多元函数条件极值的求解方法

多元函数条件极值的求解方法
多元函数条件极值的求解方法

多元函数条件极值求解方法

摘要:本文研究的是代入法、拉格朗日乘数法、标准量代换法、不等式法等九种方法在解 多元函数条件极值问题中的运用,较为全面的总结了多元函数条件极值的求解方法,旨在 解决相应的问题时能得以借鉴,找到合适的解决方法。 关键词:多元函数;条件极值;拉格朗日乘数法;柯西不等式

Abstract: This paper studies the substitution method, the Lagrange multiplier method, standard substitution method, inequality of nine kinds of method in solving multivariate function extremum problems, the application conditions are summed up the diverse functions of conditional extreme value method, to solve the corresponding problem is able to guide, to find the right solution.

Key words: multiple functions; Conditional extreme value; Lagrange multiplier method; Cauchy inequality

时比较困难,解题过程中选择一种合理的方法可以达到事半功倍的效果,大大减少解题时间,拓展解题的思路。下面针对多元函数条件极值问题总结了几种方法供大家借鉴。 1.消元法

对于约束条件较为简单的条件极值求解问题,可利用题目中的约束条件将其中一个量用其他量表示,达到消元的效果,从而将条件极值转化为无条件极值问题。 例1 求函数(,,)f x y z xyz =在条件x -y+z=2下的极值. 解: 由x -y+z=2 解得 2z x y =-+

将上式代入函数(,,)f x y z ,得 g(x,y)=xy(2-x+y)

解方程组 2

2

'2y 20

220

x y g xy y g x xy x ?=-+=??'=+-=?? 得驻点 12

22

P P =33

(0,0),(,-) 2xx y ''=-g ,222xy g x y ''=-+,2yy g x ''= 在点1P 处,0,2,0A B C ===

22=0240AC B ?-=-=-<,所以1P 不是极值点

从而函数(,,)f x y z 在相应点(0,0,2)处无极值;

在点2P 处,44

,2,33A B C ===

224424

()03333

AC B ?=-=??-=>,

又4

03

A =>,所以2P 为极小值点

因而,函数(,,)f x y z 在相应点222

(,,)333

-处有极小值

极小值为2228

(,,)33327

f -=-.

2.拉格朗日乘数法[3]

拉格朗日乘数法是求多元函数条件极值的一种常用方法,特别是在约束条件比较多的情况下使用拉格朗日乘数法更方便适用.

求目标函数12(,,)n f x x x 在条件函数12(,,)0,(1,2,,,)k n x x x k m m n ?==≤ 组限制下的极值,若12(,,)n f x x x 及12(,,)k n x x x ? 有连续的偏导数,且Jacobi 矩阵

1

11122221

21

2

n n m m m n x x x x x x J x x x ?????????????? ?

??? ? ???? ????= ? ?

???? ? ??????

的秩为m ,则可以用拉格朗日乘数法求极值. 首先,构造拉格朗日函数

12112121

(,,,,,,)(,,)(,,)m

n m n k k n k L x x x f x x x x x x λλλ?==-∑

然后,解方程组0,1,2,,0,,2,i

k

L

i n x L k i m λ??==??????==???

从此方程组中解出驻点的坐标000

12(,,)i n P x x x (1,2,,)i k = ,所得驻点是函数极值的可

疑点,需进一步判断得出函数的极值.

定理1.2.1(充分条件) 设点000012(,,,)n x x x x = 及m 个常数12,,,m λλλ

满足方程组 100m

i i i k k k

l

L f

x x x ?λ?=????=-=?

?????=?∑ (1,2,,;1,2,,)k n l m == ,

则当方阵 20,12(,,,)m k l n n

L x x x λλλ???

?

????? 为正定(负定)矩阵时,0x 满足约束条件的条件极小(大)值点,因此0()f x 为满足约束条件的条件极小(大)值.

例2.求椭球222

2221x y z a b c

++=在第一卦限内的切平面与三坐标面所围成的四面体的最小体

积.

