准按照GB/T1.1-2009给出的规则起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本标准由中国石油天然气集团公司石油石化设备与材料专业标准化技术委员会提出并归口。

本标准起草单位:中国石油集团渤海石油装备制造有限公司中成装备制造分公司。

本标准主要起草人:谈献英、王树龙、艾绍磊、魏忠华、张恒、张振峰、柴占文、郭亭亮、石健、刘标、王红月、李鹤。

Q/SY 1506- 2012

钻井液液气分离器

1 范围

本标准规定了钻井液液气分离器(以下简称分离器)的型号与基本参数、基本要求、设计、制造、试验、检验、标志、包装、运输及贮存。

本标准适用于石油、天然气勘探开发过程进行钻井作业时,对钻井液进行液气分离处理的承压分离器。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB 150 钢制压力容器

GB/T 1226 一般压力表

GB/T 12241 安全阀一般要求

GB/T 13306 标牌

GB/T 9115 对焊钢制管法兰

JB/T 4711 压力容器涂敷与运输包装

JB/T 4730.2 射线检测

JB/T 4730.3 超声检测

HG/T 20592 钢制管法兰(PN系列)

HG/T 21520-2005 垂直吊盖带颈平焊法兰人孔

3 型号与基本参数

3.1型号表示方法

改进序号:用阿拉伯数字表示,原型不注。

分离罐最高工作压力:兆帕(MPa)

钻井液液体最大日处理量:立方米每天(m3/d)

钻井液液气分离器代号

示例: YQF-8000/1.5-2,表示钻井液液体最大日处理量8000m3/d,罐体最高工作压力1.5 MPa,第2次改进设计的钻井液液气分离器。

Q/SY 1506- 2012

3.2 分离器基本参数

3.2.1 分离器的基本参数见表1。

3.2.2 处理量为8000 m3/d的分离器应配有减压装置,减压装置宜采用减压罐,减压罐的进口压力分为35 Mpa 、21 Mpa、14 Mpa、7 Mpa、3.5 Mpa。

4 基本要求

4.1 材料

按本标准设计、制造的分离罐、减压罐的选材应符合GB 150的规定。

4.2 设计、制造要求

4.2.1 分离罐(见图1)、减压罐罐体设计、制造应符合GB 150 的规定。

4.2.2排气、排液口法兰应符合GB/T 9115对焊钢制管法兰中的规定。

4.2.3 人孔的型式、基本参数和尺寸应符合HG 21520-2005中图3及表3-1~表3-3的规定。

4.2.4安全阀连接法兰应符合HG/T 20592的要求。

4.2.5排液管应设置U形管(见图2),用来调节液柱液封面。现场安装时宜满足l≥3m。

4.2.6液气分离器的排气口应设置阻尼板。

4.2.7分离罐、减压罐的A、B类焊接接头应进行局部射线探伤检验,检测长度不得少于各条焊接接头长度的20%,且不小于250mm。检查结果应不低于JB 4730.2中的Ⅲ级为合格。其余焊缝进行超声波无损探伤检测,检查结果应不低于JB 4730.3中Ⅱ级为合格。

Q/SY 1506- 2012

图1 分离罐简图

图2 U形管安装示意图

说明:l 为液柱液封面高度。

Q/SY 1506- 2012

4.2.8分离器的外形尺寸测量误差应不大于±5mm。

4.3 安全阀

4.3.1 在分离器上部应安装安全阀,安全阀应在其分离器最高工作压力的98%~105%的压力范围内自动开启,且开启灵活可靠。

4.3.2 安全阀应经专业检测部门调校、校验,铅封完整,无损坏,标牌上开启压力标识清楚。

4.4 压力表

4.4.1压力表量程应符合GB/T 1226的规定。

4.4.2压力表的精度等级应不小于1.6级。

4.4.3压力表的表盘直径应不小于100mm。

4.4.4压力表类型应选用耐震型。

4.5 涂装

分离器的涂装应按JB/T 4711的规定执行。

5试验方法与检验规则

5.1 试验方法

5.1.1 分离罐、减压罐应分别按GB 150中的试验方法进行水压、气密性试验。

5.1.2分离器A、B类焊接接头进行射线探伤检验,进液管汇焊缝进行超声波无损探伤检测。

5.1.3 分离器外形尺寸采用卷尺进行测量。

5.1.4 目测安全阀铅封完整及标牌标定值。

5.1.5目测压力表量程、类型、精度等级,合格证、检验报告是否有效。

5.2 检验规则

5.2.1按检验类型分出厂检验和型式试验,其内容见表2。

5.2.2 每台分离器均应进行出厂检验。出厂检验项目见表2。

Q/SY 1506- 2012

5.2.3 型式试验

有下列情况之一时,应进行型式试验:

a)产品定型及改型时;

b)当结构、材料、工艺有较大变化时;

c)当质量监督部门提出质量检查时;

d)当生产厂家变更或生产人员结构发生重大变化时;

e) 至少应抽两台进行型式试验。

5.3 判定规则

在出厂检验中,各项检验项目均符合要求时,判为该产品为合格,否则判为该产

品为不合格。

在型式试验中,各项检验项目均符合要求时,判为该产品为合格,否则判为该产

品为不合格。

6 标志、包装、运输及贮存

6.1 标志

6.1.1每台分离器的标牌应固定于明显的位置。标牌设计应符合GB/T 13306的规定。

6.1.2标牌内容应包括:

