多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法
多元线性回归模型的各种检验方法

对多元线性回归模型的各种检验方法

对于形如

u X X X Y k k +++++=ββββ 22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:

一、 对单个总体参数的假设检验:t 检验

在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0

H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。如果拒绝0H ,说明解释变量j X 对

被解释变量Y 具有显著的线性影响,估计值j β?才敢使

用;反之,说明解释变量j X 对被解释变量Y 不具有显

著的线性影响,估计值j β?对我们就没有意义。具体检验

方法如下:

(1) 给定虚拟假设 0H :j j a =β;

(2) 计算统计量 )?(?)?()(?j

j j j j j Se a Se E t βββββ-=-= 的数值; 11?)?(++-==j j jj jj j C C Se 1T X)(X ,其中σβ

(3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;

(4) 如果出现 2/αt t >的情况,检验结论为拒绝

0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )?(?j j

j Se t βββ-=必须服从已

知的t 分布函数。什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):

(1) 随机抽样性。我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。这保证了误差u 自身的随机性,即无自相关性,

0))())(((=--j j i i u E u u E u Cov 。

(2) 条件期望值为0。给定解释变量的任何值,误

u 的期望值为零。即有

0),,,(21=k X X X u E

这也保证了误差u 独立于解释变量X X X ,,,21 ,即模型中的解释变量是外生性的,也使得0)(=u E 。

(3) 不存在完全共线性。在样本因而在总体中,没有一个解释变量是常数,解释变量之间也不存在严格的线性关系。

(4) 同方差性。常数==2

21),,,(σk X X X u Var 。

(5) 正态性。误差u 满足 ),0(~2σNormal u 。 在以上5个前提下,才可以推导出:

1

~)?(/)?()1,0(~)?(/)?()]?(,[~?----k n j j j j

j j j

j j t Se N Sd Var N βββββββββ

由此可见,t 检验方法所要求的条件是极为苛刻的。

二、 对参数的一个线性组合的假设的检验

需要检验的虚拟假设为 0H :2

1j j ββ=。比如21ββ=无 法直接检验。设立新参数211ββθ-=。 原虚拟假设等价于0H :01=θ。将211βθβ+=代入原模型后

得出新模型:

u X X X X Y k k ++++++=ββθβ )(212110 (2)

在模型(2)中再利用t 检验方法检验虚拟假设0

H :01=θ。 我们甚至还可以检验这样一个更一般的假设 C H k k =+++=βλβλβλ 11000:λβ t 统计量为 )1(~?2---=

-k n t Se t T λX)λ(X λββλ1T

三、 对参数多个线性约束的假设检验:F 检验

需要检验的虚拟假设为 0H :

0,,,021==+-+-k q k q k βββ 。

该假设对模型(1)施加了q 个排除性约束。模型(1)在该约束下转变为如下的新模型:

u X X X Y q k q k +++++=--ββββ 22110 (3) 模型(1)称为不受约束(ur )的模型,而模型(3)称为受约束(r )的模型。模型(3)也称为模型(1)的嵌套模型,或子模型。分别用OLS 方法估计模型(1)和(2)后,可以计算出如下的统计量:

())1/(/---=k n RSS q RSS RSS F ur ur r

关键在于,不需要满足t 检验所需要的假定(3),统计量F 就满足:1,~--k n q F F 。利用已知的F 分布函数,

我们就可以拒绝或接受虚拟假设 0H :

0,,,021==+-+-k

q k q k βββ 了。所以,一般来讲,F 检验比t 检验更先使用,用的

更普遍,可信度更高。利用关系式)1(2r r R TSS RSS -=,

)1(2ur ur R TSS RSS -=,F 统计量还可以写成:

())1/()1(/222----=k n R q R R F ur r ur

四、 对回归模型整体显著性的检验:F 检验

需要检验的虚拟假设为 0H :0,,,021==k βββ 。相当于前一个检验问题的特例,k q =。嵌套模型变为 u Y +=0β。02

=r R ,TSS RSS r =,22R R ur =。F 统计量变为: )

1/(/)

1/()1(/22--=---=k n RSS k ESS k n R k R F 五、 检验一般的线性约束

需要检验的虚拟假设比如为 0H :

0,,,121==k βββ 。受约束模型变为:

u X Y ++=10β

再变形为:u X Y +=-01β。F 统计量只可用:

())1/(/---=k n RSS q RSS RSS F ur ur r 其中,

[][]∑∑---=---==-211211)()()()(1X X Y Y X Y X Y TSS RSS i i i i X Y r 。

六、 检验两个数据集的回归参数是否相等:皱(至庄)检验

虚拟假定是总体回归系数的真值相等。步骤如下:

(1) 基于两组样本数据,进行相同设定的回归,将二

者的RSS 分别记为1RSS 和2RSS 。

(2) 将两组样本数据合并,基于合并的样本数据,进行相同设定的回归,将回归的RSS 记为T RSS 。

(3) 计算下面的F 统计量:

)22/()()1/()(212121--+++--=k n n RSS RSS k RSS RSS RSS F T (4) 如果αF F ≥,拒绝原假定。

七、 非正态假定下多个线性约束的大样本假设检验:LM (拉格郎日乘数)检验

F 检验方法需要模型(1)中的u 满足正态性假定。 在不满足正态性假定时,在大样本条件下,可以使用LM 统计量。虚拟假设依然是0H :0,,,021==+-+-k q k q k βββ 。LM 统计量仅要求对受约束模型的估计。具体步骤如下:

(ⅰ)将Y 对施加限制后的解释变量进行回归,并保留残差u ~。即我们要进行了如下的回归估计

u X X X Y q k q k ~~~~~22110+++++=--ββββ (ⅱ)将u ~对所有解释变量进行辅助回归,即进行如下回归估计 εαααα?????~22110+++++=k k X X X u

并得到R-平方,记为

2u R 。 (ⅲ)计算统计量 2u nR LM =。 (ⅳ)将LM 与2

q χ分布中适当的临界值c 比较。如

果c LM >,就拒绝虚拟假设0H ;否则,就不能拒绝虚拟

假设0H 。

八、 对模型函数形式误设问题的一般检验:RESET

如果一个多元回归模型没有正确地解释被解释变量与所观察到的解释变量之间的关系,那它就存在函数形式误设的问题。误设可以表现为两种形式:模型中遗漏了对被解释变量有系统性影响的解释变量;错误地设定了一个模型的函数形式。在侦察一般的函数形式误设方面,拉姆齐(Ramsey ,1969)的回归设定误差检验(regression specilfication error test , RESET )是一种常用的方法。RESET 背后的思想相当简单。如果原模型(1)满足经典假定(3),那么在模型(1)中添加解释变量的非线性关系应该是不显著的。尽管这样做通常能侦察出函数形式误设,但如果原模型中有许多解

释变量,它又有使用掉大量自由度的缺陷。另外,非线性关系的形式也是多种多样的。RESET 则是在模型(1)中添加模型(1)的OLS 拟合值的多项式,以侦察函数形式误设的一般形式。

为了实施RESET ,我们必须决定在一个扩大的回归模型中包括多少个拟合值的函数。虽然对这个问题没有正确的答案,但在大多数应用研究中,都表明平方项和三次项很有用。令Y ?表示从模型(1)所得到的OLS 估计值。考虑扩大的模型

εδδββββ+++++++=322122110??Y Y X X X Y k k (4)

这个模型看起来有些奇怪,因为原估计的拟合值的函数现在却出作为解释变量出现。实际上,我们对模型(4)的参数估计并不感兴趣,我们只是利用这个模型来检验模型(1)是否遗漏掉了重要的非线性关系。记住,2?Y 和3?Y

都只是j X 的非线性函数。 对模型(4),我们检验虚拟假设0,0:210==δδH 。这时,

模型(4)是无约束模型,模型(1)是受约束模型。计算F 统计量。需要查3,2--k n F 分布表。拒绝0

H ,模型(1)

存在误设,否则,不存在误设。

九、利用非嵌套模型检验函数形式误设

寻求对函数形式误设的其他类型(比如,试图决定某一解释变量究竟应以水平值形式还是对数形式出现)作出检验,需要离开经典假设检验的辖域。有可能要相对模型

εββββ+++++=)log()log()log(22110k k X X X Y (5) 检验模型(1),或者把两个模型反过来。然而,它们是非嵌套的,所以我们不能仅使用标准的F 检验。有两种不同的方法。

一种方法由Mizon and Richard (1986)提出,构造一个综合模型,将每个模型作为一个特殊情形而包含其中,然后检验导致每个模型的约束。对于模型(1)和模型(5)而言,综合模型就是

