基于TL494的开关电源设计_毕业设计

基于TL494的开关电源设计_毕业设计
基于TL494的开关电源设计_毕业设计

毕业设计报告书设计题目:基于TL494的开关电源制作系部:电子信息系

专业:新能源应用技术

班级:能源1001

基于TL494的12V开关电源制作

摘要

随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备与人们的工作、生活的关系日益密切。近年来 ,随着功率电子器件(如GTR、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于TL494的12V开关电源设计,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。

关键词:直流磁偏自激振荡TL494

目录

第1章开关电源基础技术 (1)

1.1 开关电源概述 (1)

1.1.1 开关电源的工作原理 (1)

1.1.2 开关电源的组成 (2)

1.1.3 开关电源的特点 (3)

1.2 关电源典型结构 (3)

1.2.1 串联开关电源结构 (3)

1.2.2 并联开关电源结构 (4)

第2章开关电源主控元件 (6)

2.1 功率晶体管(GTR) (6)

2.1.1 功率晶体管的结构 (6)

2.1.2 功率晶体管的工作原理 (7)

2.1.3 功率晶体管的特性与参数 (7)

2.2 电力场效应晶体管(MOSFET) (8)

2.2.1 电力场效应晶体管特点 (8)

2.2.2 MOSFET的结构和工作原理 (8)

第3章开关电源中的TL494 (10)

3.1 TL494的内部功能 (10)

3.2 TL494的特点 (10)

3.3 TL494的工作原理 (11)

3.4 TL494内部电路 (12)

第4章开关电源的原理图设计 (14)

4.1 交流滤波设计 (14)

4.2 整流桥电路设计 (14)

4.3 半桥逆变和全波整流设计 (16)

4.4 变压器电路设计 (16)

4.5 主控电路设计 (17)

4.6 滤波电路设计 (18)

第5章组装与调试 (19)

5.1 开关电源的组装 (19)

5.2 开关电源的调试 (19)

总结 (20)

致谢 (21)

参考文献 (1)

第1章 开关电源基础技术

1.1 开关电源概述

1.1.1 开关电源的工作原理

开关电源的工作原理图如图1-1所示;图中输入的直流不稳定电压U i 经开关S 加至

输出端,S 为受控开关,是一个受开关脉冲控制的开关调整管。使开关S 按要求改变导通或断开时间,就能把输入的直流电压U i 变成矩形脉冲电压。这个脉冲电压经滤波电路

进行平滑滤波就可得到稳定的直流输出电压U 0。 U i S

U i 0T ON U 0

t 0

t 0(b)V (a)U 0

图1-1 开关电源的工作原理 (a)为原理性电路图,(b)为波形图

为方便分析开关电路,定义脉冲占空比如下:

T

T D ON = (1-1) 式中T 表示开关S 的开关重复周期;T ON 表示开关S 在一个开关周期中的导通时间。

开关电源直流输出电压U 0与输入电压U i 之间有如下关系:

D U U i O = (1-2)

由(1-2)式可以看出,若开关周期T 一定,改变开关S 的导通时间T ON ,即可改变脉

冲占空比D ,达到调节输出电压的目的。T 不变,只改变T ON 来实现占空比调节的方式叫

做脉冲宽度调制(PWM)。由于PWM 式的开关频率固定,输出滤波电路比较容易设计,易实现最优化,所以PWM 式开关电源用得较多。若保持T ON 不变,利用改变开关频率f=1/T

实现脉冲占空比调节,从而实现输出直流电压U 0稳压的方法,称做脉冲频率调制(PFM)