a)产品名称、规格及型号;

b)产品容积;

c) 最高工作压力;

d)产品质量;

e)出厂编号、日期;

f)制造厂名称。

6.1.3分离器出厂前应带下列文件:

a)产品合格证及特种设备的制造许可证;

b)主要零部件材质单、材料的化学成分和力学性能报告;

c) 焊缝无损检测报告;

d)压力试验报告;

e)气密性试验报告;

f)主要外形尺寸检验记录;

g)产品使用说明书及维护保养手册。

Q/SY 1506- 2012

6.2 包装、运输及贮存

6.2.1 设备包装、运输按JB/T 4711的规定。

6.2.2设备贮存前应将分离器内部介质排放干净,所有法兰接口应当予以保护。

第五章设备选型及计算.

第五章设备平衡计算 设备选型的主要依据是物料平衡,根据由浆水平衡计算出来的生产1t风干浆所需要的物料的两来计算通过每一设备的物料量(通过量),然后用通过量来校核或计算每一设备所应具有的生产能力,最终确定同种设备的台数。 5.1设备平衡的原则 1.主要设备的确定:确定主要设备的生产能力时,要符合设备本身的要求, 既不能过大的超出设计能力的要求,又要适当的留有 余地。 2.设备数量的确定:对于需要确定台数的设备,其数量要考虑该设备发生 事故或检修时仍有其他设备做备用维持生产。 3.备品的确定 4.公式计算法的选择 5.避免大幅度波动 5.2设备台数的确定方法: 设备台数的确定,是通过理论或经验公式计算设备生产能力。根据我国现有纸厂的实践经验和理论建设,确定设备的生产能力或按设备产品目录查取其生产能力后,则可以用下列的公式计算出所需的台数。

式中 N——选用台数 Q——生产中需该种设备处理的物料量(t/d) G——该设备的生产能力(t/d) K——设备利用系数,其大小随不同设备,以及设备所处的生产位置不同 而不同,打浆,漂白筛选设备的取0.7,蒸煮设备的 K值取0.8等 5.3设备台数的确定方法 5.3.1备料工段 由备料段物料平衡计算可知,每天处理玉米秆料量 2551.3817×10-3×50=127.5691 t/d 则每小时处理苇料的数量=5.3154 t/h 1. 带式运输机:(1台) 已知:设定皮带运输机运输玉米秆的速度为1.4m/s。 带式运输机的生产能力可由公式: G=3600F·v·r ○1采用平行带运输,则物料层的截面积按三角形面积求得: F=b·h/2 ○2 式中: F——带上物料层的截面积,m2; r——物料表观重度,t/m3取值0.13 t/m3; v——运输机的速度; b——物料层宽度,m 取值0.8B( B为带宽); h——物料层的高度, h=b·tgα/2 α=30°(物料堆积角)

液气分离器设备技术要求

第四章货物需求一览表及商务技术要求 一、货物需求一览表 标包1: 注:1. 本次招标为定商定价,采购数量以实际需求为准。 2. 技术要求详见技术规格书。 3. 整机产品质量保证期为安装验收合格后使用12个月或出厂18个月。质保期内, 因供方原因造成的质量问题,由供方负责“三包”。 二、商务要求 (一)质量保证措施和履约保证措施条款: (1)中标厂商的供货物资必须满足产品质量标准(标书中明确的标准要求),组织单位对中标物资进行不定期抽检,由有资质第三方检测单位进行检测,如发现一次不合格或质量管理部门抽检出现不合格产品的,取消该中标厂商在渤钻中标的同类产品的中标资格,启动排名第二为中标单位,执行自身投标价格。 (2)中标通知书下发以后,在中标有效期内,如供应商违反供货承诺,无故延期供货、拖延供货或无正当理由不供货,同一项目在收到渤海钻探工程公司各分公司投诉共计2次及以上,取消该供应商在公司范围内的交易资格,启动排名第二为中标单位,执行自身投标价格。 (3)供应商放弃中标或未能完全履行合同等相关违约事项,按照CT.7.1《物资供应商管理办法》中4.11.3、4.11.4、4.11.5、4.11.6、4.11.7和4.11.8中条例进行处罚,具体

内容如下: 4.11.3供应商出现下列情形之一的,临时暂停供应商交易资格,供应商管理部门进一步核实情况,确定处罚和恢复条件: a)公司及所属单位提出重大问题或质疑,需进一步调查核实; b)在质量、验收、事故处理方面存在问题有待核实; c)生产经营资质或体系保证文件逾期; d)在石油石化行业出现影响商业信誉的严重事故、法律纠纷等。 4.11.4供应商出现下列情形之一的,视情节严重程度中止其相应准入产品的交易资格3至12个月,并限期整改: a)某项产品质量经检验,不符合合同规定的质量要求; b)某项产品生产经营资质逾期超过规定时间更新; c)现场考察中发现产品生产存在某些质量隐患,需进行整改。 4.11.5供应商出现下列情形之一的,视情节严重程度中止供应商交易资格3至12个月,并限期整改: a)中标后无正当理由不与采购单位签订合同或延迟交货影响生产; b)非不可抗力原因,擅自变更、解除或终止合同或拒绝供货; c)供应商现场考察发现可能影响生产的问题; d)售后服务环节出现问题,影响企业运营。 e)在办理准入、年审工作中不按期履行相应义务,或信息变更不及时登记。 f)不符合公司QHSE管理体系要求,存在安全隐患的。 4.11.6供应商出现下列情形之一的,视情节严重程度中止供应商交易资格一至三年,并限期整改: a)恶意串通,影响采购,使采购部门提出有利于特定供应商中标的要求; b)供应商与采购部门、招标机构或其他供应商串通陪标的,或以不正当的手段排挤其