解 :此椭球在点000(,,)P x y z 处的切平面为

000

000222

222()()()0x y z x x y y z z a b c -+-+-= 化简,得 000

222

1x y z x y z a b c ++= 此平面在三个坐标轴上的截距分别为:222

000

,,a b c x y z

则此切平面与三坐标面所围成的四面体的体积 222

0006a b c V x y z =

由题意可知,体积存在最小值,要使V 最小,则需000x y z 最大;

即求目标函数(,,)f x y z xyz =在条件222

2221x y z a b c

++=下的最大值,

其中0,0,0x y z >>>,拉格朗日函数为

222

222(,,,)(1)x y z L x y z xyz a b c

λλ=-++-

由 2

2222222220;20;20;

1L

x yz x a L y xz y

b L z xy z

c x y z a

b c λλλ??=-=???

??=-=??????=-=????++=??

解得x y z ===

min V V ==

3. 标准量代换法

求含有多个变量的条件极值时,可以选取某个与这些变量有关的量作为标准量,其余各量为比较量,然后将比较量用标准量与另外选取的辅助量表示 出来,即可将其变为研究标准量与辅助量间的关系.如果给定条件是几个变量之和的形式,一般设这几个量的算术平均数为标准量.

例3[4].设x y z a ++=,求222u x y z =++的最小值.

解 : 取

33x y z a

++= 为标准量, 令 ,33a a

x y αβ=-=-,

则 3

a

z αβ=++(,αβ为任意实数),

从而有 222()()()333

a a a

u αβαβ=-+-+++

2

222223a αβαβ=+++

22222

()33

a a αβαβ=++++≥

等号当且仅当0αβ==, 即3

a

x y z ===

时成立, 所以u 的最小值为2

3

a .

4.不等式法[4] 4.1 利用均值不等式

将目标函数配凑成均值不等式12n

a a a n

+++≤

左边或右边的形式,再根

据均值不等式中等号成立的充要条件:12n a a a === ,求解多元函数条件极值。

例4.1 已知1111

2

x y z ++=,(0,0,0)x y z >>>,求(,,)222f x y z x y z =++的极小值.

解 0,0,0,x y z >>>

(,,)222f x y z x y z ∴=++

=4(x+y+z)×

2

1 =4(x+y+z)×)1

1x 1(z

y ++

4(3)x y y z x z y x z y z x

=+

+++++ 4(3222)

3≥+++= 当且仅当6x y z ===时,等号成立.

4.2利用柯西不等式

将目标函数配凑成柯西不等式21122()n n a b a b a b +++≤

2222221212()()n n a a a b b b ++++++ 左边或者右边的形式,再根据柯西不等式中等号成立的充要条件:12,,,n a a a 与1,2,n b b b 对应成比例,来求解多元函数条件极值. 例4.2 已知222(2)(1)(4)9x y z -+++-=,求(,,)22f x y z x y z =-+ 的最值.

解: 首先将 (,,)22f x y z x y z =-+ 变形为

(,,)f x y z =2(2)2(1)(4)10x y z --++-+;

再设 (,,)2(2)2(1)(4)g x y z x y z =--++-, 于是,根据柯西不等式及已知条件,有

[]

2

2(2)2(1)(4)x y z --++-≤

222222

2(2)1(2)(1)(4)81x y z ????+-+?-+++-=????

即: 92(2)2(1)(4)9x y z -≤--++-≤

当且仅当 222214

221

(2)(1)(4)9x y z k x y z -+-?===?

-??-+++-=?

时,等号成立; 即当 1435k x y z =??=?

?=-??=?时,max (,,)9g x y z =;

当 1013k x y z =-??=?

?=??=?时,min (,,)9g x y z =-,

所以,max (,,)19f x y z =,min (,,)1f x y z =.

5 梯度法[6]

用梯度法求目标函数12(,,)n f x x x 在条件函数时12(,,,)0i n x x x ?= (1,2,,,)i m m n =≤ 组限制下的极值,方程组

12121

12

(,,,)(,,,)

(,,,)0,(1,2,,)

m

n i i n i i n gradf x x x grad x x x x x x i m λ??=?

=???==?∑ 的解,就是所求极值问题的可能极值点.

其中gradf 表示目标函数12(,,)n f x x x 的梯度向量12(

,,,)n

f f f

x x x ?????? , i grad ?表示条件函数12(,,,)i n x x x ? 的梯度向量12(

,,,)i i i n

x x x ???