方式开关电源。由于开关频率不固定,所以输出滤波电路的设计不易实现最优化。既改

变T

,又改变T,实现脉冲占空比的调节的稳压方式称做脉冲调频调宽方式。在各种开ON

关电源中,以上三种脉冲占空比调节方式均有应用。

1.1.2 开关电源的组成

开关电源由以下四个基本环节组成,见图1-2所示。其中DC/DC变换器用以进行功

率变换,是开关电源的核心部分;驱动器是开关信号的放大部分,对来自信号源的开关

信号放大,整形,以适应开关管的驱动要求;信号源产生控制信号,由它激或自激电路

产生,可以是PWM信号,也可以是PFM信号或其它信号;比较放大器对给定信号和输出

反馈信号进行比较运算,控制开关信号的幅值,频率,波形等,通过驱动器控制开关器

件的占空比,达到稳定输出电压值的目的。除此之外,开关电源还有辅助电路,包括启

动电路、过流过压保护、输入滤波、输出采样、功能指示等。

DC/DC变换器有多种电路形式,其中控制波形为方波的PWM变换器以及工作波形为

准正弦波的谐振变换器应用较为普遍。

开关电源与线性电源相比,输入的瞬态变换比较多地表现在输出端,在提高开关频

率的同时,由于反馈放大器的频率特性得到改善,开关电源的瞬态响应指标也能得到改

善。负载变换瞬态响应主要由输出端LC滤波器的特性决定。所以可以通过提高开关频

率、降低输出滤波器LC的方法改善瞬态响应态。

图1-2 电源基本组成框图

1.1.3 开关电源的特点

1.效率高:开关电源的功率开关调整管工作在开关状态,所以调整管的功耗小,效率高,一般在80%—90%,高的可达90%以上。

2.重量轻:由于开关电源省掉了笨重的电源变压器,节省了大量的漆包线和硅钢片,电源的重量只有同容量线性电源的1/5,体积也大大缩小。

3.稳压范围宽:开关电源的交流输入电压在90—270V范围变化时,输出电压的变化在±2%以下。合理设计电路,还可使稳压范围更宽,并保证开关电源的高效率。

4.可靠安全:在开关电源中,由于可以方便的设置各种形式的保护电路,所以当电源负载出现故障时,能自动切断电源,保护功能可靠。

5.功耗小:由于功率开关管工作在开关状态,损耗小,不需要采用大面积散热器,电源温升低,周围元件不致因长期工作在高温环境而损坏,所以采用开关电源可以提高整机的可靠性和稳定性。

1.2 关电源典型结构

1.2.1 串联开关电源结构

串联开关电源工作原理的方框图如图1-3所示;功率开关晶体管VT串联在输入与输出之间。正常工作时,功率开关晶体管VT在开关驱动控制脉冲的作用下周期性地在导通、截止之间交替转换,使输入与输出之间周期性的闭合与断开。输入不稳定的直流电压通过功率开关晶体管VT后输出为周期性脉冲电压,再经滤波后,就可得到平滑直

流输出电压U

0。U

和功率开关晶体管VT的脉冲占空比D有关,见式(1-2)。

图1-3 串联开关电源原理图

输入交流电压或负载电流的变化,会引起输出直流电压的变化,通过输出取样电路将取样电压与基准电压相比较,误差电压通过误差放大器放大,控制脉冲调宽电路的脉冲占空比D ,达到稳定直流输出电压U 0的目的。

1.2.2 并联开关电源结构

并联开关电源工作原理方框图如图1-4所示,功率开关晶体管VT 与输入电压、输出负载并联,输出电压为:

D

U U i -=110 (1-3) 图1-4为一种输出升压型开关电源,电路中有一个储能电感,适当利用这个储能电感,可将并联开关电源转变为广泛使用的变压器耦合并联开关电源。

图1-4 并联开关电源原理图

变压器耦合并联开关电源工作框图如图1-5所示;功率开关晶体管VT与开关变压器初级线圈相串联接在电源供电输入端,功率开关晶体管VT在开关脉冲信号的控制下,周期性地导通与截止,集电极输出的脉冲电压通过变压器耦合在次级得到脉冲电压,这个脉冲电压经整流滤波后得到直流输出电压U

。同样经过取样电路将取样电压与基准电

进行比较被误差放大器放大,由误差放大器输出至功率开关晶体管VT,通过控制压U

E

功率开关晶体管VT的导通、截止达到控制脉冲占空比的目的,从而稳定直流输出电压。由于采用变压器耦合,所以变压器的初、次级侧可以相互隔离,从而使初级侧电路地与次级侧电路地分开,做到次级侧电路地不带电,使用安全。同时由于变压器耦合,可以使用多组次级线圈,在次级得到多组直流输出电压。

图1-5 变压器耦合并联开关电源原理图

第2章开关电源主控元件

2.1 功率晶体管(GTR)

2.1.1 功率晶体管的结构

达林顿NPN功率晶体管就是将几只单个晶体管在元件内部做成射极跟随器,晶体管模块是指将几级达林顿晶体管集成在一起,对外构成一定电路形式的一个组合单元,目前功率晶体管模块的电流/电压已达1000V/1200V。功率晶体管内部结构和图形符号如图2-1所示,功率晶体管模块如图2-2所示:

图2-1 功率晶体管内部结构和图形符号

图2-2功率晶体管模块

(a)单管模块电路;(b)双管模块电路

2.1.2 功率晶体管的工作原理

功率晶体管和小信号晶体管一样都有电压和电流放大的重要功能,基本原理类似,都是电流控制双极型器件。对于共射极电路,基极注入一定的基极电流I B,器件进入“开通”的饱和状态,集电极电流I C产生,集电极和发射极之间的压降U CES就很低;基极电流I B消失或者注入一定的反向电流,器件立刻进入“关断”的截止状态,集电极电流I C为零,集电极和发射极之间能承受较高的电压U CEO。功率晶体管的电流放大倍数β是在一定条件下测定的,使用条件不同,电流放大倍数β就不同。一般来说,集电极电流I C越小,电流放大倍数β就大;集电极电流I C越大,电流放大倍数β就小。对于单只功率晶体管而言,晶体管集电极I C达到元件额定电流一半以上时,电流放大倍数β明显下降,一般会下降到β=8~10。因此功率晶体管在一定要求的基极脉冲电流I B的作用下,就能够在开通过程、导通状态、关断过程、截止状态四种不同阶段中转换,完成功率晶体管开关的动作。

2.1.3 功率晶体管的特性与参数

1.功率晶体管输出I C-U CE。功率晶体管共射极电路输出特性I C-U CE如图2-3所示,有截止区、线性区、准饱和区、深饱和区组成,分别对应不同的基极驱动电流I B。

图2-3功率晶体管共射极电路输出特性

饱和压降U CES是在一定的基极驱动电流I B,功率晶体管处于饱和状态下,集电极和发射极之间的电压。饱和度越深,饱和压降U CES越小,导通损耗越小,但是导致关断过程中退出饱和的时间延长。

一般来说,应用于开关状态的功率晶体管在导通在导通状态集电极电流I C大,饱和压降U CES小,截止状态集电极电流就是漏电流,I CEO小,集电极和发射极之间的电压U CE高,截止损耗P OFF=I CEO U CE小,加上开通过程和关断过程的开关损耗小,因此开关状态的功率晶体管总损耗比应用在线性区功率晶体管损耗P=I C U CE小。

2.功率晶体管的开关特性反应功率晶体管在开通过程、导通状态、关断过程、截止状态四个阶段中动作的快慢特点和时间参数。如图所示功率晶体管的开关特性,有延迟

时间t

d 、上升时间t

r

、存储时间t

s

、下降时间t

f

组成,其中导通时间t

on

有延迟时间t

d

上升时间t

r 组成,关断时间t

off

有存储时间t

s

、下降时间t

f

组成。为了加快功率晶体管

的开关过程,必须优化基极驱动电流脉冲。

3.功率晶体管最大额定值表示功率晶体管极限参数,主要有集电极允许通过的最大电流I CM,集电极最大允许耗散功率P CM,最大允许结温T JM,晶体管击穿电压U CEO、U CBO、U EBO。U CEO是基极开路、集电极-发射极间的击穿电压:U CBO是发射极开路、集电极-基极间的击穿电压;U EBO是集电极开路、发射极-基极间的击穿电压。一般来讲,晶体管在应用中任何时候都不允许超过极限参数。

2.2 电力场效应晶体管(MOSFET)

2.2.1 电力场效应晶体管特点

电力场效应晶体管简称电力Power Mosfet。特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性好。但是电流容量小,耐压低,一般适用于功率不超过10kW的电源电子装置。

2.2.2 MOSFET的结构和工作原理

电力MOSFET的种类按导电沟道可分为P沟道和N沟道,图2-4所示为N沟道结构。电力MOSFET的工作原理是:在截止状态,漏源极间加正电源,栅源极间电压为零。P

基区与N漂移区之间形成的PN结反偏,漏源极之间无电流流过。在导电状态,即当UGS 大于开启电压或阈值电压U

时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半

T

导体反型成N型而成为反型层,该反型层形成N沟道而使PN结消失,漏极和源极导电。

(a) 内部结构断面示意图 (b)电气图形符号

图2-4 电力MOSFET的结构和电气图形符号

MOSFET开关时间在10~100ns之间,工作频率可达100kHz以上,是电力电子器件中最高的。由于是场控器件,静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。开关频率越高,所需要的驱动功率越大。

