大跨径斜拉桥主梁与索塔临时固结关键技术

大跨径斜拉桥主梁与索塔临时固结关键技术
大跨径斜拉桥主梁与索塔临时固结关键技术

【摘要】朝鸭绿江界河公路大桥为86+229+636+229+86=1266m五跨连续半漂浮体系双塔双索面钢箱梁斜拉桥。索塔与主梁间设置竖向支座和横向抗风支座,纵向设置粘滞阻尼器;辅助墩设置竖向拉压支座,钢箱梁边跨内同时设置压重;过渡墩设置竖向抗压支座和横向抗风支座。当钢箱梁采用桥面吊机悬臂施工时,为了防止由于施工荷载对桥墩支座产生的不对称弯矩和水平分力而引起的主梁失稳,必须采取临时固结措施,同时对索塔临时固结构造措施进行结构验算,保证纵向抗剪承载力和横向抗压承载力满足要求。

【关键词】斜拉桥钢箱梁临时固结构造技术

1 工程概述

1.1 主梁拼装方案

中朝鸭绿江界河公路大桥为86+229+636+229+86=1266m五跨连续半漂浮体系双塔

双索面钢箱梁斜拉桥。索塔与主梁间设置竖向支座和横向抗风支座,纵向设置粘滞阻尼器;

辅助墩设置竖向拉压支座,钢箱梁边跨内同时设置压重;过渡墩设置竖向抗压支座和横向抗

风支座。

主梁为流线型扁平钢箱梁,梁高3.5m(中心线),梁宽33.5m,桥面设2%的双向横

坡。钢箱梁内设置两道纵腹板,其距离钢箱梁中心线间距为8.8m,钢箱梁横隔板标准间距

为3.2m。共计87片,由中交一公局海威工程建设有限公司承建1/2主桥及中跨合龙段钢箱

梁架设安装,共计44片。钢箱梁共分为11类(A~J、E1、E2、E3),大桥主桥钢箱梁总

体施工步骤如下:索塔区01~03(A、B、C)共5个梁段采用墩旁支架施工,最大起吊重

量约262t。利用浮吊将梁段吊放与支架上,精确定位焊接后,与下横梁临时固结。阻尼器

连接件在施工过程中作为临时拉索在主梁上的锚固装置。然后张拉C 梁段拉索,对称拼装

桥面架梁吊机,准备吊装后续梁段。

对于索塔,次边跨和中跨的标准梁段采用桥面吊机双悬臂依次吊装,对称挂设、张拉斜

拉索,直至主梁合龙。对位于河床较浅的边跨梁段,采用高支架拼装,用浮吊和滑移结合将

梁段起吊滑移到位,然后再利用桥面吊机逐段起吊安装。

1.2 塔梁纵向限位及临时锚固构造

1.2.1 纵向限位构造

根据钢箱梁设计资料,在钢箱梁架设施工过程中,在钢箱梁01号段的索塔塔柱两侧的

设置纵向限位装置,构造见图1~图2。

1.2.2 阻尼器连接构件处的临时锚固构造

塔梁固结的临时拉索可采用标准强度为1670MPa的铰销式吊杆体系,计算长度为9.095米。临时拉索每个阻尼器连接构件处设置一根,全桥8根计72.76米长,推荐采用PES7-61丝吊杆。设计建议临时拉索张拉力为150kN。(如图3)

1.2.3 横向临时固结

为了限制主梁拼装过程中的横桥向位移,对于中方侧索塔,拟在索塔抗风支座两侧设置主梁横向临时固结措施。横向临时固结的一端通过预埋件与塔柱相连接,另一端与01号钢箱梁段的腹板相连接。横向临时固结措施在钢箱梁上下游侧对称布置,见图4。横向临时固结构件为双拼2[40槽钢或双拼2H450×200型钢。

2 计算工况

钢箱梁01节段的钢牛腿主要抵抗主梁拼装施工过程中的纵向不平衡荷载,横向风荷载引起的主梁水平面内转动,以及竖直面内的主梁转动。横向临时抗风支座抵抗主梁在横向风荷载作用的位移。对主梁架设的最大双悬臂和最大单悬臂工况进行计算,分析塔梁临时锚固肯能承受的最大内力值。

2.1 最大双悬臂工况

在主梁A12/J12节段悬臂拼装完毕,主梁尚未与辅助墩支架的合龙梁段连接时,主梁处于最大双悬臂状态,悬臂长度为201m,见图5。

2.1.1 最大竖向不平衡力

当钢箱梁A12/J12梁段安装完毕,江测悬臂端单独起吊J13梁段。桥面吊机重量按实际重量选取,J13号梁段重量乘以动力系数1.20。

2.1.2 横向风荷载的对称加载和不对称加载

(1)对称横向风荷载作用下的产生的水平力;(2)边跨和中跨两侧不平衡横向风荷载作用下,对两侧主梁产生的不平衡力。

根据《公路桥梁抗风设计规范》论文写作、期刊发表QQ:1119336036 (JTG/T

D60-01-2004),对于A类地表,主梁高程(43.875m)风速高度修正系数取K1=1.40。施工阶段风速重现期按20年考虑,风速重现期系数η=0.88。施工阶段,主梁高度处的基准风速为VZ=K1V10η=1.40×32.6m/s×0.88= 40.22m/s。

静阵风风速:

=1.24×40.22=49.87 m/s

式中VZ——索塔基准高度处的风速;

CV——静阵风系数,A类地表,加载长度201m,取1.24。

主梁的静风荷载:

式中:

ρ——空气密度(kg/m3),取1.25;

Vg——静阵风风速;

CH——主梁的阻力系数,取1.3;

AH——主梁投影高度。

根据上式计算得到主梁的横桥向静风荷载FH=8.0kN/m。江测和岸侧主梁的不对称系数取0.5。加载方式分别见图6、图7。

2.1.3 横向风荷载产生的竖向升举力

横向风荷载对主梁产生的竖向升举力P参照以下公式进行计算:

P=CLS2V2b/1.6

式中CL—升举系数,由规范图表按主梁宽/高比查取,此处取0.35;

V—设计风速,按10年一遇地面10米高处风速换算至主桥高度(此处按40米计)为32.5m/s。施工阶段风速重现期按20年考虑,风速重现期系数η =0.88。

S—阵风系数,查表可得,岸侧S=1.61,江侧S=0.82;

b—钢箱梁宽度,33.5m。

根据上式计算结果,岸侧升举力P1=33.8kN/m,江测升举力为P2=8.5kN/m。加载方式见图8。

2.2 最大单悬臂工况

在中跨主梁合龙前,主梁处于最大单悬臂架设状态,中跨最大悬臂长度达313m,见图9。

2.2.1 最大竖向不平衡力

中跨合龙前,合龙段由合龙口两侧桥面吊机同时起吊,当一侧桥面吊机脱钩,合龙段钢箱梁重量由单侧桥面吊机承受。桥面吊机重量按实际重量选取,合龙段钢箱梁重量乘以动力系数1.20。

