热处理气氛控制

热处理气氛控制
热处理气氛控制

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。 4、固-固相变的等温转变动力学曲线是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

热处理原理与工艺第二章教案

第二章珠光体转变 共析碳钢加热奥氏体化后,在共析温度以下冷却时,奥氏体可发生三种基本的转变:珠光体转变、贝氏体转变和马氏体转变。这三种转变得到的组织中,马氏体硬度最高,贝氏体次高,珠光体最低。 图2-1是实测的共析钢奥氏体等温冷却转变曲线的示意图(也称等温C曲线),图中三条线分别表示转变开始线、转变终了线和马氏体转变开始温度。奥氏体在A1以下不同温度等温冷却时,将发生以下转变:A1~550℃珠光体转变,550℃~Ms之间为贝氏体转变。在Ms以下则发生马氏体转变。珠光体区又分为粗珠光体P、细珠光体 S (也称索氏体)、极细珠光体T (也称托氏体);贝氏体区分为上贝氏体B上和下贝氏体B下。如将共析钢工件冷至650℃并等温,当等温时间与珠光体转变开始曲线相交时,奥氏体将开始发生珠光体转变,转变为细珠光体S;此后,随等温时间延长,奥氏体不断减少、S不断增多,当等温至与珠光体转变终了曲线相交时,奥氏体全部转变为S。 图2-1 共析碳钢等温转变曲线示意图 本章主要介绍珠光体组织形态、形成过程、影响因素及力学性能等。 第一节珠光体组织形态和力学性能 一、珠光体组织形态 当含碳量为0.77%的奥氏体冷却到A1温度以下时,发生共析转变,分解为片状的铁素体和渗碳体交替重叠组成的共析组织(见图2-2)。这种组织经浸蚀后,在光学显微镜下观察,其金相形态酷似珍珠母产生的光学效果,故而得名珠光体。珠光体组织中铁素体和渗碳体的体积比约为7:1,故铁素体片总是比渗碳体厚。

图2-2 共析碳钢片状珠光体 500X 珠光体的金相组织中有许多片层排列位向大致相同的小区域(见图2-3),称为珠光体领域或珠光体团。在一个原奥氏体晶粒内,可形成几个位向不同的珠光体团。相邻两渗碳体(或铁素体)片中心之间的距离S0,称珠光体片层间距(见图2-3a所示)。片层间距S0是影响珠光体力学性能的一个重要参数。实验表明,珠光体团的尺寸随原奥氏体晶粒尺寸减小而减小。 图2-3 珠光体片层间距和珠光体团示意图 a)珠光体片层间距S。 b)珠光体团 通常所说的珠光体组织粗细,是指组织中渗碳体和铁素体片层厚薄程度不同,也就是珠光体片层间距大小的不同。如前已述及的组织中的珠光体、索氏体和托氏体组织,实质上都是渗碳体和铁素体交替重叠组成的片状组织,只是片层间距大小不同而已(见表2-1)。 由表中数据可以看出,转变温度愈低,片间距愈小(即珠光体组织愈细),硬度愈高。较高温度下,形成的珠光体组织,片间距较大,在通常光学显微镜下观察,就能清楚分辨片层组织形态。在较低温度形成的索氏体组织,在显微镜放大至600倍以上,才能分辨其片层组织形态。如果转变温度更低,形成托氏体组织,其片层组织更细小,即使在高倍的光学显微镜下也分辨不出其片层形态,只能看到其总体是一团黑,必须用高倍率的电子显微镜才能分辨出极薄的渗碳体和铁素体片。 在工业用钢中,还可见到另一种形态的珠光体组织,在铁素体上均匀分布着球粒状碳化物,称为粒状珠光体,见图2-4。粒状珠光体一般是经球化退火后获得的组织。球化退火工艺不同,获得

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4,6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100,200?)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的

数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度,温度关系,可用铝铜系的Al,4Cu合金说明合金时效的组成和结构的变化。图3,1铝铜系富铝部分的二元相图,在548?进行共晶转变L?α,θ(Al2Cu)。铜在α相中的极限溶解度5.65,(548?),随着温度的下降,固溶度急剧减小,室温下约为0.05,。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区,G?P(?)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(?)区。G?P(?)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化,形成G?P(?)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(?)区。它与基体α仍保持共格关系,但尺寸较G?P(?)区大。它可视为中间过渡相,常用θ”表示。它比G?P(?)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(?)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基

金属学与热处理课后习题答案第二章

第二章纯金属的结晶 2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2 b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何? 答: 2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。为什么形成立方体晶核的△Gk比球形晶核要大。 答:

2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么? 答: 金属结晶时需过冷的原因: 如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使G s<Gl,也就是在过冷的情况下才可自发地发生结晶。把Tm-Tn的差值称为液态金属的过冷度 影响过冷度的因素: 金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。 固态金属熔化时是否会出现过热及原因: 会。原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<G s,固态金属才会发生自发地熔化。 2-4 试比较均匀形核和非均匀形核的异同点。 答: 相同点: 1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。