旋风分离器

机名称:旋风分离器 产品价格: 面议 有效日期:2011-02-10~2011-08-09 所在地:辽宁省沈阳市 所属行业:库存化工设备 关键词:过滤分离器,过滤器,旋风分离器 询价 详细信息 供应商类型自主生产厂商 旋风分离器技术描述 一、产品定义 旋风分离器是依据旋风除尘原理对燃气管路中的尘埃进行分离的除尘装置。 二、产品组成 旋风分离器由介质进、出口、安全阀口、放空口、手孔、进水口、清灰口、排污口、封头、筒体、旋风子内置件、腿式支座、各接口配对法兰、螺栓、螺母及垫片等组成。 三、产品技术性能介绍 1.简介 旋风分离器是由中国石油大学研制成功的一种高效气体分离设备,作为一种重要的气、固分离设备在石油化工、天然气燃煤发电和环境保护等领域得到了广泛的应用,与其它气固分离技术相比,旋风分离器具有结构简单,无运动部件,分离效率高适用气体流量波动大、压力高、粉尘和液体量高的工况。 旋风分离器的基本原理是利用利用离心沉降原理从气流中分离出固、液相杂质和粉尘微粒的。夹带固体颗粒和液滴的气体由旋风子上部的切向进口进入旋风子使其沿器壁高速旋转,按螺旋形路线向器底旋转,到达底部后折向上,成为内层的上旋气流,称为气芯,最后从旋风分离器的排气口排出,进入输送管线。由于离心力的作用,气流中所夹带的尘粒在随气流旋转的过程中逐渐趋向旋风子器壁,碰到器壁后滑向旋风子出口,最后落到旋风分离器下腔,加上本身的重量而向下移动,由旋风子底部的出口排除;不含固体颗粒和液滴的部分气体离心力小,则由旋风子顶部的出口流出。

优点:结构简单、占地面积小,投资低,操作维修方便,压低,动力消耗小,2.旋风分离器工作原理 2.1分离器内气流与尘粒的运动 气流从宏观上看可归结为三个运动: 外涡旋、内涡旋、上涡旋。 2.2除尘器内气流与尘粒的运动 气流从宏观上看可归结为三个运动:外涡旋、内涡旋、上涡旋。 含尘气流由进口沿切线方向进入除尘器后,沿器壁由上而下作旋转运动,这股旋转向下的气流称为外涡旋(外涡流),外涡旋到达锥体底部转而沿轴心向上旋转,最后经排出管排出。这股向上旋转的气流称为内涡旋(内涡流)。外涡旋和内涡旋的旋转方向相同,含尘气流作旋转运动时,尘粒在惯性离心力推动下移向外壁,到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗。 气流从除尘器顶部向下高速旋转时,顶部压力下降,一部分气流会带着细尘粒沿外壁面旋转向上,到达顶部后,在沿排出管旋转向下,从排出管排出。这股旋转向上的气流称为上涡旋。 3、影响效率的因素 ? 3.1.工作条件 ?1)进口速度增大,则切向速度增大,效率增大。但不能过大,过大会影响气流运动的方向(剧烈、方向混乱),破坏了正常的涡流运动,另外阻力会加大,故常选用V2=12—25m/s。 ?2)除尘器的结构尺寸 ?一般而言,直径越小,切向力越大,则效率越小,过小易逃逸。出口管直径减小,则r0减小,减少了内涡旋,则效率增大。但阻力会增大,故 不能太小。 ?筒体长度增大,则效率增大,但过大阻力会增大,所以,筒体长度不大于5倍筒体直径。另外,希望锥体长度大一点,这样会使切向速度大和距器壁短。 ?旋风器斜放对效率影响不大。 ?3.2.流体性质

旋风分离器的设计(苍松参考)

旋风分离器的设计 姓名:顾一苇 班级:食工0801 学号:2008309203499 指导老师:刘茹 设计成绩:

华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20)

任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制 5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: ?气体密度:1.1 kg/m3 ?粘度:1.6×10-5Pa·s ?颗粒密度:1200 kg/m3 ?颗粒直径:6μm

旋风分离器的结构和操作 原理: ?含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 ?颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 ?在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 ?在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; ?固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。其最大缺点是阻力大、易磨损。