2.2.2 横向风荷载

(1)对称横向风荷载作用下的产生的水平力;(2)边跨和中跨两侧不平衡横向风荷载作用下,对两侧主梁产生的不平衡力。加载方式分别见图10、图11。

3 塔梁临时固结内力计算结果

按照上述最大双悬臂和最大单悬臂的各个工况进行计算,得出主梁与索塔单侧最大锚固力计算结果见表1。

在最大单悬臂架设状态,主梁承受横向对称风荷载时,塔梁锚固结构承受横桥向最大内力为4496kN。在最大双悬臂架设状态,且江测悬臂端单独起吊J13梁段时,塔梁锚固结构承受纵桥向最大内力为20519kN;承受的扭矩为97639kN*m。

4 塔梁临时固结构造受力验算

4.1 最大纵向力

主梁悬臂拼装过程中,纵向不平衡力主要由钢箱梁01号段的钢牛腿承担。根据钢箱梁设计图纸,单个钢牛腿的截面面积为A=2×20×1610+2×20×1552=126480mm2。对于

Q345钢材,抗剪容许应力为[τ]=120MP a,钢箱梁纵向临时固结两个钢牛腿的抗剪承载力为Q=120×126480×2=30355kN>主梁最大纵向不平衡力20519kN。

4.2 最大横向力

主梁悬臂拼装过程中,横向风荷载作用下,塔梁锚固结构承受横桥向最大内力为4496kN。对于Q235钢材,轴向容许应力为[σ]=140MPa。单个横向临时固结构件2[40槽

钢的截面面积为A=2×6150=12300mm2,则横向固结的轴向抗压承载力为:

N=140×12300×4=6888kN>最大横向内力4496kN。

5 结语

(1)在以上工况的荷载作用下,主梁和索塔临时固结构造措施的纵向抗剪承载力和横向抗压承载力满足要求。(2)建议设计根据以上横向内力计算结果,考虑是否需要对横向临时固结接触部位的钢箱梁腹板进行局部加强。

斜拉桥工程施工程序施工技术方案

斜拉桥工程施工程序施工技术方案 索塔施工 2.1 简述 本桥主桥为塔梁固结体系,索塔采用曲线H 型索塔,塔柱曲线半径275.4m(外侧),箱形断面,索塔全高107m(从承台顶面算起);其中上段塔柱39.8m,中段塔柱48.6m,下段塔柱18.6m(含塔柱底座)。 上段塔柱塔柱断面为等截面,顺桥向尺寸6.5m,横桥向尺寸4.6m,空心矩形截面,顺桥向壁厚1.0m,横桥向壁厚0.9m。 中段塔柱断面为变截面空心矩形截面,顺桥向尺寸6.5~7.972m,横桥向尺寸4.6m,顺桥向壁厚1.2m,横桥向壁厚1.1m。 下段塔柱也为变截面空心矩形截面,顺桥向尺寸7.972~9.0m,横桥向尺寸5.5m,顺桥向壁厚1.2m,横桥向壁厚也为1.1m。 索塔横向设两道横梁,上横梁的顶板和底板均为半径12m 的弧形,采用空心截面,横梁宽度5.5m,横梁中心处高度15m,临近索塔处高度为30m,壁厚0.6m,由于结构造型的需要,横梁正中间开设半径 3.5m 的圆洞;下横梁梁为适应桥面横坡需要,采用变高度结构,横梁中部梁高4.5m,宽6.0m,顶底板厚为0.6m,腹板厚为1.5m。横梁为预应力混凝土A 类结构,共设置了34 束15-25 预应力钢束。预应力钢束锚固于塔柱外侧并采用深埋锚工艺,预应力管道采用塑料波纹管。下横梁兼作主梁0 号梁段,形成塔梁固结体系。 斜拉索通过钢锚梁锚固于上塔柱,为抵消斜拉索的不平衡水平分

力,在上塔柱斜拉索锚固区内配置了Φ32 的精轧螺纹粗钢筋。 索塔采用C50 混凝土,为便于施工、定位,索塔内设置劲性骨架,劲性骨架须按照图纸要求与钢牛腿壁板进行焊接连接,塔顶设置避雷针及导航灯,塔内设检修爬梯。 2.2 施工难点及重点 (1)施工测量及控制 塔高107m,测量控制难度大,需采用多种测量手段进行放样及施工控制测量,确保索塔施工精度要求。索塔施工测量及控制的重点和难点有:外形轮廓曲线控制、钢锚梁安装定位及精确控制;索塔结构应力和变形控制,包括多种工况以及日照温差、风荷载等因素影响下的索塔各部位的应力状态和变形控制。 (2)钢锚梁施工 斜拉索锚固区钢锚梁制作、安装精度要求高,单节钢锚梁重4.5t,钢锚梁安装定位难度大,定位精度将直接影响斜拉索安装质量结构受力和耐久性。 (3)高性能混凝土施工 索塔混凝土最大泵送高度约107m,砼强度等级、抗裂及耐久性要求高,泵送难度大。混凝土配合比设计及浇筑工艺是确保索塔混凝土质量的关键,尤其是上塔柱钢混结合段混凝土施工难度大。 2.3 总体施工工艺 (1)塔柱起步段采用搭设脚手管支架作施工平台,立模现浇,第一段高度2.2m,第2个节段高度4.5m;其余节段采用爬模施工,标

斜拉桥施工技术介绍PPT

斜拉桥施工技术 概述 中交第一公路工程局有限公司

1概述 2施工技术准备 2.1施工组织设计 2.2控制网、放样 3深水(沟)基础施工 4索塔施工 4.1索塔类型 4.2钢索塔施工 4.3混凝土索塔 4.4索塔的特殊施工方法 4.5混凝土 4.6施工预埋件设计 4.7其他关键技术 5主梁施工 5.1主梁类型

5.2预应力混凝土梁现浇施工 5.3预应力混凝土梁拼装施工 5.4钢箱梁施工 5.5钢桁梁施工 5.6钢-混凝土组合梁施工 5.7混合梁 5.8特殊施工方法 6斜拉索施工 6.1平行钢丝索施工 6.2钢铰线斜拉索施工 6.3临时减震 7施工监测与施工控制 8矮塔斜拉桥 9参考文献

1概述 斜拉桥是设计与施工必须高度藕合的结构,其施工方法及流程不但影响施工时的结构应力,而且将影响结构成桥时的应力状态 斜拉索的防火、保护预案,施工期减振措施 阵风、台风期影响主梁安全的预案 完善、连接良好的防雷系统 起重技术、专用设备的准备时间 专业队伍的选择(方式) 设计小组或者专业人员2~3名,软件 总工(技术人员)创造变更,与总经一起及时索赔

2施工技术准备2.1施工组织设计 1.要避免台风期进行大悬臂施工作业 措施:抗风立柱,既抗拉又抗压,装拆快速、简易

2.纳入技术准备、主要设备准备的网络计划 3.监控:监控、设计、施工、监理等进行深入、多次交流,在主梁开始安装前就确定了 详细的工况流程、荷载,施工中不仅不得变动,而且要想方设法达到相关要求。导致主梁标高、索力发生偏差的因素,按影响程度排列如下:①施工流程变动较大;②不平衡施工荷载;③斜拉索本身的匀质性、索力的精确性;④构件自重波动; 4.整体布置:平面上的文明施工,立体交叉带来的安全隐患

斜拉桥索塔施工工法及其工程实例(优秀工作范文)