2、具有相同的临界形核半径。 3、所需形核功都等于所增加表面能的1/3。 不同点: 1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变 化而变化。 2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。 3、两者对形核率的影响因素不同。非均匀形核的形核率除了受过冷度和温度的 影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。 2-5 说明晶体生长形状与温度梯度的关系。 答: 液相中的温度梯度分为: 正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。负温度梯度:指液相中的温度随至固液界面距离的增加而降低的温度分布情况。固液界面的微观结构分为: 光滑界面:从原子尺度看,界面是光滑的,液固两相被截然分开。在金相显微镜下,由曲折的若干小平面组成。 粗糙界面:从原子尺度看,界面高低不平,并存在着几个原子间距厚度的过渡层,在过渡层中,液固两相原子相互交错分布。在金相显微镜下,这类界 面是平直的。 晶体生长形状与温度梯度关系: 1、在正温度梯度下:结晶潜热只能通过已结晶的固相和型壁散失。 光滑界面的晶体,其显微界面-晶体学小平面与熔点等温面成一定角度,这种情况有利于形成规则几何形状的晶体,固液界面通常呈锯齿状。 粗糙界面的晶体,其显微界面平行于熔点等温面,与散热方向垂直,所以晶体长大只能随着液体冷却而均匀一致地向液相推移,呈平面长大方式,固液界面始终保持近似地平面。 2、在负温度梯度下: 具有光滑界面的晶体:如果杰克逊因子不太大,晶体则可能呈树枝状生长;当杰克逊因子很大时,即时在较大的负温度梯度下,仍可能形成规则几何形状的晶体。具有粗糙界面的晶体呈树枝状生长。 树枝晶生长过程:固液界面前沿过冷度较大,如果界面的某一局部生长较快偶有突出,此时则更加有利于此突出尖端向液体中的生长。在尖端的前方,结晶潜热散失要比横向容易,因而此尖端向前生长的速度要比横向长大的速度大,很块就长成一个细长的晶体,称为主干。这些主干即为一次晶轴或一次晶枝。在主干形成的同时,主干与周围过冷液体的界面也是不稳的的,主干上同样会出现很多凸出尖端,它们会长大成为新的枝晶,称为称为二次晶轴或二次晶枝。二次晶枝发展到一定程度,又会在它上面长出三次晶枝,如此不断地枝上生枝的方式称为树枝状生长,所形成的具有树枝状骨架的晶体称为树枝晶,简称枝晶。 2-6 简述三晶区形成的原因及每个晶区的特点。 答: 三晶区的形成原因及各晶区特点: 一、表层细晶区

简述常用热处理工艺的原理与特点

简述常用热处理工艺的原理与特点。 热处理是指材料在固态下,通过加热、保温和冷却的手段,以获得预期组织和性能的一种金属热加工工艺。 热处理工艺原理 1、正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。 2、退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。 3、淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。 4、回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。 5、调质处理:一般习惯将淬火加高温回火相结合的热处理称为调质处理。调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织更优。它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。 特点:金属热处理是机械制造中的重要工艺之一,金球的热处理工艺与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。 比较钢材与非金属材料热处理的异同点。 热处理有金属材料热处理和非金属材料热处理 相同点:热处理的原理基本一样,都是一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。 不同点: 1.钢的表面热处理有两大类:一类是表面加热淬火热处理,另一类是化学热处理。 非金属材料的表面热处理:喷漆、着(染)色、抛光、化学镀后再电镀(如ABS)等。 2.金属材料热处理包括:退火、正火、淬火和回火。 非金属材料热处理包括碳纤维预氧化、碳化、石墨化设备,石墨化烧结等;复合材料成形以及空间环境模拟,包括热压罐,热压机,KM系列模拟罐,用户分布于汽车、模具、工具、碳纤维加工和其他高端应用领域。

热处理原理与工艺课程试题

热处理原理与工艺课程试题 热处理原理与工艺课程试题,一, 一、术语解释(每题4分,共20分) 1(分级淬火: 2(淬透性: 3(TTT曲线: 4(Ms温度: 5(调质处理: 二、填空(每空1分,共20分) 1(大多数热处理工艺都需要将钢件加热到相变临界点以上。 2((在钢的表面同时渗入碳和氮的化学热处理工艺称为,其中低温,最初主要用于中碳钢的耐磨性及疲劳强度的提高,因为硬度提高不多,故又称为。 3(奥氏体中的碳浓度差是奥氏体在铁素体和渗碳体相界面上形核的必然结果,也是相界面推移的驱动力。 4(钢中产生珠光体转变产物的热处理工艺称为退火或正火。 5(马氏体相变区别于其他相变最基本的两个特点是: 相变以切变共格方式进行和无扩散性。 6(贝氏体相变时随着钢中碳含量的增加,贝氏体相变速度减慢,等温转变C曲线向右移。 7(回火第一阶段发生马氏体的分解。 8(钢件退火工艺种类很多,按加热温度可分为两大类,一类是在临界温度(Ac1或AC3)以上的退火,又称相变重结晶退火。 9(有物态的淬火介质淬火冷却过程可分为三个阶段: 蒸气膜阶段、沸腾阶段和对流阶段。