第3章开关电源中的TL494

3.1 TL494的内部功能

TL494是美国德州仪器公司生产的电压驱动型脉宽调制器,在显示器、计算机等系统电路中作为开关电源电路,TL494的输出三极管可接成共发射极及射极跟随器两种方式,因而可以选择双端推挽输出或单端输出方式,在推挽输出方式时,它的两路驱动脉冲相差180度,而在单端方式时,其两路驱动脉冲为同频同相。内部功能如图3-1所示。其引脚功能如下:1、2脚分别为误差比较放大器的同相输人端和反相输人端。3脚为控制比较放大器和误差比较放大器的公共输出端,输出时表现为或输出控制特性,也就是就在两个放大器中,输出幅度大者起作用。当3脚的电平变高时,TL494送出的驱动脉冲宽度变窄,当3脚电平低时,驱动脉冲宽度变宽。4脚为死区电平控制端,从4脚加入死区控制电压可对驱动脉冲的最大宽度进行控制,使其不超过180度,这样可以保护开关电源电路中的三极管。5、6脚分别用于外接振荡电阻和电容。7脚为接地端。8、9脚和11、12脚分别为TL494内容末级两个输出三极管的集电极和发射极。12脚为电源供电端。13脚为功能控制端。14脚为内部5V基准电压输出端。15、16脚分别为控制比较放大器的反相输人端和同相输人端。

3.2 TL494的特点

TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。TL494能产生PWM,能调整频率和脉宽,还有一路基准电压,这些都满足DC-DC的条件,采用不同拓扑,得到升压和降压,采用推挽(push-pull)方式,升压,可以改变反馈电阻,得到其他电压;采用BUCK拓扑降压,可以改变反馈电阻,得到其他电压,如图3-1所示:

1234

5678910111213141516

IN+IN-FB GND Vcc Vref E2C2E1

C1CON Rt Ct T IN+IN-TL 494

图3-1 TL494外形图

TL494其他主要特点如下:集成了全部的脉宽调制电路;片内置线性锯齿波振荡器;外置振荡元件仅两个(一个电阻和一个电容);内置误差放大器;内止5V 参考基准电压源;可调整死区时间;内置功率晶体管可提供500mA 的驱动能力;推或拉两种输出方式。

3.3 TL494的工作原理

TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,输出脉冲的宽度是通过电容CT 上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管V1和V2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输人端。死区时间比较器具有120mV 的输人补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0一3.3V 之间)即能在输出脉冲上产主附加的死区时问。脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V 变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V 到(VCC-2.0)的共模输入范围,这可能从电源的输出电压和电流获得。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输人端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可决定控制回路。

当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管V1和V2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管V1或V2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将V1和V2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70o C 温度范围50mV温漂条件下,该基准电压源能提供 15%的精确度。TL494的测试波形如图3-2所示。TL494若将13脚与14脚相连.可形成推挽式工作;若将13脚与7脚相连.可形成单端输出方式。为增大输出可将2个三极管并联。

图3-2 TL494的测试波形

3.4 TL494内部电路

TL494是一种电压控制模式的PWM控制和驱动集成电路芯片,由于它具有两路相位相差180°的PWM驱动信号输出,因此被广泛的应用与单端式(正极式和反极式)和双端式(半桥式、全桥式和推挽式)开关稳压电源电路。总体结构比同类集成电路SG3524更完善。TL494内部电路框图见图3-3。

图3-3 TL494内部电路框图

1.内置RC 定时电路设定频率的独立锯齿波振荡器,其振荡频率:

RC

f 1.1 (3-1) 式中,f 单位为KHz ,R 的单位为k Ω,C 的单位为μF ,其最高振荡频率为300KHz ,能驱动双极型开关管或MOSFET 管。

2.内部设有比较器组成的死区时间控制电路,用外加电压控制比较器的输出电平,通过其输出电平使触发器翻转换,控制两路输出之间的死区时间。当⑷脚输出电平升高时,死区时间增大。

3.触发器的两路输出设有控制电路,使内部2只开关管既可输出双端时序不同的驱动脉冲,驱动推挽开关电路和半桥开关电路,也可输出同相序的单端驱动脉冲,驱动单端开关电路。