气液分离器

气液分离器 气液分离器在热泵或制冷系统中的基本作用是分离出并保存回气管里的液体以防止压缩机液击。因此,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。气液分离器的基本结构见图F.1,主要分为立式,卧式和带回热装置,在一些小系统如冰箱,会用一些铜管做一个简单的气液分离器,如图F.1右下角。气液分离器的工作原理是带液制冷剂进入到气液分器时由于膨胀速度下降使液体分离或打在一块挡板上,从而分离出液体。 F.1 气液分离器的设计和使用必须遵循以下原则: 1.气液分离器必须有足够的容量来储存多余的液态制冷剂。 特别是热泵系统,最好不要少于充注量的50%,如果有条件最好做试验验证一下,因为用节流孔板或毛细管在制热时节流,可能会有70%的液态制冷剂回到气液分离器。还有高排气压力,低吸气压力也会让更多的液态制冷剂进入气液分离器。用热力膨胀阀会少一些,但也可能会有50%流到气液分离器,主要是在除霜开始后,外平衡感温包还是热的,所以制冷剂会大量流过蒸发器而不蒸发从而进入气液分离器。在停机时,气液分离器是系统中最冷的部件,所以制冷剂会迁移到这里,所以要保证气分有足够的容量来储存这些液态制冷剂。 2.适当的回油孔及过滤网保证冷冻油和制冷剂回到压缩机。 回油孔的尺寸要尽量保证没液态制冷剂回流到压缩机,但也要保证冷冻油尽量可以回到压缩机。 如果是运行中气液分离器中存有的液态制冷剂,推荐使用直径0.040 in (1.02mm),,如果是因为停机制冷剂迁移到气液分离器推荐使用0.055 in (1.4mm)(谷轮的应用工程手册是直接给出

旋风分离器设计方案

旋风分离器设计方案 用户:特瑞斯信力(常州)燃气设备有限公司 型号: XC24A-31 任务书编号: SR11014 工作令: SWA11298 图号: SW03-020-00 编制:日期:

本设计中旋风分离器属于中压容器,应以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。设计标准如下: a. TSG R0004-2009《固定式压力容器安全技术监察规程》 b. GB150-1998《钢制压力容器》 c. HG20584-1998《钢制化工容器制造技术要求》 d. JB4712.2-2007《容器支座》 2、旋风分离器结构与原理 旋风分离器结构简单、造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般主要应用于需要高效除去固、液颗粒的场合,不论颗粒尺寸大小都可以应用,适用于各种燃气及其他非腐蚀性气体。 说明: 旋风分离器的总体结构主要由:进 料布气室、旋风分离组件、排气室、 集污室和进出口接管及人孔等部分组 成。旋风分离器的核心部件是旋风分 离组件,它由多根旋风分离管呈叠加 布置组装而成。 旋风管是一个利用离心原理的2 英寸管状物。待过滤的燃气从进气口 进入,在管内形成旋流,由于固、液 颗粒和燃气的密度差异,在离心力的 作用下分离、清洁燃气从上导管溜走, 固体颗粒从下导管落入分离器底部, 从排污口排走。由于旋风除尘过滤器 的工作原理,决定了它的结构型式是 立式的。常用在有大量杂物或有大量 液滴出现的场合。

其设计的主要步骤如下: ①根据介质特性,选择合适的壳体材料、接管、法兰等部件材料; ②设计参数的确定; ③根据用户提供的设计条件及参数,根据GB150公式,预设壳体壁厚; ④从连接的密封性、强度等出发,按标准选用法兰、垫片及紧固件; ⑤使用化工设备中心站开发的正版软件,SW6校核设备强度,确定壳体厚度及接管壁厚; ⑥焊接接头型式的选择; ⑦根据以上的容器设计计算,画出设计总设备图及零件图。 4、材料的选择 ①筒体与封头的材料选择: 天然气最主要的成分是甲烷,经过处理的天然气具有无腐蚀性,因此可选用一般的钢材。由操作条件可知,该容器属于中压、常温范畴。在常温下材料的组织性和力学性能没有明显的变化。综合了材料的机械性能、焊接性能、腐蚀情况、强度条件、钢板的耗材量与质量以及价格的要求,筒体和封头的材料选择钢号为Q345R的钢板,使用状态为热轧(设计温度为-20~475℃,钢板标准GB 713-2008 锅炉和压力容器用钢板)。 ②接管的材料选择: 根据GB150《钢制压力容器》引用标准以及接管要求焊接性能较好且塑性好的要求,故选择16Mn号GB6479《高压化肥设备用无缝钢管》作各型号接管。因设备设计压力较高,涉及到开孔补强问题,在后面的强度计算过程中,选择16MnII锻件作为接管材料。 ③法兰的材料选择: 法兰选用ASME B16.5-2009钢制管法兰,材质:16MnII,符合NB/T47008-2009压力容器用碳素钢和低合金钢锻件标准。 ④其他附件用材原则: 与受压件相焊的的垫板,选用与壳体一致的材料:Q345R GB713-2008; 其余非受压件,选用Q235-B GB3274 《碳素结构钢和低合金钢热轧厚钢板和

旋风分离器

旋风分离器 一、概念 旋风分离器,是利用离心力分离气流中固体颗粒或液滴的设备。二、基本信息 作用:使气固液分离 分离效率:97% 分离精度:可除去≥10μm的固体颗粒 三、设备介绍 利用离心力分离气流中固体颗粒或液滴的设备。 四、工作原理 为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。是工业上应用很广的一种分离设备。 五、性能指标

分离精度 旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm 的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。 压力降 正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。 设计使用寿命 旋风分离器的设计使用寿命不少于20年。 六、结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。 设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气

对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 七、应用范围 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80~160毫米水柱)的净化设备,旋风除尘器在净化设备中应用得最为广泛。改进型的旋风分离器在部分装置中可以取代尾气过滤设备。