++++=k k X X Y γγγ 110μγγ++++++)log()log(11k k k k X X (6)

可以先检验0,,0:10==++k k k H δγ ,作为对模型(1)的检验。也

可以通过对检验0,,0:10==k

H δγ ,作为对模型(5)的检验。

另一种方法由Davison and MacKinnon (1981)提出。认为,如果模型(1)是正确的,那么从模型(5)得到的拟合值在模型(1)中应该是不显著的。因此,为了检验模型(1)的正确性,首先用OLS 估计模型(5)以得到拟合值,并记为Y ??。在新模型

μθββββ++++++=Y X X X Y k k ??122110 (7) 中计算Y ??的t 统计量,利用t 检验拒绝或接受假定0:10=θH 。显著的t 统计量就是拒绝模型(1)的证据。类似的,为了检验模型(5)的正确性,首先用OLS 估计模型(1)以得到拟合值,并记为Y ??。在新模型

μθββββ++++++=Y X X X Y k k ??)log()log()log(122110 (8) 中计算Y ??的t 统计量,利用t 检验拒绝或接受假定0:10=θH 。 以上两种检验方法可以用于检验任意两个具有相同的被解释变量的非嵌套模型。

非嵌套检验存在一些问题。首先,不一定会出现一个明显好的模型。两个模型可能都被拒绝,也可能没有一个被拒绝。在后一种情形中,我们可以使用调整的R-平方进行选择。如果两个模型都被拒绝,则有更多的工

作要做。不过,重要的是知道使用这种或那种函数形式的后果,如果关键性解释变量对被解释变量的影响没有多大差异,那么使用那个模型实际上并不要紧。

第二个问题是,比如说使用Davison and MacKinnon 检验拒绝了模型(5),这并不意味着模型(1)就是正确的模型。模型(5)可能会因为多种误设的函数形式而被拒绝。

一个更为可能的问题是,在解释变量不同的模型之间进行比较时,如何实施非嵌套检验。一个典型的情况是,一个解释变量是Y,一个解释变量是)

log(Y。使用调整的R-平方进行比较,需要小心从事。

数学建模常用各种检验方法

各种检验方法 1.单个总体2 Nμσ的均值μ的检验: (,) 2 σ已知,关于均值的检验用ztest命令来实现. [h,p,ci]=ztest(x,mu,sigma,alpha,tail) 2 σ已知,关于均值的检验用ttest命令来实现. [h,p,ci]=ttest(x,mu,alpha,tail) 2.两个正态总体均值差的检验(t 检验) 还可以用t 检验法检验具有相同方差的2 个正态总体均值差的假设。在Matlab 中 由函数ttest2 实现,命令为: [h,p,ci]=ttest2(x,y,alpha,tail) 3.分布拟合检验 在实际问题中,有时不能预知总体服从什么类型的分布,这时就需要根据样本来检 验关于分布的假设。下面介绍2χ检验法和专用于检验分布是否为正态的“偏峰、峰度 检验法”。 2 χ检验法 0 H :总体x的分布函数为F(x) , 1 H : 总体x的分布函数不是F(x). 在用下述χ 2检验法检验假设0 H 时,若在假设0 H 下F(x)的形式已

知,但其参数 值未知,这时需要先用极大似然估计法估计参数,然后作检验。 偏度、峰度检验 4.其它非参数检验 Wilcoxon秩和检验 在Matlab中,秩和检验由函数ranksum实现。命令为: [p,h]=ranksum(x,y,alpha) 其中x,y可为不等长向量,alpha为给定的显著水平,它必须为0和1之间的数量。p返回 产生两独立样本的总体是否相同的显著性概率,h返回假设检验的结果。如果x和y的总 体差别不显著,则h为零;如果x和y的总体差别显著,则h为1。如果p 接近于零,则可对 原假设质疑。 5.中位数检验 在假设检验中还有一种检验方法为中位数检验,在一般的教学中不一定介绍,但在 实际中也是被广泛应用到的。在Matlab中提供了这种检验的函数。函数的使用方法简单, 下面只给出函数介绍。 signrank函数

excel一元及多元线性回归实例

野外实习资料的数理统计分析 一元线性回归分析 一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。如果两个变量的关系大致是线性的,那就是一元线性回归问题。 对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在 X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。 在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。对于这种线性关系,可以用数学公式表示: Y = a + bX 这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。其中a为常数,b为Y对于X的回归系数。 对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。计算a与b值的公式为:

式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。n为样本数。 当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。 得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。r值的绝对值越大,两个变量之间的相关程度就越高。当r为正值时,叫做正相关,r为负值时叫做负相关。r 的计算公式如下: 式中各符号的意义同上。 在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。具体的检验方法在后面介绍。

多元线性回归模型的各种检验方法-7页文档资料

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具 有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参 数的(狭义意义上的)显著性检验。如果拒绝 0H ,说明解释变量j X 对被解释变量Y 具有显著的线性 影响,估计值j β?才敢使用;反之,说明解释变量 j X 对被解释变量Y 不具有显著的线性影响,估计值j β?对我们就没有意义。具体检验方法如下: (1) 给定虚拟假设 0H :j j a =β; (2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-= -= 的数值; (3) 在给定的显著水平α 下( α 不能大于 1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )?(?j j j Se t βββ-= 必须服从已知的 t 分布函数。什么情况或条件下才会这 样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随 机样 (){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。这保证了误差u 自身的随机性,即无自相关性, 0))())(((=--j j i i u E u u E u Cov 。 (2) 条件期望值为0。给定解释变量的任何值,误差 u 的期望值为零。即有 这也保证了误差u 独立于解释变量 X X X ,,,21Λ,即模型中的解释变量是外生性的,也使得 0)(=u E 。 (3) 不存在完全共线性。在样本因而在总体中,没有一个解释变量是常数,解释变量之间也不存在严格的线性关系。 (4) 同方差性。常数==2 21),,,(σk X X X u Var Λ。 (5) 正态性。误差u 满足 ),0(~2 σNormal u 。 在以上5个前提下,才可以推导出: 由此可见, t 检验方法所要求的条件是极为苛刻的。 二、 对参数的一个线性组合的假设的检验 需要检验的虚拟假设为 0H :21j j ββ=。比如21ββ=无 法直接检验。设立新参数 211ββθ-=。

多元线性回归模型的各种检验方法.doc

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0 H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。如果拒绝0H ,说明解释变量j X 对 被解释变量Y 具有显著的线性影响,估计值j β?才敢使 用;反之,说明解释变量j X 对被解释变量Y 不具有显 著的线性影响,估计值j β?对我们就没有意义。具体检验 方法如下: (1) 给定虚拟假设 0H :j j a =β;

(2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-=-= 的数值; 11?)?(++-==j j jj jj j C C Se 1T X)(X ,其中σβ (3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝 0H ;反之,无法拒绝0H 。 t 检验方法的关键是统计量 )?(?j j j Se t βββ-=必须服从已 知的t 分布函数。什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。这保证了误差u 自身的随机性,即无自相关性,

eviews多元线性回归案例分析

中国税收增长的分析 一、研究的目的要求 改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。 影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。(2)公共财政的需求,税收收入是财政的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。(3)物价水平。我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。(4)税收政策因素。我国自1978年以来经历了两次大的税制改革,一次是1984—1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。税制改革对税收会产生影响,特别是1985年税收陡增215.42%。但是第二次税制改革对税收的增长速度的影响不是非常大。因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。 二、模型设定 为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收”(简称“税收收入”)作为被解释变量,以放映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数” 从《中国统计年鉴》收集到以下数据 财政收入(亿元) Y 国内生产总值(亿 元) X2 财政支出(亿 元) X3 商品零售价格指 数(%) X4 1978519.283624.11122.09100.7 1979537.824038.21281.79102 1980571.74517.81228.83106