4.内部两组完全相同的误差放大器,其同相输入端和反相输入端均被引出芯片外,因此可以自由设定其基准电压,以方便用于稳压取样,或用其中一种作为过压、过流的超阈值保护。

5.输出驱动电流单端达到400mA ,能直接驱动峰值开关电流达5A 的开关电路。双端输出为2×200mA ,加入驱动级即能驱动近千瓦的推挽式和半桥式电路。若用于驱动MOS FET 管,则需另加入灌流驱动电路。

第4章开关电源的原理图设计

4.1 交流滤波设计

在交流滤波电路设计中,热敏电阻RT1是负温度系数(NTC)热敏电阻。电阻随温度升高而减小。在L、N两根线上存在着干扰,当两根线上的波形完全一致时(幅值和相位相同),我们称之为共模干扰,当波形相反时(幅值和相位相反)称之为差模干扰。由于产生的因素是不确定的,无法预测的,所以我们要尽量消除干扰的存在。消除共模干扰可以通过L1、C2、C3来实现,消除差模干扰可以通过C1、C4来实现。由于在电路中存在着斜波成分,所以在R13两侧并联一个C1,来滤除交流电中的斜波成分,C2,C3起着通直流阻交流的作用,在C2和C3两侧并联一个C4来消除电源中的高频成份C28的作用是滤除地受隔离干扰情况下的交流成分。交流滤波电路设计原理图如图4-1所示:

图4-1 交流滤波电路图

4.2 整流桥电路设计

整流桥堆产品是由四只整流硅芯片作桥式连接,外用绝缘朔料封装而成,大功率整流桥在绝缘层外添加锌金属壳包封,增强散热。它分为全桥和半桥。全桥由四只二极管组成,有四个引出脚。两只二极管负极的连接点是全桥直流输出端的“正极”,两只二极管正极的连接点是全桥直流输出端的“负极”。半桥由两只二极管组成,有三个引出脚。正半桥两边的管脚是两个二极管的正极,即交流输入端;中间管脚是两个二极管的负极,即直流输出端的“正极”。负半桥两边的管脚上两个二极管的负极,即交流输入端;中间管脚是两个二极管的正极,即直流输出端的“负极”。一个正半桥和一个负半

桥就可以组成一个全桥。它的最大整流电流从0.5A 到100A ,最高反向峰值电压从50V 到1600V 。本电路设计所采用的是半桥电路,它的作用就是将交流变成直流。桥堆电路如图4-2所示:

图4-2 整流桥电路图

电压U DC 的计算公式为:U U k DC 12=(其中?=2k ,?称为负载系数,取值范

围为1.2~1.4)输出波形如图4-3所示:

图4-3 桥式整流电路电压、电流波形

4.3 半桥逆变和全波整流设计

如图4-4所示:R1和R2起到均压的作用,C7的作用是消除半桥电路中可能出现的直流磁偏。C10使V1瞬间达到饱和状态,施加反向电压将会。R5和R39起到自激振荡作用。R3和C8构成阻容吸收电路,抑制一次侧绕组产生的感应电动势。V1和V2不能同时导通,否则直流侧短路,所以要引入一个“死去电压”。当V1导通时,一次侧能量增加E1,当V2导通时,一次侧能量增加E2,在数值上我们总是希望E1=E2。一个周期的积累量:12E E E -=△。那么,N 个周期积累的能量就为E N △,当某个周期来临时,就会大于它的最大储存能量,这样就达到了磁通饱和。

图4-4 半桥逆变和全波整流电路

4.4 变压器电路设计

变压器是一种静止的电气设备,根据电磁感应原理,将一种形态(电压、电流、相数)的交流电能,转换成另一种形态的交流电能。当一个正弦交流电压U 1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁芯穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U 2,同时ф1也会在初级线圈上