储液干燥器及液气分离器

专业理论课电子教案模板 专业名称____ 汽修___________________ 课程名称—汽车空调检修_______________ 授课教师—张建强_____________________ 班级15—汽车1、2班 ________________ 教研组长—董秀娇_____________________

、组织教学 老师: 上课 学生: 起立 学生: 老师好 老师: 同学们好 老师: 坐下 二、复习与导入 通过回忆循环离合器制冷系统的工作过程,逐渐导 入储液罐和液气分离器的作用。 三、新授 活动6:储液干燥器及液气分离器 压缩机转速的变化将使系统中制冷剂流量发生变 化;封闭的管路系统,使得实际的制冷剂流量又是固定 的。 —、储液罐 储液罐在系统中的安装位置如图2-64所示。 储液:具备能储存系统工质总量1/3左右的容积。 干燥:一块100cm3的XH-7分子筛在65 C时,能 教学环节及内容 教学策略 方法组织实施储液罐的作用如下:

吸收多于100滴水。 过滤:能过滤因制造和维修而带入的微量碎屑、尘土等杂质,避免引起制冷剂流动阻塞。 液气分离:当冷凝器工作不良时,进入储液罐的制冷剂可能含有气态成份。为保证流出的制冷剂都为液态,储液罐必须具备液气分离功能。 在储液罐顶部通常还设有视液观察玻璃,通过它可观察系统制冷剂的流动状况,并判别制冷剂量的多少及是否受到污染。 二、液气分离器 对于孔管系统采用一种名为积累器的储液器,它安装在蒸发器与压缩机之间的管路上,如图2-68 所示。又名液气分离器。 1 ?液气分离器结构与作用 液气分离器的结构如图2-69所示,罐内除有干燥剂、过滤器之外, 2 ?液气分离器工作原理

发酵设备:发酵逃液控制之旋风分离器

发酵设备:发酵逃液(escaping of fermentation broth)控制之旋风分离器 2016-06-27旋风小子发酵工程 旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正

常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风除尘器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80~160毫米水柱)的净化设备,旋风除尘器在净化设备中应用得最为广泛。改进型的旋风分离器在部分装置中可以取代尾气过滤设备。 旋风分离器在谷氨酸发酵中的应用情况 在谷氨酸发酵过程中,需不断向发酵液通入无普通的旋风分离器回收逃液,由于分离效率较低,如茵空气,茵体对数生长期以后,由于通风量较大、茵果不及时流加消泡剂,逃液现象相当严重,对发酵造成不良的影响,轻则将造成浪费,重则将造成染菌。在多个谷氨酸发酵罐上安装我们设计的高效旋风分离器,经过一段时间的生产运行,我们发现消泡剂的单耗大幅度下降,由原来生产1吨谷氨酸平均消耗消泡剂9.0公斤以上降低至3—4公斤;且放罐体积比原来增加12%左右,产酸指标不受影响,单罐产量相应地增加了;由于减少了逃液机会,即减少了发酵液的浪费,糖酸转化率比原来提高了0.5%左右;虽然发酵罐装液量增加会导致搅拌功率比原来稍微增加,但由于单罐产量增加的幅度较大,使生产谷氨酸用电单耗还是下降了8%左右;由于单罐产量比原来增加12%左右,生产谷氨酸的蒸汽单耗比原来下降了10%左右。下面以200m 发酵罐为例列举具体数据,发酵罐改装高效旋风分离器后每生产1吨谷氨酸所产生的直接经济效益。从表3的数据可以看出,209m 发酵罐改用高效旋风分离器后每生产1吨谷氨酸可节省人民币约183.6元,对于年产5万吨谷氨酸的工厂来说,一年可节省918万元。 经过较长时间在谷氨酸发酵中的应用,随着高效旋风分离器的技术成熟,所带来的经济效益可观,可推广应用于其它通气搅拌发酵行业。

旋风分离器

过去(04-05年间)我们曾经对国内的几家锅炉厂做过调研(济南、上海、杭州),重点考察旋风分离器技术,回厂后对几种分离器做过比较,今天得知您们想了解这方面情况,特介绍如下: 几种旋风分离器性能比较 项目高温绝热旋风分离器高温汽冷旋风分离器高温水冷旋风分离器 结构结构简单,金属外壳内衬耐火防磨材料,外敷保温材料。结构较复杂,壳体由汽(水)冷管子弯制、手工焊装而成,壳外敷保温、壳内衬25mm厚耐磨料。壳体采用膜式壁制作,紧贴炉膛布置,为方型水冷。 适应煤种适应于烟煤,另可掺烧优质褐煤或炉渣。适应各种煤种,包括矸石。煤种适应性差。 可维修性砌筑要求较高,壳体维修容易。更换管子难,恢复耐磨层也有一定难度。汽(水)冷旋风分离器 事故几率低汽水系统,事故频率高。 热惰性大旋风分离器筒体部分小,料褪部分大。 冷却效果无,可降50℃ 运行控制汽(水)系统简单起停炉凝结水不易带出,造成积盐、腐蚀。 后燃结焦烧无烟煤易出现后燃结焦。不易出现。不易出现。 分离效果在符合粒径要求的条件下可达99.5% 在符合粒径要求的条件下可达99.5% 飞灰含碳较低较低较高 起炉时间 7小时 3小时 3小时 造价低高较高