10. 几乎所有的合金元素(除(Co )、(Al)以外),都使Ms和M点( 降低 )。 f11.随着合金含量的增加(Co等个别元素除外),钢的等温转变曲线右移,淬透性( 提高 ),比碳钢更容易获得( 马氏体 )。 三、选择题(每题2分,共20分) 1、下面对“奥氏体”的描述中正确的是: ( ) A(奥氏体是碳在α,Fe中的过饱和固溶体 B(奥氏体是碳溶于α,Fe形成的固溶体 C(奥氏体是碳溶于γ,Fe所形成的固溶体 D(奥氏体是碳溶于γ,Fe所形成的过饱和固溶体 2、45钢经下列处理后所得组织中,最接近于平衡组织的是:( ) A(750?保温10h后空冷 B(750?保温10h后炉冷 C(800?保温10h后炉冷 D(800?保温10h后空冷 3、对奥氏体实际晶粒度的描述中不正确的是:( ) A(某一热处理加热条件下所得到的晶粒尺寸 B(奥氏体实际晶粒度比起始晶粒度大 C(加热温度越高实际晶粒度也越大 D(奥氏体实际晶粒度与本质晶粒度无关 4、钢的淬硬性主要取决于() A(含碳量 B(含金元素含量 C(冷却速度 D(保温时间 5、防止或减小高温回火脆性的较为行之有效的方法是()

热处理原理与工艺课后习题

热处理原理与工艺课后习题 第一章 一.填空题 1.奥氏体形成的热力条件()。只有在一定的()条件下才能转变为奥氏体。()越大,驱动力越大,奥氏体转变速度越快。 2.共析奥氏体形成过程包括()()()和()四个阶段。 3.( )钢加热时奥氏体晶粒长大的倾向小,而()钢加热时奥氏体晶粒长大的倾向小。 4.本质晶粒度是钢的热处理工艺性能之一,对于()钢可有较宽的热处理加工范围,对于()钢则必须严格控制加热温度,以免引起晶粒粗化而是性能变坏。 5.()晶粒度对钢件冷却后的组织和性能影响较大。 6.控制奥氏体晶粒长大的途径主要有()()( )( )和()。 7.()遗传对热处理工件危害很大,它强烈降低钢的强韧性,使之变脆,必须避免和消除。、 二、判断正误并简述原因 1.奥氏体晶核是在珠光体中各处均匀形成的。() 2.钢中碳含量越高,奥氏体转变速度越快,完全奥氏体化所需时间越

短。() 3.同一种钢,原始组织越细,奥氏体转变速度越慢。() 4.本质细晶粒钢的晶粒在任何加热条件下均比本质粗晶粒钢细小。() 5.在一定加热的温度下,随温度时间延长,晶粒将不断长大。() 6.所有合金元素都可阻止奥氏体晶粒长大,细化奥氏体晶粒。() 三、选择题 1.Ac1、A1、Ar1的关系是__________。 A..Ac1>A>1Ar1 B. Ar1>A1>Ac1 C.A1>Ar1>Ac1 D.A1>Ac1>Ar1 2. Ac1、Ac3、Ac cm是实际()时的临界点。 A. 冷却 B.加热 C.平衡 D.保温 3.本质晶粒度是指在规定的条件下测得的奥氏体晶粒() A.长大速度 B. 大小 C. 起始尺寸 D. 长大极限 4.实际上产中,在某一具体加热条件下所得到的奥氏体晶粒大小称为() A. 起始晶粒度 B.本质晶粒度 C.实际晶粒度 D.名义晶粒度 四、简答题 1.以共析碳钢为例,说明:1.奥氏体的形成过程; 2. 奥氏体晶核为什

《材科热处理原理》思考题

《材科热处理原理》思考题 第一章固态相变概论 1. 金属固态相变的主要类型有哪些? 2. 热力学主要的状态函数与状态变数之间的关系如何? 3. 金属固态相变按(1)相变前后热力学函数、(2)原子迁移情况、(3)相变方式分为哪几类? 4. 金属固态相变有哪些特点? 5. 固态相变的驱动力和阻力包括什么?加以说明。 6. 固态相变的过程中形核和长大的方式是什么?加以说明。 7. 何谓热处理?热处理的目的是什么?热处理在机械加工过程中作用有那些?热处理与合金相图有何关系? 8. 金属固态相变主要有哪些变化? 9. 说明下列符号的物理意义及加热速度和冷却速度对他们的影响? Ac1、Ar1、Ac3、Ar3、Accm、Arcm 10. 一些概念:固态相变、热处理、平衡转变、不平衡转变、同素异构转变、多形性转变、共析转变、包析转变、平衡脱溶沉淀、调幅分解、有序化转变、伪共析转变、马氏体转变、贝氏体转变、块状转变、不平衡脱溶沉淀、一级相变、二级相变、扩散型相变、非扩散型相变、半扩散型相变、共格界面、半共格界面、非共格界面、惯习面、位向关系、应变能、界面能、过渡相、均匀形核、非均匀形核、晶界形核、位错形核、空位形核、界面过程、传质过程、协同型方式长大、非协同型方式长大、切变机制、台阶机制 第二章钢中奥氏体的形成 1. 奥氏体(A)的晶体结构,组织形态与性能有什么特点? 2. 奥氏体形成的热力学条件是什么?共析钢的珠光体(平衡态组织)向奥氏体转变属于何种转变?试说明珠光体向奥氏体转变过程。 3. 钢在实际热处理加热和冷却过程时的临界点为什么偏离相图上的临界点?实际的临界点如何表示?实际