?????? 例5. 从斜边之长为l 的一切直角三角形中,求最大周长的直角三角形.

解:设两条直角边为,x y ,本题的实质是求(,)f x y x y l =++在条件222x y l +=下的极值

问题.根据梯度法,列出方程组 222

222

()()

grad x y l grad x y l x y l λ?++=+-??+=??

进一步求解得 {}{}222

1,12,2x y x y l

λ?=??+=??

容易解出x y ==

根据题意是唯一的极大值点,也是最大值点.

时,直角三角形的周长最大. 6. 数形结合法

根据目标函数的几何意义,如直线的截距,点到直线的距离,圆的半径等几何性质来决定目标函数的条件极值。

例6 设2219x xy y ++=,求22x y +的

最值

解 :设,,x u v y u v =+=-

则222319x xy y u v ++=+=,

即22

1+= 22222()x y u v +=+表示坐标原点到椭圆上的点的距离的平方的2倍 显然最大值为长轴的长38,最小值为

38

3

7. 三角代换法

利用三角函数(或三角函数式)去代替所给函数式中的变数,借助于三角函数运算求出极值。代换时,首先要从函数式中变数的允许值去考虑,选取哪些三角函数(或三角函数式),再从解题的需要选择适当的代换。 例7.若 221x y +=,试求函数f x y =+的极值。

解:令sin cos x y θ

θ

=??=? (θ为参数,02θπ≤≤)

则,x y 合于条件221x y +=

,故sin cos )f x y θθθφ=+=++,此处

sin 22

φφ=

= 当sin()1θφ+=

时,max f =,此时22n πθφπ+=+(n

为正整数),22

n π

θπφ=+

-

因此当2x =

,2

y =时函数f

f 最小值-2.

9.二次方程判别式符号法

对于约束条件含某一变量平方项的条件极值问题,可将目标函数的一端整理成仅含该变量的形式,然后将其代入约束条件,再根据二次函数方程有实解判别式大于等于零,来求解多元函数条件极值

例9[5]若2221x y z ++=,试求22f x y z =-+的极值.

解 因为 1

(2)2

y x z f =

+-,

代入 2221x y z ++= 得

2221

(2)104

x x z f z ++-+-=

即 2225(42)(844)0x z f x z f zf +-++--= (1) 这个关于x 的二次方程要有实数解, 必须

222(42)20(844)0z f z f zf ?=--+--≥ 即 224950f zf z -+-≤ 解关于f 的二次不等式,得:

2211z f z z ≤+-≤≤

显然,求函数f 的极值, 相当于求

211f z z ≤+-≤≤ (2)

或211f z z ≥-≤≤ (3)

的极值.

由(2)得 229450z fz f -+-= (4) 这个关于z 的二次方程要有实数解,必须

221636(5)0f f ?=--≥, 即 290f -≥

解此关于f 的二次不等式,得 33f -≤≤. 所以 max 3f =,min 3f =-.

把 3f =代入(4),得2

3

z =

再把3f =,23z =代入(1),得1

3

x =,

最后把3f =,23z =,1

3

x =代入1(2)2y x z f =+-,得23y =-.

所以,当13x =,23y =-,2

3z =时,函数f 达到极大值3.

同理可得,当13x =,23y =,2

3z =-时,函数f 达到极小值-3.

也可以从(3)作类似讨论得出f 的极大值3和极小值-3.

本文通过对多元函数极值问题的各种解法的介绍,我们知道对于不同的多元函数其极值有不同的解法,除了拉格朗日乘数法和梯度法外,其余条件极值解法均为初等数学的方法,掌握好初等数学的方法求解多元函数条件极值会使问题变得简单,但其使用的过程中具有一定的技巧性,也有一定的局限性,需要根据具体情况具体分析,只有训练掌握各种解法,才能在解极值问题时选择最佳方法快速解题。

参考文献

[1] 唐军强.用方向导数法求解多元函数极值[J].科技创新导报,2008,(15):246-247

[2] 汪元伦.两类多元函数条件极值的简捷求法[J].绵阳师范学院学报,2008,27(2):

14-15.

[3]华东师范大学数学系.数学分析.高等教育出版社.

[4] 裴礼文.数学分析中的典型问题与方法-北京:高等教育出版社,1993.5

[5] 王延源.条件极值的初等解法[J], 临沂师专学报, 1999(12):21-24.