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

电子工程师的设计经验笔记

电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。

电感是电容的死对头。另外,电感还有这样一个特点:电流和磁场必需同时存在。电流要消失,磁场会消失;磁场要消失,电流会消失;磁场南北极变化,电流正负极也会变化。 电感内部的电流和磁场一直在“打内战”,电流想变化,磁场偏不让变化;磁场想变化,电流偏不让变化。但,由于外界原因,电流和磁场都可能一定要发生变化。给电感线圈加上电压,电流想从零变大,可是磁场会反对,因此电流只好慢慢的变大;给电感去掉电压,电流想从大变成零,可是磁场又要反对,可是电流回路都没啦,电流已经被强迫为零,磁场就会发怒,立即在电感两端产生很高的电压,企图产生电流并维持电流不变。这个电压很高很高,甚至会损坏电子元件,这就是线圈的自感现象。 给一个电感线圈外加一个变化磁场,只要线圈有闭合的回路,线圈就会产生电流。如果没回路的话,就会在线圈两端产生一个电压。产生电压的目的就是要企图产生电流。当两个或多个丝圈共用一个磁芯(聚集磁力线的作用)或共用一个磁场时,线圈之间的电流和磁场就会互相影响,这就是电流的互感现象。 大家看得见,电感其实就是一根导线,电感对直流的电阻很小,甚至能够忽略不计。电感对交流电呈现出很大的电阻作用。 电感的串联、并联非常复杂,因为电感实际上就是一根导线在按一定的位置路线分布,所以,电感的串联、并联也跟电感的位置相关(主要是磁力场的互相作用相关),如果不考虑磁场作用及分布电容、导线电阻(Q值)等影响的话就相当于电阻的串联、并联效果。 交流电的频率越高,电感的阻碍作用越大。交流电的频率越低,电感的阻碍作用越小。 电感和充满电的电容并联在一起时,电容放电会给电感,电感产生磁场,磁场会维持电流,电流又会给电容反向充电,反向充电后又会放电,周而复始……如果没损耗,或能及时的补充这种损耗,就会产生稳定的振荡。 电子工程师必备基础知识(四)

毕业设计--12V5A开关电源设计

毕业综合实践 课题名称: 12V/5A开关电源设计 作者:学号: 09034224系别:电气电子工程系 专业:电子工程信息技术 指导老师:专业技术职务教授

毕业综合实践开题报告 姓名:学号: 09034224 专业:电子信息工程技术 课题名称: 12V/5A开关电源设计 指导教师: 2011 年 12 月 19 日

本课题意义及现状、需解决的问题和拟采用的解决方案 随着电子技术的高速发展、电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益紧密,任何电子设备都离不开可靠的电源,他们对电源的要求也越来越高。特别是随着小型电子设备的应用越来越广泛,也要求能够提供稳定的电源,以满足小型电子设备的用电需要。现状:电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。 本设计基于这个思想,设计、制作了一个开关稳压电源,输入交流电220V,输出12V/5A的直流稳压电源,具有过电流、过电压、短路保护。 本电路采用自激式震荡电路(RCC),它是经济开关电源、安装方便、调试简单,元器件少。这个电路的功能适用于手机充电器和一些仪表电源是很实用的一个电路。 指导教师意见: 指导教师: 年月日 专业教研室审查意见: 教研室负责人: 年月日

课题摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用典型的正激式开关电源结构设计形式,以(RCC)作为控制核心器件,运用脉宽调制的基本原理,并采用辅助电源供电方式为其供电,有利于增大主电源的输出功率。采用场效应管作为开关器件,其导通和截止速度很快,导通损耗小,这就为开关电源的高效性提供保障。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障,本电路注意改善负载调整率,降低了电磁串扰,达到绿色环保的目的。输出电压可调,使其可适用于不同场合。 关键词高频变压器场效应管正激式变换器脉宽调制

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

精通开关电源设计

《精通开关电源设计》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文 目录 摘要.......................................... 错误!未定义书签。Abstract.......................................... 错误!未定义书签。 1 绪言 1.1课题背景 (2) 1.2选题的国外研究现状及水平、研究目标及意义 (2) 1.3 本课题主要的研究容 (3) 2 系统设计方案与论证 2.1课题研究的基本要求 (4) 2.2方案论证 (4) 2.2.1 DC/DC电路模块方案 (4) 2.2.2 MOSEFT驱动电路方案 (7) 2.2.3 单片机选择方案 (7) 2.2.4检测采样方案 (8) 2.2.5系统框图 (8) 3 硬件电路设计 3.1变压整流滤波电路 (9) 3.2辅助电源的设计 (11) 3.3 Buck电路参数选择原理和计算 (12) 3.3.1参数选择原理 (12) 3.3.2 电感值的计算 (15) 3.3.3 滤波电容的计算 (15) 3.3.4开关管的选择和开关管保护电路设计 (16) 3.4驱动电路的设计 (18)