热处理原理与工艺第十四章教案

第十四章钢的渗氮 渗氮是在一定温度下于一定介质中使氮原子渗入工件表层的化学热处理工艺。渗氮处理后的零件具有如下特点: 1)具有高的表面硬度及耐磨性含Al、Cr、Mo等的合金钢渗氮后硬度可达950~1200HV,并可维持到500℃左右。 2)具有高的疲劳强度和抗大气和淡水腐蚀能力。 3.)工件变形小,适合精密零件的最终处理,但时间很长。渗层也较薄,不适于承受重载荷。 按介质不同,可分为气体渗氮和液体渗氮。按渗氮目的不同可分为强化渗氮和抗蚀渗氮。 本章主要介绍渗氮的基本原理、渗氮层的组织和性能、气体渗氮工艺的制订方法。 第一节渗氮层组织与性能 一、Fe-N系相图与基本相 α相:是氮在α-Fe中的间隙固溶体(含氮铁素体),体心立方晶格,其中氮含量在室温时不超过0.001%,在590℃为0.1%。 γ相:是氮在γ-Fe中的间隙固溶体(即含氮奥氏体),面心立方晶格,温度高于590℃时才存在。共析成分为2.35%,温度缓慢下降通过590℃时,γ相发生共析转变γ→α+γ′。如在γ相区快速冷却,则会得到含氮马氏体(与含碳马氏体类似)。 γ′相:是一种成分可变的间隙相,面心立方晶格,450℃时含氮量为5.7~6.7%,氮原子有序地占据间隙位置,当含氮量为5.9%时,其成分符合Fe4N,γ′相大约在680℃以上发生分解并溶于ε相中。 ε相:为一可变成分的氮化物,具有密排六方晶格,在一般氮化温度范围内ε相的成分大致在Fe2N~Fe3N之间(8.25~11%N)。随温度的降低ε相将析出γ′相。 ξ相:ξ相极脆,渗氮层一般不允许出现ξ相。 二、纯铁渗氮层组织与性能 图14-2为渗氮层组织和氮含量分布示意图(略) 各相性能特点:ε相硬度约为265HV,γ′相为550HV,含氮马氏体为650HV。α相韧性最好,ε相较脆,并脆性随含氮量增加而增大;γ′相脆性较小;ξ相很脆,一般不允许渗氮层出现ξ相。 ε相具有良好的抵抗大气和淡水腐蚀的性能。 三、碳及合金元素对渗氮层组织与性能的影响 1.碳的影响 碳使氮在钢中的的扩散速度降低,使渗氮层的深度减小。 碳素钢渗氮层的组织与纯铁渗氮层组织大致相同,碳可溶于ε中,形成Fe2~3(C,N),使之硬度提高、脆性降低,但γ′几乎不溶解碳。氮在钢中能溶入渗碳体而形成含氮渗碳体Fe3(C,N)。 2.合金元素的影响

钢的热处理原理及工艺复习重点及课后习题

钢的热处理原理及工艺复习重点及课后习题 一、复习重点 1、什么是加工硬化?产生加工硬化的根本原因是什么? 2、什么是再结晶?再结晶的实际应用是什么?金属再结晶是通过什么方式发生的?再结晶退火的主要作用是什么? 3、冷加工和热加工的区别是什么? 4、热处理的定义及三个基本过程。为什么钢能够进行热处理?奥氏体化的目的是什么? 5、珠光体、贝氏体、马氏体分别都有哪几种组织形态?每种组织力学性能如何? 6、退火、正火、淬火、回火的定义是什么? 7、什么是钢的淬透性? 二、课后复习题 (一)、填空题 1、加工硬化现象是指随变形度的增大,金属强度和硬度显著提高而塑性和韧性显著下降的现象。加工硬化的结果,使金属对塑性变形的抗力增大,造成加工硬化的根本原因是位错密度提高,变形抗力增大。消除加工硬化的方法是再结晶退火。 2、再结晶是指冷变形金属加热到一定温度之后,在原来的变形组织中重新产生无畸变的新等轴晶粒,而性能也发生明显的变化,并恢复到冷变形之前状态的过程。 3、在金属的再结晶温度以上的塑性变形加工称为热加工。在金属的再结晶温度以下的塑性变形加工称为冷加工。

4、金属在塑性变形时所消耗的机械能,绝大部分(占90%)转变成热而散发掉。但有一小部分能量(约10%)是以增加金属晶体缺陷(空位和位错)和因变形不均匀而产生弹性应变的形式(残余应力)储存起来,这种能量我们称之为形变储存能。 5、马氏体是碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。贝氏体是渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。根据形貌不同又可分为上贝氏体和下贝氏体。用光学显微镜观察,上贝氏体的组织特征呈羽毛状,而下贝氏体则呈针状。相比较而言,上贝氏体的机械性能比下贝氏体要差。 6、在过冷奥氏体等温转变产物中,珠光体与屈氏体的主要相同点是都是渗碳体的机械混合物,不同点是层间距不同,珠光体较粗,屈氏体较细。 7、马氏体的显微组织形态主要有板条状、针状马氏体两种。其中板条状马氏体的韧性较好。钢在淬火后获得的马氏体组织的粗细主要取决于奥氏体的实际晶粒度。 8、钢的热处理工艺由加热、保温、冷却三个阶段所组成。 9、淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。 10、当钢中发生奥氏体向马氏体的转变时,原奥氏体中碳含量越高,则M S点越低。 11、钢的正常淬火温度范围,对亚共析钢是线以上A C3+30 ~ 50℃,对过共析钢是A C1+30 ~ 50℃。 12、淬火钢进行回火的目的是消除内应力,获得所要求的组织与性能,回火温度越高,钢的强度与硬度越低。 13、调质处理是经淬火后再高温回火,能得到回火索氏体组织,具有