斜拉桥索塔施工工法及其工程实例 一、前言 随着高速公路的迅猛发展,公路等级不断提高,斜拉桥、悬索桥等具有高墩、大跨径特点的桥梁被广泛应用到工程实际,同时也发挥了越来越重要的作用.索塔作为斜拉桥、悬索桥一个十分重要的组成部分,造价高昂、施工周期长,如何科学组织施工,优质高效地完成施工任务,具有十分重要的意义.本工法依托江苏省连盐高速公路灌河特大桥索塔施工工程实例,全面系统地阐述了索塔施工技术和工艺特点.已建成的索塔成品倾斜度、空间尺寸以及外观质量均满足规范要求,处于良好的受控状态,施工进度科学合理.该工法被证明是一项行之有效的施工工法,代表了目前索塔施工的先进水平. 二、工法特点 1、本工法工艺简练,操作性强,施工易于实现.在合理设计模板、支架和爬架系统的基础上,可以实现高度较大的索塔施工. 2、本工法施工结构设计合理,力学模型明确,设计计算量不大,易于被工程技术人员掌握. 3、质量易于控制,通过采用相对基准极坐标法进行测量控制,以及模板支撑体系的优化,结构物实体质量和外观质量优良. 4、本工法投入的大型机械设备相对较少,施工成本较低,循环施工周期较短,具备较高的投入产出比. 三、适用范围 本工法具有施工快捷,结构合理,经济实惠等特点,可以被广泛应用到斜拉桥、悬索桥的索塔施工中,尤其适合于索塔截面比较规则,塔柱高为100~200米的中小型钢筋砼索塔.通过对模板系统以及爬架提升装置的改进和优化,也可以应用到变截面及高度较大的索塔施工中. 四、工法原理 本工法是索塔施工的一种非常有效的工艺方法.工法原理:在塔柱内预先安装劲性骨架作为钢筋模板安装定位的依托,纵向主钢筋采用机械连接,下塔柱采用钢管支架模板体系、中上塔柱采用内翻外爬附爬架的分节段爬模施工模式,砼采用拖泵泵管输送,在中塔柱上设置横向临时撑架,防止塔柱根部产生拉应力,斜拉索与索塔的锚固形式采用钢锚梁锚固体系,直接传递给索塔,横梁采用钢管落地支架支撑体系,通过合理布设塔吊、电梯、泵管、水电等设施以及进行预埋件的埋设,并运用塔吊以及吊车进行施工材料的垂直运输的一种高效的索塔施工工艺. 根据索塔形式、高度以及所采用的施工工艺、方法、设备性能和具备的施工能力,索塔分节长度不尽相同,一般分节长度为4.0~5.0米. 五、施工工艺流程及操作特点 (一)索塔施工工艺流程

斜拉桥的分类

斜拉桥的总体布置与结构体系 总体布置主要有跨径布置、拉索及主梁的布置、索塔高度与布置。 一、跨径布置主要有下面三种类型 (1)双塔三跨式。为目前应用最广泛的跨径布置方式。下面是立面图与其荷载作用不同位置时发生的索塔与主梁的形变。 (2)独塔双跨式。这也是应用较为广泛的一种跨径布置,但由于它的主孔跨径一般比双塔三跨式的小,故特别适用于跨越中小河流、谷地及作为跨线桥,或用于跨越较大河流的主航道部分,也可用主跨跨越河流,索塔及边跨布置在河流一岸的方式。

(3)多塔多跨式。多塔多跨式斜拉桥适用于需要多个大通航孔的大江大河、宽阔湖泊或海峡上,但这种结构一般采用较少,主要原因是中间塔顶没有端锚索来有效地限制它的变位, 使结构柔性及变形增大,整体刚度差。 多塔多跨式斜拉桥示意图 二、拉索的布置,拉索的布置分为空间上的布置与索面内的布置。 (1)拉索索面在空间可布置成单索面和双索面,而双索面又可分为竖直双索面和倾斜双索 面。

单索面斜拉桥(临海大桥) 竖直双索面斜拉桥

倾斜双索面斜拉桥 (2 )拉索在索面内的布置形式主要有以下三种:辐射形、竖琴形及扇形。 辐射形:拉索与水平面的平均交角较大,拉索的垂直分力较大,故拉索的用量最省。由于在 拉索的水平分力在塔顶基本平衡,故索塔的弯矩较小,索塔高度也较小,但由于拉索都固定 在塔顶,所以塔顶的结构复杂,集中应力现象突出,给施工和养护带来困难。 竖琴形:所有拉索的倾角完全相同,且拉索与索塔的锚固点分散布置,使拉索与索塔、拉索 与主梁的连接构造简单,易于处理。竖琴形布置拉索加强了索塔的顺桥向刚度,对减少索塔的弯矩和提高索塔的稳定性都有利。但是其拉索的倾角与水平方向的交角较小故所需的拉索数量大,布置密集,一般都用于中小跨径的斜拉桥中。

独塔小半径曲线斜拉桥施工关键技术解析

独塔小半径曲线斜拉桥施工关键技术解析 一、工程特点和施工的主要难点 1、工程特点 1)独特的塔梁索结构 其塔身呈仙鹤形状,桥的截面为空心不规则矩形,偏向于重心的设计方式;而在主梁设方面的设计主要采用半径以及宽都不相等的两段曲线单箱三室箱梁结构;而桥梁斜拉索方面也要设计出不对称的单索面,并且在塔的侧面还要加设锚墩和背索设计; 2)桥梁设计的几何结构较为复杂 根据塔梁索在结构设计方面具有其独特性,且主梁的位置处于整个桥梁的曲线上面,因此使得整个斜拉桥的结构处在了一个三维的空间当中,且对于它的坐标在计算也控制方面也是非常复杂的; 3)结构受力体系复杂 由于斜拉桥在结构方面的几何是非常复杂的,因此,整个主梁与异形的重心都偏向于塔柱,再由斜拉以及背索在水平方向的力的作用下,使得整个桥梁在维空间的受力情况下处于复杂且平衡的状态。 2、施工难点 1)桥梁的主边上的主梁是处在小半径曲线的位置上,由于桥梁在空间上的受力情况不同,因此对于桥梁的整体线形的有效控制的关键就是对于施工方案的选择以及对于施工工况的监控;

2)在桥梁施工的过程中,由于侧重主梁会对于主跨主梁造成纵向与横向的偏移情况,并导致斜拉索的支座受到一定程度的扭转,因此确定侧重主梁的施工方案就显得尤为重要了。 二、总体施工方案及主要施工流程 1、对于主边的跨主梁来讲,主要采用的是预偏位移支架的方法来对其进行施工,具体将其分成三段来全方位的实施现浇施工;对于配跨主梁来讲,主要采用的是端头悬挑支架的方式来对其进行现浇施工;对于主塔来讲,主要采用的是塔吊配合翻模的方法,来逐段进行浇筑施工;对于斜拉索来讲,主要采用的是分别挂设和单根不对称张拉有机结合的方式来进行施工; 2、从主要的施工流程上来看,首先施工的是32号主墩;其次施工的是0号主墩;第三施工的是索塔各个节段;第四施工的是锚墩;第五施工的是边跨的主梁;第六施工的是主跨的主梁;第七施工的是斜拉索第M01至M09以及S01至S09索;第八施工的是锚墩横梁合龙段;第九施工的是斜拉索第M10至M11以及S10至S11索;第十施工的是斜拉索B01、B02,M10至M11,以及S10至S11索;最后一步施工就是支架的拆除。 三、施工过程中的关键技术 1、主梁施工 小半径曲线的主梁在预应力与斜拉索的拉力共同的作用下,出现纵向压缩和横向方向的水平位移因此,在桥梁设计中所采用的支架以及模板等等结构会对于主梁的纵向与横向方面的变形与位移产生一定的约束力,