多元线性回归模型习题及答案

多元线性回归模型 一、单项选择题 1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定 系数为,则调整后的多重决定系数为( D ) A. B. C. 下列样本模型中,哪一个模型通常是无效 的(B ) A. i C (消费)=500+i I (收入) B. d i Q (商品需求)=10+i I (收入)+i P (价格) C. s i Q (商品供给)=20+i P (价格) D. i Y (产出量)=0.6i L (劳动)0.4i K (资本) 3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在的显著性水平上对 1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C ) A. )30(05.0t B. )28(025.0t C. )27(025.0t D. )28,1(025.0F 4.模型 t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B ) A.x 关于y 的弹性 B. y 关于x 的弹性 C. x 关于y 的边际倾向 D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明 模型中存在( C ) A.异方差性 B.序列相关 C.多重共线性 D.高拟合优度 6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...) t H b i k ==时,所用的统计量 服从( C ) (n-k+1) (n-k-2) (n-k-1) (n-k+2) 7. 调整的判定系数 与多重判定系数 之间有如下关系( D ) A.2 211n R R n k -=-- B. 22111 n R R n k -=--- C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=---- 8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。 A.只有随机因素 B.只有系统因素 C.既有随机因素,又有系统因素 、B 、C 都不对 9.在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):( C ) A n ≥k+1 B n

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),n a ,...,2,1=。那么,多元线性回归模型的结构形式为: a ka k a a a x x x y εββββ+++++=...22110(3、2、11) 式中: k βββ,...,1,0为待定参数; a ε为随机变量。 如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为 ?=k k x b x b x b b ++++...22110(3、2、12) 式中: 0b 为常数; k b b b ,...,,21称为偏回归系数。 偏回归系数i b (k i ,...,2,1=)的意义就是,当其她自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。 根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使 ()[]min (2) 1 2211012 →++++-=??? ??-=∑∑==∧ n a ka k a a a n a a a x b x b x b b y y y Q (3、2、13) 有求极值的必要条件得 ???????==??? ??--=??=??? ??--=??∑∑=∧=∧n a ja a a j n a a a k j x y y b Q y y b Q 110) ,...,2,1(0202(3、2、14) 将方程组(3、2、14)式展开整理后得:

模型检验(闵应骅)

模型检验(1)(091230) 大家承认,计算机领域的ACM图灵奖相当于自然科学的诺贝尔奖。2007年图灵奖授予Edmund M. Clarke,E. Allen Emerson,和Joseph Sifakis。他们创立了模型检验---一种验证技术,用算法的方式确定一个硬件或软件设计是否满足用时态逻辑表述的形式规范。如果不能满足,则提供反例。他们在1981年提出这个方法,经过28年的发展,已经在VLSI电路、通信协议、软件设备驱动器、实时嵌入式系统和安全算法的验证方面得到了实际应用。相应的商业工具也已出现,估计今后将对未来的硬件和软件产业产生重大影响。 2009年11月CACM发表了三位对模型检验的新的诠释。本人将用几次对他们的诠释做一个通俗的介绍,对我自己也是一个学习的过程。 Edmund M. Clarke现在是美国卡内基梅隆大学(CMU)计算机科学系教授。E. Allen Emerson 是在美国奥斯汀的德州大学计算机科学系教授。Joseph Sifakis是法国国家科学研究中心研究员,Verimag实验室的创立者。 模型检验(2)(091231) 程序正确性的形式验证依靠数学逻辑的使用。程序是一个很好定义了的、可能很复杂、直观上不好理解的行为。而数学逻辑能精确地描述这些行为。过去,人们倾向于正确性的形式证明。而模型检验回避了这种证明。在上世纪60年代,流行的是佛洛伊德-霍尔式的演绎验证。这种办法像手动证明一样,使用公理和推论规则,比较困难,而且要求人的独创性。一个很短的程序也许需要很长的一个证明。 不搞程序正确性证明,可以使用时态逻辑,一种按时间描述逻辑值变化的形式化。如果一个程序可以用时态逻辑来指定,那它就可以用有限自动机来实现。模型检验就是去检验一个有限状态图是否是一个时态逻辑规范的一个模型。 对于正在运行的并发程序,它们一般是非确定性的,像硬件电路、微处理器、操作系统、银行网络、通信协议、汽车电子及近代医学设备。时态逻辑所用的基本算子是F(有时),G(总是),X(下一次),U(直到)。现在叫线性时间逻辑(LTL)。

第三章多元线性回归模型(stata)

一、邹式检验(突变点检验、稳定性检验) 1.突变点检验 1985—2002年中国家用汽车拥有量(t y ,万辆)与城镇居民家庭人均可支配收入(t x ,元),数据见表。 表 中国家用汽车拥有量(t y )与城镇居民家庭人均可支配收入(t x )数据 年份 t y (万辆) t x (元) 年份 t y (万辆) t x (元) 1985 1994 1986 1995 4283 1987 1996 1988 1997 1989 1998 1990 1999 5854 1991 2000 6280 1992 2001 1993 2002 下图是关于t y 和t x 的散点图:

从上图可以看出,1996年是一个突变点,当城镇居民家庭人均可支配收入突破元之后,城镇居民家庭购买家用汽车的能力大大提高。现在用邹突变点检验法检验1996年是不是一个突变点。 :两个字样本(1985—1995年,1996—2002年)相对应的模型回归参数相等H H :备择假设是两个子样本对应的回归参数不等。 1 在1985—2002年样本范围内做回归。

在回归结果中作如下步骤(邹氏检验): 1、 Chow 模型稳定性检验(lrtest) 用似然比作chow检验,chow检验的零假设:无结构变化,小概率发生结果变化* 估计前阶段模型 * 估计后阶段模型 * 整个区间上的估计结果保存为All * 用似然比检验检验结构没有发生变化的约束 得到结果如下;

(如何解释) 2.稳定性检验(邹氏稳定性检验) 以表为例,在用1985—1999年数据建立的模型基础上,检验当把2000—2002年数据加入样本后,模型的回归参数时候出现显著性变化。 * 用F-test作chow间断点检验检验模型稳定性 * chow检验的零假设:无结构变化,小概率发生结果变化 * 估计前阶段模型 * 估计后阶段模型 * 整个区间上的估计结果保存为All

多元线性回归模型公式定稿版

多元线性回归模型公式 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为 (ka a a a x x x y ,...,,,21),n a ,...,2,1=。那么,多元线性回归模型的结构形式为: a ka k a a a x x x y εββββ+++++=...22110() 式中: k βββ,...,1,0为待定参数; a ε为随机变量。 如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为 ?=k k x b x b x b b ++++...22110() 式中: 0b 为常数; k b b b ,...,,21称为偏回归系数。

偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。 根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使 ()[]min ...212211012→++++-=??? ??-=∑∑==∧n a ka k a a a n a a a x b x b x b b y y y Q () 有求极值的必要条件得 ???????==??? ??--=??=??? ??--=??∑∑=∧=∧n a ja a a j n a a a k j x y y b Q y y b Q 110),...,2,1(0202() 将方程组()式展开整理后得: ?????????????=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================n a a ka k n a ka n a ka a n a ka a n a ka n a a a k n a ka a n a a n a a a n a a n a a a k n a ka a n a a a n a a n a a n a a k n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x y x b x x b x x b x b x y b x b x b x nb 11221211101 121221221121012111121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( () 方程组()式,被称为正规方程组。 如果引入一下向量和矩阵: 则正规方程组()式可以进一步写成矩阵形式 B Ab =(3.2.15’)

(完整word版)多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。 年份 人口自然增长率 (%。) 国民总收入(亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 2006 5.38 213132 1.5 16024

回归分析方法

回归分析方法Newly compiled on November 23, 2020

第八章回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要

占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 一元线性回归模型的建立及其MATLAB 实现 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。

线性回归模型检验方法拓展-三大检验

第四章线性回归模型检验方法拓展——三大检验作为统计推断的核心内容,除了估计未知参数以外,对参数的假设检验是实证分析中的一个重要方面。对模型进行各种检验的目的是,改善模型的设定以确保基本假设和估计方法比较适合于数据,同时也是对有关理论有效性的验证。 一、假设检验的基本理论及准则 假设检验的理论依据是“小概率事件原理”,它的一般步骤是 (1)建立两个相对(互相排斥)的假设(零假设和备择假设)。 (2)在零假设条件下,寻求用于检验的统计量及其分布。 (3)得出拒绝或接受零假设的判别规则。 另一方面,对于任何的检验过程,都有可能犯错误,即所谓的第一类错误 P(拒绝H |H0为真)=α 和第二类错误 P(接受H |H0不真)=β 在下图,粉红色部分表示P(拒绝H0|H0为真)=α。黄色部分表示P(接受H0|H0不真)=β。 而犯这两类错误的概率是一种此消彼长的情况,于是如何控制这两个概率,使它们尽可能的都小,就成了寻找优良的检验方法的关键。