最新金属热处理工艺

金属热处理原理 1 一、热处理的作用 机床、汽车、摩托车、火车、矿山、石油、化工、航空、航天等用的大量零部件需要通过热处理工艺改善其性能。拒初步统计,在机床制造中,约60%~70%的零件要经过热处理,在汽车、拖拉机制造中,需要热处理的零件多达70%~80%,而工模具及滚动轴承,则要100%进行热处理。总之,凡重要的零件都必须进行适当的热处理才能使用。 材料的热处理通常指的是将材料加热到相变温度以上发生相变,再施以冷却再发生相变的工艺过程。通过这个相变与再相变,材料的内部组织发生了变化,因而性能变化。例如碳素工具钢T8在市面上购回的经球化退火的材料其硬度仅为20HRC,作为工具需经淬火并低温回火使硬度提高到60~63HRC,这是因为内部组织由淬火之前的粒状珠光体转变为淬火加低温回火后的回火马氏体。同一种材料热处理工艺不一样其性能差别很大。表6-1列出45钢制直径为F15mm的均匀园棒材料经退火、正火、淬火加低温回火以及淬火加高温回火的不同热处理后的机械性能,导致性能差别如此大的原因是不同的热处理后内部组织截然不同。同类型热处理(例如淬火)的加热温度与冷却条件要由材料成分确定。这些表明,热处理工艺(或制度)选择要根据材料的成份,材料内部组织的变化依赖于材料热处理及其它热加工工艺,材料性能的变化又取决于材料的内部组织变化,材料成份-加工工艺-组织结构-材料性能这四者相互依成的关系贯穿在材料加工的全过程之中。 二、热处理的基本要素 热处理工艺中有三大基本要素:加热、保温、冷却。这三大基本要素决定了材料热处理后的组织和性能。 加热是热处理的第一道工序。不同的材料,其加热工艺和加热温度都不同。加热分为两种,一种是在临界点A1以下的加热,此时不发生组织变化。另一种是在A1以上的加热,目的是为了获得均匀的奥氏体组织,这一过程称为奥氏体化。

热处理原理与工艺设计课程设计报告

* * 大学 热处理原理与工艺课程设计 题目: 50Si2Mn弹簧钢的热处理工艺设计 院(系):机械工程学院 专业班级:** 学号:******* 学生姓名:** 指导教师:** 起止时间:2014-12-15至2014-12-19

课程设计任务及评语 院(系):机械工程学院教研室:材料教研室 学号******* 学生姓名** 专业班级*** 课程设计 题目 50Si2Mn弹簧钢的热处理工艺设计 课程设计要求与任务一、课设要求 熟悉设计题目,查阅相关文献资料,概述50Si2Mn弹簧钢的热处理工艺,制定出热处理工艺路线,完成工艺设计;分析50Si2Mn弹簧钢的成分特性;阐述50Si2Mn弹簧钢淬火、回火热处理工艺理论基础;阐述各热处理工序中材料的组织和性能;阐明弹簧钢的热处理处理常见缺陷的预防及补救方法;选择设备;给出所用参考文献。 二、课设任务 1.选定相应的热处理方法; 2.制定热处理工艺参数; 3.画出热处理工艺曲线图; 4分析各热处理工序中材料的组织和性能; 5.选择热处理设备 三、设计说明书要求 设计说明书包括三部分:1)概述;2)设计内容;3)参考文献。

工作计划 集中学习0.5天,资料查阅与学习,讨论0.5天,设计6天:1)概述0.5天,2)服役条件与性能要求0.5天,3)失效形式、材料的选择0.5天,4)结构形状与热处理工艺性0.5天,5)冷热加工工序安排0.5天,6)工艺流程图0.5天,7)热处理工艺设计1.5天,8)工艺的理论基础、原则0.5天, 09)可能出现的问题分析及防止措施0.5天,10)热处理质量分析0.5天,设计验收1天。 指 导 教 师 评 语 及 成 绩 成绩:学生签字:指导教师签字: 年月日

最新金属材料与热处理-考试复习笔记

热处理复习重点 第一章金属材料基础知识 1. 材料力学性能 (1)材料在外力作用下抵抗变形和破坏的能力称为强度。强度有多种指标,如屈服强度(压)、抗拉强度(b b )、抗压强度、抗弯强度、抗剪强度等。 (2)塑性是指材料受力破坏前承受最大塑性变形的能力,指标为伸长率(3)和断面收缩率(0), 3和0越 大,材料的塑性越好。 (3 )材料受力时抵抗弹性变形的能力称为刚度,其指标是弹性模量(弹性变形范围内,应 力与应变的比值)。 (4)硬度(材料表面局部区域抵抗更硬物体压入的能力) a. 布氏硬度(测较低硬度材料) 用一定直径的钢球或硬质合金球,在一定载荷的作用下,压入试样表面,保持一定时间后卸 除载荷,所施加的载荷与压痕表面积的比值。HBS(钢球,<450)、HBW(硬质合金球,>650)。 b. 洛氏硬度(测较高硬度材料 利用一定载荷将交角为120°的金刚石圆锥体或直径为 1.588mm的淬火钢球压入试样表面, 保持一定时间后卸除载荷,根据压痕深度确定的硬度值。HRA (金刚石圆锥,20~80 )、HRB (1.588mm 钢球,20~100)、HRC (金刚石圆锥,20~70) c. 维氏硬度(适用范围较广 维氏硬度其测定原理基本与布氏硬度相同,但使用的压头是锥面夹角为136°的金刚石正四 棱锥体。 (5)冲击韧性 材料抵抗冲击载荷作用而不被破坏的能力。通常用冲击功A k来度量,A k是冲击试样在摆锤 冲击试样机上一次冲击试验所消耗的冲击功。 (6)疲劳强度 材料在规定次数(钢铁材料为107次,有色金属为108次)的交换载荷作用下,不发生断裂时的最大应力,用b -1表 示。 2. 铁碳相图 y/K t舆氏体区】a/Ei FeSC/Cin.儀碳体区:务