索塔钢锚梁安装施工工法

《索塔钢锚梁安装施工工法》 中交第二公路工程局有限公司 中交第二航务工程局有限公司XXXX高速公路工程有限责任公司 20XX年9月

目录 1、前言 2、工法特点 3、适用范围 4、工艺原理 5、施工工艺流程及操作要点 6、材料与设备 7、质量控制 8、安全措施 9、环保措施 10、效益分析 11、应用实例

索塔钢锚梁安装施工工法 1、前言 斜拉桥是一种拉索体系,是大跨度桥梁的主要桥型之一。斜拉桥由索塔、主梁、斜拉索组成,斜拉索一端连接主梁,另一端连接索塔,主梁的自重通过斜拉索传递给索塔及基础。 斜拉索与索塔锚固方式传统的施工方法为混凝土锚固齿块,每节段锚固区需布设大量钢筋,增加了索套管定位和混凝土浇筑的难度,施工质量难以控制。在本项目中,采用了组合钢锚梁锚固方式,它具有施工快捷、安装精度高等优点。同时,由于钢锚梁承受斜拉索的水平分力,竖向分力全部通过牛腿、塔壁钢板传到塔身,使得结构受力更明确。目前,越来越多的斜拉桥索塔上塔柱锚固区采用钢锚梁的设计。 本工法结合九江长江公路大桥的施工实践,将钢锚梁安装、精确定位的经验加以总结,为今后类似结构施工提供参考或借鉴。 2、工法特点 2.0.1钢锚梁到场后现场再次进行工地预拼装,可以清楚了解钢锚梁加工高度累计误差和倾斜趋势等情况,以便后续制作时进行必要调整,保证了钢锚梁安装的精度。 2.0.2钢锚梁采用塔吊整体吊装,施工快捷、安装周期短。 2.0.3首节钢锚梁安装采用调节支架,便于钢锚梁在高空进行平面位置及高程的调整,使首节基准钢锚梁安装精度更高,为提高标准节钢锚梁的安装精度打下了良好的基础。 2.0.4钢锚梁安装采用专用吊具,避免钢锚梁整体吊装时扭曲、变形。 3、适用范围 适用于斜拉桥索塔钢锚梁安装施工。 4、工艺原理

斜拉桥施工方案要点

南阳市光武大桥建设工程 斜拉索挂索、张拉专项施工方案 中铁十五局集团 南阳市光武大桥建设工程项目经理部 二0一二年三月

一、工程概况 光武大桥采用两联80+80m单塔双索面斜拉桥,塔高34.21米。全桥采用现浇预应力混凝土连续梁。斜拉索为双索面,每个箱梁中央布置一个索面,横桥向对称布置在索区里。斜拉索直接穿过中腹板锚固于箱梁底面。斜拉索在梁上索距为8.0m;塔上索距2.05m,等间距布置。拉索的水平倾角在25.153°~37.682°。 斜拉索采用防腐性能优越的喷涂环氧钢绞线斜拉索体系,规格为OVM250AT-61,两端采用可换索式250AT锚具。每个索塔斜拉索横向单排布置,斜拉索采用高强度低松弛单层环氧涂层无粘结钢绞线斜拉索体系,单根钢绞线直径15.24mm,钢绞线标准强度fpk=1860Mpa。斜拉索外包HDPE整圆式护套管规格为ф260mm。全桥斜拉索共12对拉索,钢绞线约191吨。整束斜拉索钢绞线防护体系由单根钢绞线PE管、哈弗管外套、锚具、锚头防腐固体油脂、锚头环氧砂浆等组成。 全桥斜拉索布置情况 二、编制依据 1、《南阳市光武大桥施工图设计》 2、《公路桥涵施工技术规范》(JTJ041—2000) 3、《公路工程质量评定标准》(JTGF80/1—2004) 4、《OVM平行钢绞线斜拉索施工指南》 三、OVM250AT斜拉索体系结构说明 斜拉索由锚固段+过渡段+自由段+抗滑锚固段+塔柱内索鞍段+抗滑锚固段+自由段+过渡段+锚固段构成, 1、锚固段

主要由锚板、夹片、锚固螺母、密封装置、防松装置及保护罩组成。在锚固段锚具中,夹片、锚板、锚固螺母是加工上主要控制件,也是结构上的主要受力件。 A.密封装置:其主要起防止漏油、防水的密封作用。它由防损板、内外密封板、密封圈构成。并在密封装置内注防腐油脂对剥除PE层的钢绞线段起防护作用。 B.防松装置:主要由空心螺栓和压板构成,在钢绞线张拉并预压结束后安装此装置,可实现有效地对单个锚固夹片保持夹紧力,从而对夹片起防松、挡护作用。 C.保护罩:保护罩安装在锚具后端,并涂抹无粘结筋专用防护油脂,主要对外露钢绞线起防护作用。 2、过渡段 主要由预埋管及锚垫板、减振器组成。 2.1预埋管及垫板:在体系中起支承作用,同时在垫板正下方最低处应设有排水槽,以便施工过程中临时排水。 2.2减振器:对索体的横向振动起减振作用,从而提高索的整体寿命。本桥拟采用可调式减振器,以充分发挥减振器的减振作用。 3、自由段 主要由带HDPE护套的无粘结镀锌钢绞线、索箍、HDPE外套管、梁端防水罩、塔端连接装置等构成。 3.1无粘结镀锌钢绞线:为拉索的受力单元。 3.2索箍:因受张力大而采用钢质索箍,它是在紧索完成后安装的。主要作用是将索体形成一个规则的几何整体形状。 3.3 HDPE外套管:主要对钢绞线拉索起整体防护作用,本工程采用规格分别为ф260mm,HDPE管的连接方式采用专用HDPE焊机进行对焊。 A.梁端防水罩:主要起支承HDPE外套管和防止雨水由梁端预埋管进入拉索锚具的防 护作用。 B.塔端连接装置:由于HDPE外套管的热胀冷缩特性,其主要为塔端HDPE自由端热胀冷缩过程中提供空间和起密封防护作用。 4、抗滑锚固段 主要由锚固筒、减振器、索箍组成。 4.1锚固筒:锚固筒安装在塔外预埋的索鞍(分丝管)钢垫板上,主要对减振器起支承作用。 4.2减振器:对索体的横向振动起减振作用,从而提高索的整体寿命。 4.3索箍:因受张力大而采用钢质索箍,它是在紧索完成后安装的。主要作用是将索体形成一个规则的几何整体形状。