3.5采样电路设计 (19) 3.6保护电路的设计 (20) 4 软件部分设计 4.1 AVR128简介 (21) 4.2 PWM波的产生 (22) 4.3 AD采样 (26) 5系统调试及结果分析 6 总结与展望 6.1 总结 (30) 6.2 展望 (30) 致谢 (31) 参考文献 (32) 附录 (34)

1 绪言 开关电源具有效率高、体积小、重量轻等特点,应用越来越广泛,从70年代开始,并用轻量高频变压器替代笨重的工频变压器。高效的开关电源飞速发展,逐步替代传统的的线性电源,开关电源不需要较大的散热器,开关电源自20世纪90年代问世以来,便显示出强大的生命力,并以其优良特性倍受人们的青睐。近年来,开关电源在通信、工业自动化、航空、仪表仪器等领域的应用越来越广泛。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、模块化的方向发展,高效率的开关电源已经得到越来越广泛的应用。随着高频开关电源技术和应用电子技术的高速发展,直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过流、短路等保护电路。同时,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视[15]。 许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合出许多毛刺尖峰,甚至出现畸变。大量的谐波分量倒流入电网,造成对电网的谐波“污染”,一方面电流流过线路阻抗造成谐波电压降,反过来使电网电压也发生畸变;另一方面,会造成电路故障,使用设备损坏。因为它没有采用有源功率因数校正,功率因数较低,只达到 0.9,如果采用有效的功率因数校正,功率因数可以达到0.99以上。开关电源输入端产生功率因数下降问题,利用有源功率因数校正电路,成本只增加5%,成功解决了这个问题。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种校正功率因数的方法[1]。 目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOSFET 管制成的500kHz 电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。对1MHz以上的高频,要采用谐振电路,这样既可减少开关损耗,同时也可控制浪涌的发生。现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

最新开关电源学习笔记

开关电源学习笔记

开关电源学习笔记 阅读书记名称《集成开关电源的设计调试与维修》 开关电源术语: 效率:电源的输出功率与输入功率的百分比。其测量条件是满负载,输入交流电压标准值。 ESR:等效串联电阻。它表示电解电容呈现的电阻值的总和。一般情况下,ESR值越低的电容,性能越好 输出电压保持时间:在开关电源输出电压撤消后,依然保持其额定输出电压的时间。 启动浪涌保护:它属于保护电路。它对电源启动时产生的尖蜂电流起限制作作用。为了防止不必要的功率损耗,在设计这一电路时候,一定要保证滤波电容充满电之前,就起到限流的作用。 隔离电压:电源电路中的任何一部分与电源基板之间的最大电压。或者能够加在开关电源的输入与输出端之间的最大直流电压。 线性调整率:输出电压随负载在指定范围内的变化百分率。条件是线电压和环境温度不变。 噪音和波纹:附加在直流信号上的交流电压的高频尖锋信号的峰值。通常是mV度量。 隔离式开关电源:一般指开关电源。它从输入的交流电源直接进行整流滤波,不使用低频隔离变压器。 输出瞬态响应时间:从输出负载电路产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间。

过载过流保护:防止因负载过重,是电流超过原设计的额定值而造成电源的损坏的电。远程检测:电压检测的一种方法。为了补偿电源输出的电压降,直接从负载上检测输出电压的方法。 软启动:在系统启动时,一种延长开关波形的工作周期的方法。工作周期是从零到它的正常工作点所用的时间。 快速短路保护电路:一种用于电源输出端的保护电路。当出现过压现象时,保护电路启动,将电源输出端电压快速短路。 占空比:开关电源中,开关元件导通的时间和变换工作周期之比。 元件选择和电路设计: 一:输入整流器的一些参数 最大正向整流电流:这个参数主要根据开关电源输出功率决定,所选择的整流二极管的稳态电流容量至少应是计算值的2倍。 峰值反向截止电压(PIV):由于整流器工作在高压的环境,所以它们必须有较高的PIV值。一般600V以上。 要有能承受高的浪涌电流的能力:浪涌电源是用开关管导通时的峰值电流产生。 二:输入滤波电容 输入滤波电容对开关电源的影响 电源输出端的低频交流纹波电压 输出电压的保持时间 滤波电容的计算公式: C=(I*t)/ΔV