热处理工艺设计

50CrVA钢调速弹簧的 热处理工艺设计 1 热处理工艺课程设计的意义 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是: (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。(3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 2热处理课程设计的任务 ①普通热处理工艺设计 ②特殊热处理工艺设计 ③制定热处理工艺参数 ④选择热处理设备 ⑤设计热处理工艺所需的挂具、装具或夹具 ⑥分析热处理工序中材料的组织和性能 ⑦填写工艺卡片 350CrVA调速弹簧的技术要求及选材 3.1 技术要求 50CrVA钢喷油泵调速弹簧技术要求如下: 硬度:HRC46~51 3.2 零件图 喷油泵调速弹簧的零件如图3.1所示。

图3.1 喷油泵调速弹簧 3.3 材料的选择 3.3.1零件用途 喷油泵调速弹簧,利用弹簧的受力形变和恢复来调节气门的开合,从而调节喷油泵的喷油速度与喷油量。 3.3.2工作条件 (1)喷油泵调速弹簧工作时,要承受高应力。 (2)喷油泵调速弹簧要承受高频率往复运动。 (3)喷油泵调速弹簧要在较高的温度下工作。 3.3.3性能要求 弹簧的性能要求为如下几个方面:

力学性能:由于弹簧是在弹性范围内工作,不允许有永久变形。要求弹簧材料有良好的微塑性变形能力,即弹性极限、屈服极限和屈强比要高。 理化性能方面:喷油泵调速弹簧的工况很复杂,要在较高的温度下长期工作,因此要求弹簧材料有良好的耐热性,即有高的蠕变极限、蠕变速率较小和较低的应力松弛率。 工艺性能方面:尺寸较小的弹簧热处理时变形大、难以校正和保证弹簧产品质量,宜选用已强化的弹簧材料,冷成型后不经淬火、回火,只须进行低温退火。这样更能保证大批量小弹簧的产品质量和成本低廉。 3.3.4材料选择 选用50CrVA钢热轧弹簧钢丝卷制。由于50CrVA钢中含有铬能够提高淬透性并且可降低锰引起过热的敏感性,铬熔于铁素体中使弹性极限提高。钒可以细化组织,减少过热敏感性,提高钢的强度和冲击韧性。可用作特别重要的承受高应力的各种尺寸的螺旋弹簧,也可也用作在300°C以下工作的重要弹簧,如各种阀门弹簧,喷油嘴弹簧。 3.3.550CrVA钢化学成分及合金元素作用 表3.1 50CrVA钢的化学成分[1](GB/T3077-1990)ω/% C Si Mn Cr V Ni P S 0.44~0.54 0.17~0.37 0.50~0.80 0.80~1.10 0.10~0.20 ≤0.35 ≤0.035 ≤0.030 50CrVA钢的化学成分示于表3.1 化学元素作用: ① C :保证形成碳化物所需要的碳和保证淬火马氏体能够获得的硬度 ② Cr:提高钢的淬透性并有二次硬化作用,是刚在高温时仍具高强度和高硬度,增加钢的耐磨性,增高钢的淬火温度。 ③ Si:能提高钢的淬透性和抗回火性,对钢的综合机械性能,还能增高淬火温度,阻碍碳元素溶于钢中。 ④ Mn:能增加钢的强度和硬度,有脱氧及脱硫的功效(形成MnS),防止热脆,故Mn能改善钢的锻造性和韧性,可增进刚的硬化深度,降低钢的下临界点,增加奥氏体冷却时的过冷度,细化珠光体组织以改善机械性能。 ⑤ V:可以细化组织,减少过热敏感性,提高钢的强度和冲击韧性。

热处理的原理及分类

热处理的原理及分类 §4—2钢在加热及冷却时的组织转变 教学目的: 1、了解钢在加热时的转变及A晶粒的长大。 2、掌握热处理概念、分类、热处理工艺曲线;钢加热及保温得目的。 3、掌握过冷奥氏体的等温转变图建立; 4、掌握过冷奥氏体等温转变产物的组织和性能。 教学重点和难点: 1、A晶粒的长大是教学的重点。 2、过冷奥氏体的等温转变图建立;过冷奥氏体等温转变产物的组织和性能是教学的难点。 §4—1热处理的原理及分类 教学过程: 新课: 1、热处理: 热处理是将固态金属或合金采用适当的方式进行加热、保温和冷却以获得所需要的组织结构与性能的工艺。 2、热处理的目的: ①、提高零件的使用性能;②、充分发挥钢材的潜力;③、延长零件的使用寿命;④、改善工件的工艺性能,提高加工质量,减小刀具的磨损。