上跨既有线斜拉桥施工控制关键技术

城市建筑┃施工技术┃U RBANISM A ND A RCHITECTURE ┃C ONSTRUCTION T ECHNOLOGY 113 上跨既有线斜拉桥施工控制关键技术 Key Technology Across Existing Lines in Cable-stayed Bridge Construction Control ■ 虞童儿 ■ Yu Tong'er [摘 要] 宁波市福明路跨宁波东站主桥是跨径布置为55+45+220+45+55=420 m 的双塔双索面斜拉桥。主梁采用混合主梁,其中两侧边跨各采用预应力砼箱梁,中跨197.2 m 范围内采用钢箱梁,钢箱梁与预应力混凝土箱梁相交位置为2m 长的钢混接合段,为半漂浮体系。主梁上跨宁波东站的位置处跨越甬台温铁路正线2条,到发线5条;跨越客车整备线5条,存车线7条;跨越辅助客站发线2条及基本站台和中间站台。针对主梁上跨既有线,索塔临近既有线,协调、组织难度大等特点,中跨钢梁采用步履式顶推的施工方案,索塔上塔柱采用液压爬模的施工技术。 [关键词] 上跨既有线 斜拉桥 钢箱梁 索塔 施工控制 [Abstract] In Ningbo Fuming road the bridge span across Ni- ngbo East Railway Station is a cable-stayed bridge with double cable planes of the Twin Towers 55+45+220+45+55=420m. Main beam using hybrid girder, the two sides across the prest- ressed concrete box girder, in the range of 197.2m with steel box girder, steel girder and prestressed concrete box girder intersection position is 2m long steel-concrete joint section, half floating system. The main girder span Ningbo East Rail- way Station location across the Ningbo-Taizhou-Wenzhou rai- lway line 2, and line 5; across the bus full of line 5, parking line 7; span and auxiliary station line 2 and the basic platform and the intermediate platform. In view of main girder cross lines, tower close to existing lines, the characteristics of organization and coordination are difficult, mid-span steel girder construction scheme with a push of the tower, tower construction technology with hydraulic climbing formwork. [Keywords] existing line on the top, cable-stayed bridge, steel box girder, pylon, construction control 一、 工程概况 宁波市福明路跨宁波东站主桥采用主跨220 m 的双塔双索面斜拉桥,边墩设置两个桥墩,跨径布置为55+45+220+45+55=420 m。主梁采用混合主梁,其中两侧边跨各采用预应力砼箱梁,并伸入主跨 9.4 m,中跨197.2 m 范围内采用钢箱梁,并在钢箱梁与预应力混凝土箱梁相交位置放置2 m 长的钢混结合段。桥面总宽度34.5 m,为双向六车道。主桥桥型布置见图1。 小里程 大里程 图1 桥型布置图(m) 主桥钢箱梁长201.2 m(含结合段长度),中间 159.87 m 长位于2 000 m 半径的竖曲线上,两侧各20.66 m 位于坡底4%的直线段上。钢箱梁顶面宽34.5 m,设2%的桥面横坡,底部为半径25 m 的圆弧,两侧配有风嘴,桥梁中线外梁高3.3 m,钢箱梁总重为3984t。桥塔为A 型,包括上塔柱,下塔柱及横梁,采用C60混凝土。塔身混凝土结构高71米,塔顶装饰高度3 m,共74 m。塔柱外侧斜率为1/3.828,内侧面横梁以上部分斜率为1/3.828,横梁以下部分采用垂线对下塔柱截面进行加厚。 桥中心相对杭深线里程为K319+221.64。主梁上跨宁波东站的位置处跨越甬台温铁路正线2条,到发线7条;跨越客车整备线5条,存车线7条;机待线2条共23股道及3个中间站台。主桥2#墩主塔中心相对杭深线里程为K319+193.64,位于宁波东站客整所南侧,临近客整所既有线路。主桥3#墩主塔中心相对杭深线里程为K319+249.64,位于宁波东站北侧。 二、 总体施工方案 1. 钢箱梁顶推施工方案 为了减少上部结构施工对桥下铁路运营的影响,保证施工及行车安全,福明路跨铁路宁波东站主桥中跨钢箱梁采用步履式多点同步顶推法施工。该方案能够较好的控制临时支墩上面的水平力;能够适应钢箱梁竖向线形;设备自成一体,中线自动纠偏;各顶推设备可以进行同步控制,安全稳定性高。 2. 索塔液压爬模施工方案 针对塔身斜率大,临近既有线,协调、组织难度大等特点,下塔柱采用了翻模施工,上塔柱采用了液压爬模施。该体系能够有效减少工序间的相互制约和干扰,在保证施工安全及质量的同时,可以较大幅度缩短工期,节约工程成本,节能环保,提高施工资源利用率。 三、 施工控制关键技术 1. 钢箱梁顶推施工 钢箱梁顶推施工采用步履式多点同步顶推方案,利用“顶”、“推”的两个步骤交替进行,先将整体钢箱梁托起;再向前托送;之后将钢箱梁置于桥墩临时结构上;顶推油缸缩缸到底,继续实现下 一个循环。通过往复顶推步骤的循环,最终将钢箱梁送到预定的位置。 步履式多点顶推设备是一套集顶升、平移、横向调整于一体的顶推设备,实现钢箱梁的顺桥向、竖向、横桥向的移动或调整,从而保证顶推施工的顺利进行。步履式多点顶推设备顶推流程见图 2。 步骤一:顶升-开启支撑顶升油缸,直至钢箱梁被托离临时钢垫梁 。 步骤二:顶推-开启顶推油缸,使钢箱梁与上部支撑结构整体往前 步骤三:降低-开启支撑顶升油缸,使钢箱梁与上部支撑结构整体 往下降,直至钢箱梁与上部支撑结构完全托离。 步骤四:回位-开启顶升油缸,使上部支撑结构往回移位直至顶 升油缸回位。 图2 步履式多点顶推设备顶推流程图 (1)临时墩设计 1)临时墩布置 按顶推施工工艺的要求本桥总共设置8个临时墩,其中在主塔之间共布置6个临时墩,钢箱梁拼装平台下布置两个临时墩,具体布置详见图 3。 图3 临时墩布置图 2)临时墩设计 L1#~L6#、L8#临时墩底横向布置两个分离的承台,尺寸为4.6×4.6×2.0 m,承台底各对称布置4根直径为φ1.0 m,长度为50 m 的钻孔灌注桩。L7#临时墩钢管立柱直接支撑在1#辅助墩上,无需另外进行地基处理。 L1#临时墩上无需布置顶推设备,在各分离承台上布置一根直径为1m 的C40混凝土墩柱,钢混结合段施工时L1#临时墩起到支撑钢箱梁的作用。 L2# 、L3#、L4#、L6#、L7#、L8#临时墩每个承台上各布置四根φ920×14 mm 的钢管墩柱,钢管柱间设置φ426×12 mm 的钢管平联及剪刀撑。墩柱上布置有钢箱梁顶推平台。L5#临时墩墩柱为混凝土墩柱,墩柱上布置有钢箱梁顶推平台。 (2)钢导梁设计 导梁全长46 m,分成6节,第一节长3.045 m,第二、第三、第四节长均为9 m,第五、第六节长均为8 m。导梁与钢箱梁间采用焊接连接、导梁节段之间上翼缘板、腹板采用高强螺栓连接。下翼缘板采用坡口焊接,导梁由钢板加工成工型,钢板材料为Q345B,两工型截面中心距为10 m,通过横向桁架连接。 顶推过程中需保证导梁到达临时墩横向两个墩顶时同时受力。钢导梁在工厂分单元制造并运输 至工地,在工地进行拼装。 (3)顶推设备及其顶推工艺 (下转第115页)