选择循环流化床锅炉不可避免地会提到效率和防磨问题。 高效的旋风分离器是提高锅炉运行效率的基础保证(虽然有电除尘灰返料等手段,但非主流)。“哪一种更适合于化工生产用锅炉?”你能稳定采购到什么样的煤种?(必须满足企业的运行成本控制要求)你的用气制度怎样?旋风分离器当然是锅炉选型的重要依据,但其也只是锅炉的一个部件。煤耗的高低和使用燃煤的关系很大,旋风分离器没有绝对的好,只有适合自己的。建议楼主综合考虑。 PS:锅炉项目投资很大,原煤参数必须要给锅炉厂家提供准确,尽可能满足今后使用供煤的需要。(前年对几家锅炉厂家进行过考察,收集到一些信息。结合其他渠道收集整理的资料如下) 目前我国循环流化床锅炉使用的高效分离器主要有三种: 1、上排气高温旋风分离器(有绝热式和汽冷式)。PS:水冷式的川锅也在做,俗称“四川独眼龙”,比较有特点。 2、下排气中温绝热旋风分离器。 3、水冷方形分离器。 优缺点: 一、上排气高温旋风分离器 (1)绝热式旋风分离器:耐火防磨保温层内衬厚、热惯性大,冷态点火启动时间长达12~16h;体积大、重量重、支撑困难;维修费用高;散热损失大。优点是分离效率高。PS:旋风分离器是循环流化床锅炉烟气流速最高的位置,这种结构的分离器有钢制外壳、绝热块、保温耐火砖、防磨衬里、紧固砖多层组成,对施工质量、耐火材料选择要求很高! (2)汽冷旋风分离器:风筒内只附设一层40~50mm厚的薄耐火材料层,缩短启停时间和承担一定的热负荷,大大降低了耐火材料重量和维护费用;减少了高温管道和膨胀节,从而降低维护费用;可采用标准保温,使外表温度下降,减少散热损失,可节约燃料费用 0.25%~0.5%;重量和尺寸均有所减小;能在制造车间装配好,整体或分片出厂,减少了现场工作量。 缺点:制造复杂,工艺要求高,因此成本较高。 PS:上排气旋风分离器阻力大,但分离效率高,是国内外主要锅炉公司首选的循环流化床锅炉主导分离器。但对使用易燃燃料或发热值十分低、灰含量特高(60~80%)的劣质煤,选用分离效率低一些的分离器(如下排气中温旋风分离器,方型水冷旋风分离器是最适宜的。即能降耗又能达到飞灰再循环要求。 二、下排气中温绝热旋风分离器 华中科技大学研究开发,克服了常规排气旋风分离器的一些缺点。 特点是:向下排气以及特殊结构的导流体。属于中温旋风分离器,顺应了“Ⅱ”型锅炉的整体布局,保持了“Ⅱ”型锅炉布置的结构特性,与上排器旋风分离器相比,总体尺寸明显减小(可减小占地面积30%左右)。与高温旋风分离器相比耐温耐磨材料易于解决,成本降低,

液气分离器基本知识

液气分离器 钻井液液气分离器也是气浸钻井液除气的专用设备,属常压除气范畴,基于常压除气原理,不过它是处理气浸钻井液的初级脱气设备,与除气器的主要区别在于它主要用于清除环空钻井液喷出来的直径≥3mm的大气泡。大气泡是指大部分充满井眼环空某段的钻井液的膨胀性气体,其直径大约为3-25mm。这些大气泡引起井涌。甚至喷出转盘表面。另外,液气分离器主要是靠重力冲撞作用来实现液气分离的,而除气器是采用真空、紊流、离心等原理,除气器的处理气体量比液气分离器少得多,但是清除气体更彻底。通常经液气分离器处理后的钻井液中还会有小气泡,通过振动筛后,需进入除气器再进行常规除气。 液气分离器可以直接从旋转防喷器处进液,也可以从节流管汇外进液。液气分离器按压力分常压式和压力自控式两种。在过去的50年里,它们已经从简单的开式罐发展到复杂的密闭和加压式容器。一般液气分离器是与节流管汇和电子点火装置配套使用的,用于脱离钻井液中的游离气体,可应用于欠平衡钻井液和硫化氢气体的钻井液处理。 液气分离器的类型 常用的液气分离器有两种类型 1.封底式 除气罐底部封闭。钻井液通过一根U形管线回到循环罐内。除气罐内钻井液面的高度,可通过u管的高度增减来控制。 2.开底式 分离器罐无底,下半部潜入钻井液中。罐内的液面依靠底部潜入深度来控制,这种分离器在国外俗称“穷孩子”,说明其简易性。 最简单、最可靠的液气分离器是封底式的。因为它的钻井液柱高度受到循环罐内液面高度的限制。液气分离器的工作压力等于游离气体由排出管排出时的摩擦阻力。分离器内始终保持一定高度的液面(钻井液柱高),如果上述摩擦阻力大于分离器内钻井液柱的静水压力,将造成“短路”,未经分离的气浸钻井液就会直接排入钻井液循环罐内。分离器产生“短路”一般是在气浸钻井液出现大量气体(峰值)的条件下发生的。这表明分离器处理能力不足。 液气分离器原理 液气分离器的基本原理都是相同的。开底式的基本结构是一个底部敞开(或有一个直径较大的排出口)的立式钢质圆筒,筒的一侧有一个钻井液入口,顶端是气体排出口。筒体是一个直径为355-610(或者更大一些)的钢质圆筒。当钻井液从井口返出后,经阻气管汇流进入出气筒的入口管,入口关随阻气管的直径而定。例如:阻气管直径为50mm,则入口管直径为100mm,而液气分离器的排气管应为150mm.若圆筒直径是1000mm,则排气口直径应为200mm.液气分离器圆筒内有许多挡板,排列形状各不相同。其作用是承受钻井液的冲击,有助于形成紊流,使钻井液层变薄,以促使气泡与液体分离、破裂、逸出。排气管线应接至远离井场的地方,以便将分离出的气体引向远处。应注意的是排气管内的阻力必须很小,以确保管线回压很小。 液气分离流程如图所示,从井口返出的气浸钻井液经阻气管汇后,以很高的速度沿分离器进液口切线进入分离器内,顺内壁落在专门设计的一系列内挡板上,液体与钢板撞击后,通过碰撞、增大暴露面积后继续向下流动,一部分气泡在撞击后破裂,其余气泡与液体一起形成紊流和薄膜。由于液气分离器圆筒与大气相通,因而气浸钻井液压力降低到几乎等于大气压力,在紊流和薄膜中的气体便迅速膨胀并逸出液面。液气分离后钻井液从下部流入钻井液