下面简要介绍假设检验的有关基本理论。 参数显著性检验的思路是,已知总体的分布(,)F X θ,其中θ是未知参数。总体真实分布完全由未知参数θ的取值所决定。对θ提出某种假设 001000:(:,)H H θθθθθθθθ=≠><或,从总体中抽取一个容量为n 的样本,确定 一个统计量及其分布,决定一个拒绝域W ,使得0()P W θα=,或者对样本观测数据X ,0()P X W θα∈≤。α是显著性水平,即犯第一类错误的概率。 既然犯两类错误的概率不能同时被控制,所以通常的做法是,限制犯第一类错误的概率,使犯第二类错误的概率尽可能的小,即在 0()P X W θα∈≤ 0θ∈Θ 的条件下,使得 ()P X W θ∈,0θ∈Θ-Θ 达到最大,或 1()P X W θ-∈,0θ∈Θ-Θ 达到最小。其中()P X W θ∈表示总体分布为(,)F X θ时,事件W ∈{X }的概率,0 Θ为零假设集合(0Θ只含一个点时成为简单原假设,否则称为复杂原假设)。 0Θ-Θ为备择假设集合,并且0Θ与0Θ-Θ不能相交。由前述可知,当1H 为真时,它被拒绝(亦即H 0不真时,接受H 0)的概率为β,也就是被接受(亦即H 0不真时,拒绝H 0)的概率是1β-(功效),我们把这个接受1H 的概率称为该检验的势。在对未知参数θ作假设检验时,在固定α下,对θ的每一个值,相应地可求得1β-的值,则定义 =1()()P X W θβθ-∈

多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析 多元线性回归分析方法操作与分析 实验目的: 引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。 实验变量: 以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。 实验方法:多元线性回归分析法 软件:spss19.0 操作过程: 第一步:导入Excel数据文件 1.open data document——open data——open;

2. Opening excel data source——OK. 第二步: 1.在最上面菜单里面选中Analyze——Regression——Linear,Dependent (因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise. 进入如下界面: 2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、

Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue. 3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.

多元线性回归分析模型

企业销售额影响因素分析及回归模型学号:1003131014 姓名:李绍林班级:10级人力资源管理 一、问题提出 (一)研究问题: 随着市场经济的进一步发展,也加剧了企业在市场运行中的不确定性,如何在复杂多变的市场中占据主导,如何在经济流通的过程中,充分利用各种有利的因素,来确保企业销售额的增长,如何控制经济流通中的各项开支,如何组合来服务于企业销售额的增长。因此,在这里通过分析某家公司的企业销售状况,试图研究影响企业销售额的各因素及其之间的关系,建立企业销售额及其因素的回归模型,并进行经济分析。(二)数据来源 某企业开支与销售额关系表:

二、定性分析 为了研究企业销售额的影响因素,我们对相关数据进行简单的定性分析,并各因素同因变量的相关关系做了一个简单的预测。 个人可支配收入反映一个地区或市场上消费者的购买能力,单独来看,应与企业的销售额呈正相关关系,即企业产品的目标市场群体的个人可支配收入起高,企业所能获得的销售额也会相应提高。 商业回扣是企业为了改善销售商之间的关系,同时加强同销售商之间的合作,通过商业回扣的方式来吸引销售商,商业回扣作为企业的一个重要的营销策略,这也会减少企业的利润,商业回扣作为影响企业销售额的重要因素,商业回扣投入情况同企业的销售额多少有一定的关系。 商品价格能够通过企业产品的需求来影响企业的销售量,两者共同作用于企业的销售额,是影响企业销售额的一个关系因子。如何制定价格策略来提高企业的销售额,具有重要的现实意义。 研究与发展经费反映企业的研发能力和对市场的捕捉能力,能够适应市场需求来适应开发新的产品,不断开拓新的市场,提高产品的质量和水平,这能够为企业的扩大市场份额和企业销售额的提高。 广告费用是企业为了对产品进行推广和让消费者更好地了解产品和创造需求,引导消费者的购买欲望,同时有利于树立产品和企业的形象。当然广告费用的支出也是影响企业销售额的一个重要因子。 销售费用是企业为了产品的销售在产品的流通和销售过程中发生的一系列费用的总和,其与企业的销售额有一定的关系。 因此,我们选择企业的销售额作为被解释变量y ,选取个人可支配收入、商业回扣、商品价格、研究与发展经费、广告费、销售费作为解释变量,分别设其为x1、x2、x3、x4、x5、x6 。 三、相关分析 (一)数据基本描述 Descriptive Statistics

相关文档
最新文档