索塔施工

索塔施工 10.1.1 工艺概述 斜拉桥主塔分为钢筋混凝土主塔、钢结构主塔和结合型主塔,本工艺适用于钢筋混凝土主塔施工作业。 索塔是斜拉桥的主要承重结构,索塔的施工质量直接影响到整个桥梁的使用寿命及结构安全。根据索塔的结构特点,主要有如下特点: 一、高空作业,斜拉桥索塔一般都有几十米,上百米、甚至几百米高,所有施工作业均为高空作业,施工风险很大。 二、立体交叉施工,索塔施工包含劲性骨架、钢筋,混凝土、预应力、模板、支架、斜拉索等工程,各种工程施工交叉作业,但一般不在一个高程平台上,施工均在多层平台上穿插进行,相互干扰,影响很大。 三、多工序转换的循环作业,钢筋混凝土索塔施工包括钢筋、混凝土、预应力、模板、劲性骨架及斜拉索等作业,各工序循环施工,转换速度快,一般只有一两天,甚至仅有几个小时。 10.1.2 作业内容 钢筋混凝土主塔作业内容包括劲性骨架、钢筋、混凝土、预应力、模板、支架、索导管等。钢结构主塔主要为吊装作业。 10.1.3 质量标准及检验方法 《铁路混凝土工程施工质量验收标准》(TB10424-2010) 《铁路桥涵工程施工质量验收标准》(TB10415-2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010)

10.1.4 工艺流程图 图10.1.4-1 斜拉桥主塔施工工艺流程图 10.1.5 工艺步骤及质量控制 一、塔吊及电梯的设置 索塔施工均为高空作业,其主要起重、吊装设备一般为高塔吊机,并根据现场实际情况设置上下电梯。 1.塔吊的选型 高塔吊的选型主要考虑吊重和吊距,吊重与吊距均应满足施工需要。 2.塔吊的布置 高塔吊的布置应遵循便于斜拉索安装及主塔钢筋混凝土施工,同时兼顾主梁施工的原则进行。在塔吊布置时,首先应保证其基础位置的结构,同时应考虑其附着与施工对施工

斜拉桥主梁施工方法简介

斜拉桥主梁施工方法简介 摘要:本文较为详细介绍了斜拉桥的结构构成、施工分段、斜拉桥主梁施工方法和各个方法的进度与经济关系。 斜拉桥的施工包括桥(墩)塔施工、主梁施工、斜拉索制作与安装三大部分,其中桥塔的施工一般采用爬模施工,斜拉索制作与安装各桥大体相同,而根据不同的施工设备条件、施工坏境、经济水平等影响,主梁的施工方法各个桥不同,甚至在同一个桥上也采用不同的施工方法分段施工。 因此本文从斜拉桥主梁不同的施工方法:支架法、顶推法、平转法、悬臂浇筑法、悬臂拼装法、短线法预制梁、混合法七种方法来介绍斜拉桥主梁的施工。 关键词:主梁施工,施工方法 斜拉桥是一种由塔、梁和两端分别锚固在塔和梁上的拉索三种基本构件组成的组合桥梁结构体系,三种基本承载构件以不同的方式影响总体结构的性能。与其他体系的桥梁相比,由于拉索的支承,斜拉桥主梁具有跨越能力大、梁的建筑高度小和借助拉索的预应力对主梁内力进行调整等特点。从斜拉桥的构成特点知,其主梁、拉索、索塔及纵横联结系共同受力,形成一高次超静定的空间结构体系。 斜拉桥属于缆索承重桥梁,其施工包括桥(墩)塔施工、主梁施工、斜拉索制作与安装三大部分。众多的桥梁结构中,从造型上、体系上、构造上最富有变化的莫过于斜拉体系桥梁。按照立面布置的不同,斜拉桥分为独塔结构、双塔结构或多塔结构。斜拉桥主梁常用的有箱形梁、双主梁(Ⅱ梁)以及板梁等。 斜拉桥的施工方法是多种多样的,根据国内外的工程实践,斜拉桥基础、墩台和索塔施工与其他桥形基本相同,但上部结构主梁的施工有其特殊性。斜拉桥主梁施工可采用的施工方法包括支架法、顶推法、转体法、悬臂浇筑和悬臂拼装等。一般大跨径斜拉桥上部主梁主要采用悬臂浇筑或悬臂拼装的施工方法,对于中小跨径的斜拉桥,可根据桥址处的地形条件和结构本身的特点,采用支架法、顶推法或平转法等。混凝土斜拉桥常用悬臂施工法,也有支架浇筑法、纵向顶推和平转施工等方法。钢主梁斜拉桥则主要是悬臂拼装法。混凝土斜拉桥主梁的悬臂施工法可分为悬臂拼装法、悬臂浇筑法和混合法。前两种方法是常用的,混合法用的比较少。

斜拉桥双拱塔施工控制关键技术研究

目录 第一章绪论 (1) 1.1 研究背景 (1) 1.2 国内外研究现状以及存在的问题 (3) 1.2.1 国外研究现状 (3) 1.2.2 国内研究现状 (4) 1.3 主要研究内容 (5) 第二章斜拉桥钢拱塔施工控制分析 (6) 2.1 依托工程项目简介 (6) 2.1.1工程概况 (6) 2.1.2施工工序 (7) 2.2模型建立 (9) 2.2.1有限元基本原理 (9) 2.2.2索塔的模拟 (9) 2.2.3主梁的模拟 (9) 2.2.4拉索的模拟 (9) 2.2.5边界条件的模拟 (9) 2.2.6荷载形式的模拟 (10) 2.3 斜拉桥施工关键技术 (10) 2.3.1 线形控制 (10) 2.3.2 受力控制 (12) 2.3.3 稳定控制 (13) 2.3.4 温度影响 (13) 2.3.5 风载影响 (14) 2.4 斜拉桥钢拱塔施工控制关键参数分析 (15) 第三章斜拉桥拱塔预偏量研究 (16) 3.1 拱桥预拱度设置方法 (16) 3.2 梁式桥预拱度设置方法 (17) 3.3 钢拱塔预偏量控制 (18) 3.3.1 拱塔施工 (18) 3.3.2 拱塔拟合分析 (21) 3.3.3 拱塔成桥线形控制 (23)

3.3.4 拱塔预偏量 (24) 3.4 本章小结 (27) 第四章斜拉桥钢拱塔施工偏差控制研究 (28) 4.1 钢拱塔线形控制 (28) 4.2 钢拱塔纵向施工偏差 (28) 4.2.1 1/2拱塔施工偏差 (29) 4.2.2 单塔施工偏差 (33) 4.2.3 双塔施工偏差 (36) 4.2.4 塔内相对施工偏差 (40) 4.3 钢拱塔横向施工偏差 (43) 4.4 钢拱塔合龙误差 (49) 4.5 本章小结 (51) 第五章钢拱塔温度效应影响分析 (52) 5.1 钢结构热膨胀系数 (52) 5.2 钢拱塔施工过程温度影响 (52) 5.2.1 拱塔施工温度场 (53) 5.2.2 温度作用下拱塔位移变化 (54) 5.3 温度调整 (56) 5.3.1 局部影响 (56) 5.3.2 整体影响 (58) 5.3.3 温度调整 (61) 5.4 实测数据与计算数据对比 (61) 5.5本章小结 (62) 第六章结论与展望 (63) 6.1 结论 (63) 6.2 展望 (64) 参考文献 (65) 攻读硕士学位期间取得的研究成果 (68) 致谢 (69)

斜拉桥混凝土索塔施工工艺工法.