3、热处理方法有:退火、正火、淬火、回火及表面热处理。 但任何一种均由加热、保温、冷却三阶段所组成。 4、热处理使钢性能发生变化的原因: 由于铁有同素异构转变,从而使钢在加热和冷却过程中,发生了组织与结构变化。 §4—2钢在加热及冷却时的组织转变 一、钢在加热时的转变 ?热处理中,钢加热为获得A;且A晶粒大小、成分、均匀程度,对钢冷却后的组织、性能有重要的影响。 1、钢的奥氏体化 1)、奥氏体晶核的形成及长大; 2)、残余渗碳体的溶解; 3)、奥氏体的均匀化; 2、在热处理工艺中,钢保温的目的是: ①、为了使工件热透;②、使组织转变完全;③、使奥氏体成分均匀。 3、奥氏体晶粒的长大: ?加热温度越高,保温时间越长,奥氏体晶粒越大 ?由Fe-Fe3C相图可知,A1 、A3 、Acm是钢在极缓慢加热(或冷却)时的临界点。但实际冷速、热速较快,钢转变总有滞后 现象。

金属材料与热处理课后习题

第一章金属材料基础知识 1、什么是强度?材料强度设计的两个重要指标分别是什么? 2、什么是塑性?塑性对材料的使用有何实际意义? 3、绘出简化后的Fe-Fe3C相图。 4、根据Fe-Fe3C相图,说明下列现象的原因。 (1)含碳量1%的铁碳合金比含碳量0.5%的铁碳合金的硬度高。 (2)一般要把钢材加热到1000~1250℃高温下进行锻轧加工。 (3)靠近共晶成分的铁碳合金的铸造性能好。 5、随着含碳量的增加,钢的组织性能如何变化? 6、铁碳相图中的几个单相分别是什么?其本质及性能如何? 第二章钢的热处理原理 1、何谓奥氏体?简述奥氏体转变的形成过程及影响奥氏体晶粒长大的因素。奥氏体晶粒的大小对钢热处理后的性能有何影响? 2、什么是过冷奥氏体与残余奥氏体。 3、为什么相同含碳量的合金钢比碳素钢热处理的加热温度要高、保温时间要长? 4、画出共析钢过冷奥氏体等温转变动力学图。并标出: (1)各区的组织和临界点(线)代表的意义; (2)临界冷却曲线; ,S,T+M组织的冷却曲线。 (3)分别获得M、P、B 下 5、什么是第一类回火脆性和第二类回火脆性?如何消除? 6、说明45钢试样(Φ10mm)经下列温度加热、保温并在水中冷却得到的室温组织:700℃,780℃,860℃,1100℃。 7、马氏体的本质是什么?它的硬度为什么很高?是什么因素决定了它的脆性? 8、简述随回火温度升高,淬火钢在回火过程中的组织转变过程与性能的变化趋

势。 第三章钢的热处理工艺 1、简述退火的种类、目的、用途。 2、什么是正火?正火有哪些应用? 3、什么是淬火,淬火的主要目的是什么? 4、什么是临界冷却速度?它与钢的淬透性有何关系? 5、什么是表面淬火?表面淬火的方法有哪几种?表面淬火适应于什么钢?简述钢的表面淬火的目的及应用。 6、有一具有网状渗碳体的T12钢坯,应进行哪些热处理才能达到改善切削加工性能的目的?试说明热处理后的组织状态。 7、简述化学热处理的几个基本过程。渗碳缓冷后和再经淬火回火后由表面到心部是由什么组织组成? 8、什么是钢的淬透性和淬硬性?影响钢的淬透性的因素有哪些?如何影响? 9、过共析钢一般在什么温度下淬火?为什么? 10、将共析钢加热至780℃,经保温后,请回答: (1)若以图示的V1、V2、V3、V4、V5和V6的速度进行冷却,各得到什么组织? (2)如将V1冷却后的钢重新加热至530℃,经保温后冷却又将得到什么组织?力学性能有何变化?

热处理原理与工艺

亚共析钢加热转变时是否也存在碳化物溶解阶 亚共析钢如果是通过缓冷得到先共析铁素体和珠光体,则碳化物均聚集于珠光体中,仅珠光体具有共析成分,在加热转变时,片层状珠光体会直接转变为奥氏体,不会发生碳化物溶解;若共析钢通过调质处理,得到均匀分布的颗粒状碳化物与铁素体基底所组成的混合组织,在加热转变时,铁素体转变为奥氏体后,则有碳化物的溶解 相图临界点与实际生产临界点 答:钢在实际加热和冷却时,相变是在不平衡的条件下完成,因此,钢中的相变温度必然会偏离相图上的平衡临界温度,会出现一定的滞后现象,即过热或过冷现象。加热时相变温度偏向高温,冷却时偏向低温,加热或冷却的速度越大,转变偏离平衡临界点的程度也越大。 讨论本质晶粒度的实质及其作用。 答:本质晶粒度是根据标准试验方法在930±10℃保温3-8小时后测定钢中晶粒的大小。本质晶粒度表示钢在一定条件下奥氏体晶粒长大的倾向性,是加热过程中奥氏体晶粒是否容易长大的标志。控制钢材或钢锻件的本质晶粒度,是为了保证制件最终热处理后具有细晶组织如何区别高碳钢的回火马氏体与下贝氏体?答:下贝氏体的特征是在针片状铁素体基体上分布着很细的碳化物,这些碳化物在晶内呈针状,两端尖,针叶基本不交叉,但可交接。二者的不同之处是:马氏体有层次之分,下贝氏体颜色一致,没层次之分;下贝氏体的碳化物质点比回火马氏体粗,会产生聚集长大,回火马氏体颜色较浅,碳化物分布比较均匀,易受腐蚀变黑 高速钢刀具如淬火后只经300度回火就交付使用将会出现什么问题?