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

低温分离器用于天然气井口气脱水脱烃装置选型和设计方案

高效低温分离器用于天然气井口气脱水脱烃装置选型和设计方案 诺卫能源技术(北京)有限公司 在井口天然气项目中,均建设有天然气脱水脱烃橇块装置。脱水脱烃橇块装置,主要作用是脱除原气携带的易凝析液,包括水和多碳烃。关于井口天然气脱水脱烃橇块装置原气分离核心设备,主要涉及到前冷分离器和后冷分离器,尤其是后冷分离器的选型和设计。设计院了解诺卫能源技术公司在国内外不少天然气项目上设计提供过诸多类型的天然气分离器,故而向诺卫能源技术公司请求提供技术方案。 这里,提供一套天然气处理厂脱水脱烃单元简易流程图,供大家一起分享,分 析和讨论。 附天然气脱水脱烃单元简易流程图: 从流程图可知,前冷分离器,即原料气分离器,主要用于脱除原料天然气中经 前冷器后形成的凝析油液滴液沫。后冷分离器,即低温分离器,主要用于脱除天然气经乙二醇喷淋脱水后气相挟带的乙二醇/水液滴液沫。 原料气分离器和低温分离器,均用于高效脱除气流中携带的液滴液沫。相对而言,原料气经前冷形成的液滴液沫量相对较少,而低温分离器则需要处理带液量高的乙二醇喷淋洗涤的天然气。从处理气流中不同带液量工况来看,原料气分离器宜采用立式结构,而低温分离器则宜采用卧式结构。 故建议设计院和天然气处理厂在今后的新项目中,将原来采用的立式结构的低 温分离器调整为卧式结构。卧式结构的分离器,在相同壳体尺寸的分离器储液能力要大不少。

由于天然气原气来自于集气单元,天然气不仅含有凝析油和水,还含有高粘性 凝胶质和颗粒物,脱水脱烃装置这种工况下的分离器内件,建议采用多因子旋流子母分离除沫器或羽叶高效除沫除雾分离器等高稳定分离效率和高抗堵塞性能的动 力学高效气液除沫分离技术设备,不宜采用传统的丝网式、滤网式、滤芯式除沫分离内件设备。后者的内件很容易堵塞,运行压降高,内件更换维护频繁,运行维护费用高,且还需设置备机以便在滤芯更换期间切换使用。 并且,由于上游集气单元及更前端工况变化,工况波动大。且工艺设计工况, 与设备实际运行工况差别较大。因而,必须选用操作弹性大、分离效率高、运行稳定性高的动力学高效气液除沫除雾分离器,如G50型羽叶除沫除雾分离内件或G54型多因子旋流子母分离除沫内件。上世纪中叶以来的第一代雪弗龙简易光板折流板、旋流板、大直径旋风分离器等,都不太适应大幅波动的工况。 大型特大型天然气处理厂往往采用TEG脱水工艺。TEG脱水工艺装置属于塔 系脱水,包含吸收塔、闪蒸塔、再生塔、汽提塔等塔系混成处理,适于大型、特大型天然气生产和集输处理,比如20亿立方以上规模项目,即采用TEG脱水方式,我们为客户在SNG项目提供的脱水技术即为TEG法。TEG脱水塔系,操作压力 不能太高,否则,塔体设备壁厚太大,投资太高。而乙二醇法脱水工艺适于井口高压超高压工况尤其是井口天然气脱水脱烃,装置易于小型橇块化,国内外不少井口气处理工艺均沿用该工艺。不排除未来的TEG改进工艺用于这类工况压力很高的 井口气项目。 关于动力学分离技术及其内件设计计算,需要提醒大家如下: 国内外有的厂家也开始模仿采用诺卫能源技术公司公司的羽叶除沫除雾分离内件。但是,羽叶除沫除雾分离技术,是基于其精准动力学分离系统平台设计技术获得的设计结果和组态形式。必须根据不同温度和压力工况下的气相组成和平均分子