斜拉桥混凝土索塔施工工艺工法 (QB/ZTYJGYGF-QL-0601-2011) 桥梁工程有限公司廖文华罗孝德 1 前言 1.1 工艺工法概况 斜拉桥的主塔承受的荷载主要有:塔身自重力、拉索传递的水平及竖向分力、风力、地震力等。这些力在塔身上产生的综合效应为沿桥塔纵横向的水平剪力和弯矩,以及轴向压力等。 一般斜拉桥的顺桥布置形式基本为单柱式、倒Y形、A字形等,如下图所示。 图1 塔柱形式(顺倾向) a)单柱式;b) 倒Y形;c) A字形 索塔沿横桥向的布置主要有:柱式、门式、A字形、倒Y形、菱形(宝石形)等,如下图所示。 图2 塔柱形式(横倾向) a)柱式;b)、 c)门式;d) A字形;e)倒Y形;f)菱形(宝石形) 本工法以重庆巫奉高速公路何家坪特大桥花瓶型(门式)钢筋混凝土索塔施工为依托,全面阐述斜拉桥索塔施工所采用的先进施工技术和施工工艺特点。 1.2 工艺原理

1.2.1索塔的施工可视其结构、体形、材料、施工设备和设计要求综合考虑,选用适合的方法。裸塔施工宜用爬模法,横梁较多的高塔,宜采用劲性骨架挂模提升法。 1.2.1斜拉桥施工时,应避免塔梁交叉施工干扰。必须交叉施工时应根据设计和施工方法,采取保证塔梁质量和施工安全的措施。 1.2.2斜塔柱施工时,必须对各施工阶段塔柱的强度和变形进行计算,应分高度设置横撑,使其线形、应力、倾斜度满足设计要求并保证施工安全。 1.2.3索塔横梁施工时应根据其结构、重量及支撑高度,设置可靠的模板和支撑系统。要考虑弹性和非弹性变形、支承下沉、温差及日照的影响,必要时,应设支承千斤顶调控。体积过大的横梁可分两次浇筑。 1.2.4索塔混凝土现浇,应选用输送泵施工,超过一台泵的工作高度时,允许接力泵送,但必须做好接力储料斗的设置,并尽量降低接力站台高度。 1.2.5必须避免上部塔体施工时对下部塔体表面的污染。 1.2.6索塔施工必须制定整体和局部的安全措施,如设置塔吊起吊重量限制器、断索防护器、钢索防扭器、风压脱离开关等;防范雷击、强风、暴雨、寒暑、飞行器对施工影响;防范吊落和作业事故,并有应急的措施;应对塔吊、支架安装、使用和拆除阶段的强度稳定等进行计算和检查。 2 工艺工法特点 2.1 翻模工艺 模板制造简单,构件种类少,可根据施工起吊能力、索塔造型进行分块,施工缝易于处理,外观美观,施工速度快。 图3 翻模提升示意图 2.2 液压自爬模工艺 爬升稳定性好,操作方便,安全性高,可节省大量工时和材料。一般情况下

(完整版)斜拉桥主梁(支架法)施工工艺

35 斜拉桥主梁(支架法)施工工 艺 35.1适用范围 本工艺适用于桥下净空低、无通航要求或搭设支架对桥下交通无影响、较小影响的中小跨径斜拉桥,其混凝土主梁釆用支架法现浇施工工艺。 35.2施工准备 35.2.1 材料要求 1 斜拉桥混凝土主梁所用原材料(钢筋、水泥、砂、石子、预应力钢束和钢材等)应符合设计要求、现行产品标准规定。 2 混凝土主梁施工所用的支架体系材料和模板材料等应符合设计要求和施工组织设计(施工方案)规定。 3 拉索及其锚具应委托专业单位制作,严格按照国家或部颁的行业标准、规定及设计的特殊要求进行生产,并应进行检查和验收。在工艺更新或确有必要时,可考虑进行拉索的疲劳性能、静载性能试验。对高强钢丝拉索,在工厂制作时应按1.2~1.4倍设计索力对拉索进行预张拉检验,合格后方可出厂。 斜拉桥所采用的钢板及型材的技术要求按现行国家标准《桥梁用结构钢》GB/T714 的规定采用。 斜拉索用高强钢丝应釆用Φ5㎜或Φ7mm热镀锌钢丝,其标准强度、性能应满足现行《桥梁缆索用热镀锌钢丝》GB/T 17101的要求。

斜拉索用钢绞线应釆用高强低松弛预应力镀锌或其他防护钢绞线,其标准强度、性能应满足现行《预应力混凝土用钢绞线》GB/T5224的要求。 斜拉索用锚具钢材应选用优质碳素结构钢或合金结构钢,性能应满足相应国家标准要求。 4 锚具的动、静载性能应与锚具所对应的拉索相匹配。锚杯、锚板、螺母和垫块 等主要受力件的半成品在热处理后应进行超声波探伤,探伤合格的方可进人下一道工序。 5 拉索成品、锚具交货时应提供下列资料: 产品质量保证书、产品批号、设计索号及型号、生产日期、数量、长度、重量、产品出厂检验报告及有关数据。 6 拉索的运输和堆放应无破损、无变形、无腐蚀,成圈产品只能水平堆放。产品出厂前,应用麻袋条或纤维布缠包防护。 35.2.2 机具设备 1 预应力器材:锚具、夹具和连接器等,千斤顶(压力表)、油泵、注衆机、切割机等。 2 钢筋施工机具:钢筋弯曲机、钢筋调直机、钢筋切断机、电焊机、砂轮切割机等。 3 模板施工机具:电锯、电刨、手电钻等。 4 混凝土施工机具:预拌混凝土强制式搅拌机、混凝土运输车、混凝土泵车、混凝土输送泵、汽车吊、混凝土振捣器等。 5 拉索安装设备:索盘支架、滚筒(滚轮)、导向轮、卷扬机、塔吊等拉索安装设备:索盘支架、滚筒(滚轮)、导向轮、卷扬机、塔吊等。 6 检测仪器设备:全站仪、经纬仪、水准仪、传感器、振动频率测力计、测试仪或频率仪等。 7 工具:专用扳手、直尺、限位板、卡尺等。 35.2.3 作业条件 1 施工围挡已完成。 2 主梁施工范围内妨碍作业的地上、地下构筑物已清除或改移完毕,不妨碍施工的现场周边构筑物已进行标识,并有保护措施。 3 现场道路畅通,施工场地已清理平整,现场用水、用电接通,备有夜间照明设施。 4 测量控制网已建立,测量放线已完成。 35.2.4 技术准备 1 斜拉桥混凝土主梁施工前认真熟悉图纸、根据现场条件编制总体施工组织设计和分项工程实施性方案,报有关部门批准。 施工组织设计应包括: (1)主梁的施工方法与施工工艺;拉索制作、安装、张拉、锚固与防护工艺;塔梁施工线形与内力、拉索索力的控制方法; (2)施工区域内及周边地区的交通组织安排; (3)对邻近构筑物(包括地下结构)的保护措施;