答:高速钢含碳量高,淬火后含有大量残余奥氏体没有转变,只经300度回火,会使残余奥氏体无法充分分解和转变,合金碳化物析出偏少,造成硬度偏低;另外,高速钢在工作时的温度高于300℃,会发生回火转变,发生相变化,使尺寸不稳定,硬度不足 Cr12MoV高淬高回,低淬低回 答:1000度淬火时合金碳化物溶解较少,合金元素进入奥氏体也很少,Ms点变化不大,所得的残余奥氏体较少,大量合金碳化物仍存在钢中,所以淬火后的组织就能保证钢的硬度,采用低温回火只用于消除淬火应力,无需进行组织调整;而经过1100度淬火,会有碳化物分解,大量碳和合金元素融入奥氏体,使其含碳量升高,淬透性升高,MS点下降,冷却到室温后残余奥氏体较多,硬度降低,此时在510度下高温回火,使残余奥氏体充分转变为马氏体,同时析出合金碳化物,产生二次硬化,提高硬度 影响加热速度的因素有哪些?为什么? 答:(1)加热方法的不同。由综合传热公式可知:当加热介质与被加热工件表面温度差越小,单位表面积上在单位时间内传给工件表面的热量越小,因而加热速度越慢(2)工件在炉内排布方式的影响。工件在炉内的排布方式直接影响热量传递的通道,从而影响加热速度。(3)工件本身的影响。工件本身的集合形状、工件表面积与其体积之比及工件材料的物理性能直接影响工件内部的热量传递及温度,从而影响加热速度(4)加热介质的影响:加热介质的导热系数会影响传热系数,影响对流传热和传导传热的速度 回火炉/气体渗碳炉中装臵风扇的目的 答:回火炉中装臵风扇的目的是为了促进炉内气流循环,加快传热速度,使温度

热处理原理与工艺习题解答

热处理原理与工艺习题 班级学号姓名 一、选择题 1、过冷奥氏体是指过冷到( C )温度以下,尚未转变的奥氏体。 A、Ms B、Mr C、A1 2、确定碳钢淬火加热温度的主要依据是(B)。 A、C曲线 B、铁碳相图 C、钢的Ms线 3、淬火介质的冷却速度必须( A )临界冷却速度。 A、大于 B、小于 C、等于 4、T12钢的淬火加热温度为( C )。 A、Ac cm+30-50°C B、Ac3+30-50°C C、Ac1+30-50°C 5、钢的淬透性主要取决于钢的(B )。 A、含硫量 B、临界冷却速度 C、含碳量 D、含硅量 6、钢的热硬性是指钢在高温下保持( C )的能力。 A、高抗氧化性 B、高强度 C、高硬度和高耐磨性 7、钢的淬硬性主要取决于钢的( C )。 A、含硫量 B、含锰量 C、含碳量 D、含硅量 8、一般来说,碳素钢淬火应选择( C )作为冷却介质。 A、矿物油 B、20°C自来水 C、20°C的10%食盐水溶液 9、钢在一定条件下淬火后,获得淬硬层深度的能力,称为( B ). A、淬硬性 B、淬透性 C、耐磨性 10、钢的回火处理在( C )后进行。 A、正火 B、退火 C、淬火 11、调质处理就是( C )的热处理。 A、淬火+低温回火 B、淬火+中温回火 C、淬火+高温回火 12、化学热处理与其热处理方法的主要区别是( C )。 A、加热温度 B、组织变化 C、改变表面化学成分 13、零件渗碳后一般须经( A )处理,才能使表面硬而耐磨。 A、淬火+低温回火 B、正火 C、调质 14、用15钢制造的齿轮,要求齿轮表面硬度高而心部具有良好的韧性,应采用( C )热处理 A、淬火+低温回火 B、表面淬火+低温回火 C、渗碳+淬火+低温回火 15、用65Mn钢做弹簧,淬火后应进行( C ); A、低温回火 B、中温回火 C、高温回火 二、判断题(在题号前作记号“√”或“×”) 1、(×)实际加热时的临界点总是低于相图的临界点。 2、(√)珠光体向奥氏体的转变也是通过形核及晶核长大的过程进行的。 3、(×)珠光体、索氏体、托氏体都是片层状的铁素体和渗碳体的混合物,所以它们的力学性能相同。 4、(×)钢在实际加热条件下的临界点分别用Ar1、Ar3、Ar cm表示。 5、(√)在去应力退火过程中,钢的组织不发生变化。 6、(×)钢渗碳后无需淬火即有很高的硬度和耐磨性。 7、(√)由于正火较退火冷却速度快,过冷度大,转变温度较低,获得组织细,因此同一种钢,正火 要比退火的强度和硬度高。

相关文档
最新文档