QSY1506-2012钻井液液气分离器

Q/SY 中国石油天然气集团公司企业标准 Q/SY 1506—2012 钻井液液气分离器 Driling fluid liquid gas separator 2012—07—03发布 2012—09—01实施 中国石油天然气集团公司发布

Q/SY 1506- 2012 目次 前言 (Ⅱ) 1 范围 (1) 2 规范性引用文件 (1) 3 型号与基本参数 (1) 3.1 型号表示方法 (1) 3.2 分离器基本参数 (2) 4 基本要求 (2) 4.1材料 (2) 4.2设计、制造要求 (2) 4.3安全阀 (4) 4.4压力表 (4) 4.5涂装 (4) 5 试验方法及检验规则 (4) 5.1 试验方法 (4) 5.2 检验规则 (4) 5.3 判定规则 (5) 6 标志、包装、运输及贮存 (5) 6.1 标志 (5) 6.2 包装、运输及贮存 (6)

Q/SY 1506- 2012 前言 本标准按照GB/T1.1-2009给出的规则起草。 请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。 本标准由中国石油天然气集团公司石油石化设备与材料专业标准化技术委员会提出并归口。 本标准起草单位:中国石油集团渤海石油装备制造有限公司中成装备制造分公司。 本标准主要起草人:谈献英、王树龙、艾绍磊、魏忠华、张恒、张振峰、柴占文、郭亭亮、石健、刘标、王红月、李鹤。

Q/SY 1506- 2012 钻井液液气分离器 1 范围 本标准规定了钻井液液气分离器(以下简称分离器)的型号与基本参数、基本要求、设计、制造、试验、检验、标志、包装、运输及贮存。 本标准适用于石油、天然气勘探开发过程进行钻井作业时,对钻井液进行液气分离处理的承压分离器。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 150 钢制压力容器 GB/T 1226 一般压力表 GB/T 12241 安全阀一般要求 GB/T 13306 标牌 GB/T 9115 对焊钢制管法兰 JB/T 4711 压力容器涂敷与运输包装 JB/T 4730.2 射线检测 JB/T 4730.3 超声检测 HG/T 20592 钢制管法兰(PN系列) HG/T 21520-2005 垂直吊盖带颈平焊法兰人孔 3 型号与基本参数 3.1型号表示方法 改进序号:用阿拉伯数字表示,原型不注。 分离罐最高工作压力:兆帕(MPa) 钻井液液体最大日处理量:立方米每天(m3/d) 钻井液液气分离器代号 示例: YQF-8000/1.5-2,表示钻井液液体最大日处理量8000m3/d,罐体最高工作压力1.5 MPa,第2次改进设计的钻井液液气分离器。

006-2014_钻井液液气分离器安装与使用规范

Q/SYCQZ 川庆钻探工程有限公司企业标准 Q/SYCQZ 006—2014 代替?Q/SYCQZ 006-2011钻井液液气分离器安装与使用规范 2014-08-18发布2014-09-18实施

目 次 前言.......................................................................II 1?范围 (1) 2?安装前的准备 (1) 3?安装 (1) 4?使用 (2) 5?检查 (2)

前 言 本标准是对Q/SYCQZ 006-2011《钻井液液气体分离器安装与使用规范》的修订,与Q/SYCQZ 006-2011相比,除进行编辑性修改外,主要技术内容差异如下:: ——适用范围增加了欠平衡钻井、充气钻井现场使用的分离器。 ——取消了规范性引用文件要求。 ——增加了分离器安装准备要求“绷绳为均布的4根直径不小于16 mm的钢丝绳;固定地脚螺栓或绷绳用水泥基墩坑尺寸长×宽×深为0.8 m×0.8 m×1.0 m ,遇地表松软时,基墩坑体积应大于1.2m3”(见2.3)。 —— 修改了分离器安装固定要求“就位后用地脚螺栓或绷绳固定。地脚螺栓宜固定在底座四个吊装位置处”、“地脚螺栓或绷绳的正反螺栓应在浇注凝固后紧固”(见3.1)。 ——增加了排液管的安装要求“安装后应测量U型管的有效高度H并记录”(见3.4.8)。 ——增加了“充空气钻井作业时”排气管线的安装要求“充空气钻井作业时可接至距井口30 m以远的井场污水池或沉砂池”(见3.5.3)。 ——增加了点火装置的安装要求“点火装置应垂直地面安装,用地脚螺栓或直径12 mm钢丝绳固定,钢丝绳不少于3根”(见3.5.7)。 —— 增加了分离器使用要求“使用前应按测量的U型管高度及钻井液密度计算出最大允许工作压力(最大允许工作压力Pmax=U型管的有效高度H×钻井液密度ρ)”(见4.4);“排气管线压力表的读数大于计算出的最大工作压力”(见4.5.2)。 本标准由川庆钻探工程有限公司提出。 本标准由川庆钻探工程有限公司钻井专业标准化技术委员会归口。 本标准由川庆钻探工程有限公司川东钻探公司起草。 本标准主要起草人:徐勇军、罗琼英、苏庆、王志坚、吴琦、李刚、罗整。

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

旋风分离器的设计

旋风分离器的设计公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制

5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度: kg/m3 粘度:×10-5Pa·s 颗粒密度:1200 kg/m3 颗粒直径:6μm 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; 固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于

相关文档
最新文档