任务书大跨度斜拉桥关键施工技术研究

一、目标与任务 1. 课题研究目标 通过科研课题的研究,掌握山区喀斯特地质条件下超大直径桩基施工、索塔全自动液压爬模施工、斜拉桥现浇PC主梁边跨中跨合拢段施工、PC斜拉桥主梁前支点挂篮施工、斜拉索安装施工及调索监控施工等技术难题,高效优质、安全环保地完成施工任务,实现项目完美履约。为今后类似工程施工提供技术依据,提炼、总结并推广应用技术成果,培养锻炼技术人才队伍。 2. 课题研究内容 (1)喀斯特地质条件下超大直径桩基施工技术 ①岩溶地区超大超深桩基人工挖孔施工方法分析研究; ②超深桩基施工过程中安全控制措施分析研究。 (2)索塔全自动液压爬模施工技术 ①主塔施工液压爬模模板选择与计算分析研究; ②主塔液压爬模施工技术分析研究; ③主塔上下横梁施工支撑方案的选定与复核计算研究。 (3)斜拉桥现浇PC主梁边跨中跨合拢段施工技术研究 ①斜拉桥边跨合拢段模板支撑体系选择与计算分析研究; ②斜拉桥中跨合拢临时锁定及配重技术分析研究。 (4)PC斜拉桥主梁前支点挂篮施工技术 ①斜拉桥主梁前支点挂篮施工工艺分析研究; ②PC斜拉桥主梁前支点挂篮智能化控制技术分析研究; ③斜拉桥主梁合拢段施工工艺分析研究。 (5)斜拉索安装施工及调索监控施工技术研究 ①斜拉桥施工过程中斜拉索索力控制分析研究; ②斜拉索施工工艺、张拉程序分析研究。 3. 本课题的主要技术难点和解决途径 此次研究课题以勒河特大桥为依托。以勒河特大桥主塔高度分别为176m和162m,塔顶至谷底高差300余米;主桥部分为双塔双索面π型断面刚构体系预应

力混凝土梁斜拉桥,总长为690m,分83节段。 施工现场地质条件为典型的喀斯特地质,地理环境颇为复杂,特大桥主墩桩基直径达到250cm,深度达到35m,如何进行桩基施工并保证作业安全是本工程的重点。 以勒河特大桥主塔高度高,最大高度176m。如何实现超大直径桩基及高墩液压爬模作业过程中的质量、安全、进度是本工程的一大难点。 以勒河特大桥跨越既有公路及高深峡谷,上部结构形式采取斜拉桥形式,主跨跨度达到350m,其大跨度斜拉桥施工质量、安全及进度控制是本项目施工过程中的控制难点。 在桩基施工过程中,充分利用超声波及检测设备对施工面周边进行监测,及时发现安全隐患,并采取相应的技术措施进行排除。 综合比较了高墩柱施工的翻模和爬模体系后,本项目拟采用全自动液压爬模体系进行索塔施工,可保证索塔在结构可靠和施工安全的前提下快速施工,提高生产控制能力,降低损耗,缩短施工作业时间,保证关键工序的施工质量,节约成本。 因过度墩高度较高使用支架作为支撑体系经济性较差,在综合比较了支架支撑体系和托架支撑体系后,拟采用托架体系支撑边跨合拢段模板,降低施工成本。 中跨合拢前去除主梁上所有多余荷载后对已浇筑主梁进行线型24h观测和在索力监测,然后根据测得数据在索力允许误差范围内通过一次索力调整,优化现有线型。再后进行临时锁定、使用水箱加载配重水、钢筋模板施工、边浇筑混凝土边卸载配重水、养护,保证合拢段施工质量。 本项目拟采用前支点挂篮智能化控制技术,来完成挂篮的自动提升、下放、前移等工作,传用以提高作业效率和减少劳动力投入。在保证主梁施工质量的条件下,进一步提高施工精确度和安全性,缩短了各环节施工作业时间,确保关键工序的施工质量,节约成本。 委托第三方进行整个施工过程中的检测,斜拉索的安装及索力调整过程中通过有限元法进行施工过程全过程模拟,并根据模拟结果确定拉索的预应力损失量,保证斜拉索各单根钢丝束索力的均匀性和施工的顺利进行,确保竣工后主梁挠度和索力符合设计及规范要求。

(推荐)斜拉桥索塔工法

斜拉桥索塔施工工法中交一公局第三工程有限公司

斜拉桥索塔施工工法 一、前言 随着高速公路的迅猛发展,公路等级不断提高,斜拉桥、悬索桥等具有高墩、大跨径特点的桥梁被广泛应用到工程实际,同时也发挥了越来越重要的作用。索塔作为斜拉桥、悬索桥一个十分重要的组成部分,造价高昂、施工周期长,如何科学组织施工,优质高效地完成施工任务,具有十分重要的意义。本工法依托江苏省连盐高速公路灌河特大桥索塔施工工程实例,全面系统地阐述了索塔施工技术和工艺特点。已建成的索塔成品倾斜度、空间尺寸以及外观质量均满足规范要求,处于良好的受控状态,施工进度科学合理。该工法被证明是一项行之有效的施工工法,代表了目前索塔施工的先进水平。 二、工法特点 1、本工法工艺简练,操作性强,施工易于实现。在合理设计模板、支架和爬架系统的基础上,可以实现高度较大的索塔施工。 2、本工法施工结构设计合理,力学模型明确,设计计算量不大,易于被工程技术人员掌握。 3、质量易于控制,通过采用相对基准极坐标法进行测量控制,以及模板支撑体系的优化,结构物实体质量和外观质量优良。 4、本工法投入的大型机械设备相对较少,施工成本较低,循环施工周期较短,具备较高的投入产出比。 三、适用范围 本工法具有施工快捷,结构合理,经济实惠等特点,可以被广泛应用到斜拉桥、悬索桥的索塔施工中,尤其适合于索塔截面比较规则,塔柱高为100~200m的中小型钢筋砼索塔。通过对模板系统以及爬架提升装置的改进和优化,也可以应用到变截面及高度较大的索塔施工中。 四、工法原理 本工法是索塔施工的一种非常有效的工艺方法。工法原理:在塔柱内预先安装劲性骨架作为钢筋模板安装定位的依托,纵向主钢筋采用机械连接,下塔柱采用钢管支架模板体系、中上塔柱采用内翻外爬附爬架的分节段爬模施工模式,砼采用拖泵泵管输送,在中塔柱上设置横向临时撑架,防止塔柱根部产生拉应力,斜拉索与索塔的锚固形式采用钢锚梁锚固体系,直接传递给索塔,横梁采用钢管落地支架支撑体系,通过合理布设塔吊、电梯、泵管、水电等设施以及进行预埋件的埋设,并运用塔吊以及吊车进行施工材料的垂直运输的一种高效的索塔施工工艺。 根据索塔形式、高度以及所采用的施工工艺、方法、设备性能和具备的施工能力,索塔分节长度不尽相同,一般分节长度为4.0~5.0m。 五、施工工艺流程及操作特点 (一)索塔施工工艺流程

相关文档
最新文档