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。

RCC开关电源设计详细讲解39308

目录 摘要 ABSTRACT 绪论 第一章.RCC电路基础简介 1.1RCC电路工作原理 1.2RCC电路的稳压问题 1.3RCC电路占空比的计算 1.4RCC电路振荡频率的计算 1.5RCC电路变压器的设计 第二章.简易RCC基极驱动的缺点及改进设计 2.1 简易RCC电路的缺点 2.2 开关晶体管恒流驱动的设计 第三章.RCC电路的建模及仿真 3.1 RCC电路的建模及参数设计 3.1.1 主要技术指标 3.1.2 变压器的设计 3.1.3 电压控制电路的设计 3.1.4 驱动电路的设计 3.1.5 副边电容、二极管参数的设计

3.1.6 其他辅助电路的设计 3.2 RCC电路的仿真 3.2.1 RCC电路带额定负载时的仿真及设计标准的验证 3.2.2 RCC电路带轻载时的仿真 3.3 RCC电路的改进及改进后的仿真 3.3.1 RCC电路的恒流设计 3.3.2带有恒流源的RCC电路的仿真 第四章 RCC电路间歇振荡的应用实例 4.1 三星S10型放像机中的RCC型开关电源

RCC电路间歇振荡现象的研究 摘要:RCC变换器通常是指自振式反激变换器。它是由较少的几个器件就可以组成的高效电路,已经广泛用于小功率电路离线工作状态。由于控制电路能够与少量分立元件一起工作而不会出现差错,所以电路的总的花费要比普通的PWM反激逆变器低。一方面,当其控制电流过高时就会出现一种间歇振荡现象,从而使得电路的振荡周期在很大围变化,类如例如从数百赫兹到数千赫兹之间变化,因而在较大功率输出时将引起变压器等产生异常的噪音,所以需要抑制这种现象的产生。另一方面,当电路的输出功率输出较小时,却可以利用这种间歇振荡,使开关电路处于低能耗状态。当需要电路工作时,只需给电路一个信号脉冲即可。电路本文主要通过实验仿真的方法在RCC电路中加入某些特定的电路从而达到抑制消除这种间歇振荡,同时还简要阐述一些利用间歇振荡的例子。 Abstract:The self-oscillating flyback converter, often referred to as the ringing choke converter (RCC), is a robust, low component-count circuit that has been widely used in low power off-line applications. Since the control of the circuit can be implemented with very few discrete components without loss of performance, the overall cost of the circuit is generally lower than the conventional PWM flyback converter that employs a commercially available integrated control .

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

基于TL494的开关电源设计_毕业设计

毕业设计报告书设计题目:基于TL494的开关电源制作系部:电子信息系 专业:新能源应用技术 班级:能源1001

基于TL494的12V开关电源制作 摘要 随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备与人们的工作、生活的关系日益密切。近年来 ,随着功率电子器件(如GTR、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于TL494的12V开关电源设计,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。 关键词:直流磁偏自激振荡TL494

目录 第1章开关电源基础技术 (1) 1.1 开关电源概述 (1) 1.1.1 开关电源的工作原理 (1) 1.1.2 开关电源的组成 (2) 1.1.3 开关电源的特点 (3) 1.2 关电源典型结构 (3) 1.2.1 串联开关电源结构 (3) 1.2.2 并联开关电源结构 (4) 第2章开关电源主控元件 (6) 2.1 功率晶体管(GTR) (6) 2.1.1 功率晶体管的结构 (6) 2.1.2 功率晶体管的工作原理 (7) 2.1.3 功率晶体管的特性与参数 (7) 2.2 电力场效应晶体管(MOSFET) (8) 2.2.1 电力场效应晶体管特点 (8) 2.2.2 MOSFET的结构和工作原理 (8) 第3章开关电源中的TL494 (10) 3.1 TL494的内部功能 (10) 3.2 TL494的特点 (10) 3.3 TL494的工作原理 (11) 3.4 TL494内部电路 (12) 第4章开关电源的原理图设计 (14) 4.1 交流滤波设计 (14) 4.2 整流桥电路设计 (14) 4.3 半桥逆变和全波整流设计 (16) 4.4 变压器电路设计 (16) 4.5 主控电路设计 (17) 4.6 滤波电路设计 (18)

相关文档
最新文档