[6] 肖翔,许伯生.运用梯度法求条件极值[J],上海工程技术大学教育研究,

2006(1):35-37

时光匆匆如流水,转眼便是大学毕业时节,春梦秋云。离校日期已日趋临近,毕业论文的的完成也随之进入了尾声。从选题到论文顺利完成,一直都离不开老师、同学给我热情的帮助,在这里请接受我诚挚的谢意! 值此本科学位论文完成之际,首先我要感谢导师000老师。000老师从一开始的论文方向的选定,到最后的整篇论文的完成,都非常耐心的进行指导。给我提供了资料和建议,告诉我应该注意的细节问题,细心的给我指出错误。000老师诲人不倦的工作作风,一丝不苟的工作态度,严肃认真的治学风格给我留下深刻的印象,值得我永远学习。在此,谨向导师致以崇高的敬意和衷心的感谢!

多元函数极值充分条件

定理10.2(函数取得极值的充分条件) 设函数(,)f x y 在点000(,)P x y 的邻域内存在二阶连续 偏导数,且00(,)0x f x y =,00(,)0y f x y =.记00(,)xx f x y A =, 00(,)xy f x y B =,00(,)yy f x y C =,则有 (1) 当20A C B ->时,00(,)x y 是极值点.且当0A >时,000(,)P x y 为极小值点;当0A <时,000(,)P x y 是极大值点. (2) 当20A C B -<时,000(,)P x y 不是极值点. (3) 当20A C B -=时,不能判定000(,)P x y 是否为极值点,需要另外讨论. 证 (1) 利用二元函数的一阶泰勒公式,因 0000(,)(,)f x h y k f x y ++- 20000001(,)(,)(,)2x y f x y h f x y k h k f x h y k x y q q 轾抖犏=+++++犏抖臌, 01q << 由已知条件,00(,)0x f x y =,00(,)0y f x y =,故 20000001(,)(,)(,)2f x h y k f x y h k f x h y k x y q q 轾抖犏++-=+++犏抖臌 220000001(,)2(,)(,)2 xx xy yy f x h y k h f x h y k hk f x h y k k q q q q q q 轾=++++++++犏臌 利用矩阵记号, 记h r k 骣÷?÷?=÷?÷?÷桫,(,)r h k ¢=,0()A B Hf P B C 骣÷?÷?=÷?÷?÷桫 ,000(,)P r x h y k q q q +=++ 0000 0()()()()()xx xy xy yy f P r f P r Hf P r f P r f P r q q q q q 骣++÷?÷?+=÷?÷++÷?桫, 可改写上式为 00()()f P r f P +-000 0()()1(,)()()2xx xy xy yy f P r f P r h h k k f P r f P r q q q q 骣骣++÷÷??÷÷??=÷÷??÷÷++?÷÷?桫桫01()2r Hf P r r q ¢=+ 01q << (1) 进一步,又有 00()()f P r f P +-00011()[()()]22 r Hf P r r Hf P r Hf P r q ⅱ= ++- (2) 当20A C B ->且0A >时,二次型0()r Hf P r ¢正定,因此对于任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷?麋桫桫,0()0r Hf P r ¢>。特别地,在单位圆{22(,)1}Q x y x y +=上,连续函数0()Q Hf P Q ¢ 取得的最小值0m >。 因此,对任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷ ?麋桫桫,我们有 22 00()(())r r r Hf P r r Hf P r m r r ⅱⅱ = ¢ 另一方面,由于(,)f x y 二阶偏导数在点000(,)P x y 连续,对任何:02 m e e <<,总可取0d >,使得0r d ¢<<时,有 00()()xx xx f P f P r q e -+<,00()()xy xy f P f P r q e -+<,00()()yy yy f P f P r q e -+< 从而, 220000[()()][()()]2r Hf P r Hf P r r Hf P r Hf P r r r q q e ⅱ+-W+-? 于是,

多元函数求极值(拉格朗日乘数法)

第八节多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于 ),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2 243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的任 一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从 几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面 2 243y x z +=的顶点。

例2函数2 2y x z +-=在点(0,0)处有极大值。因为在点(0,0)处函 数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负, 点(0,0,0)是位于xOy 平面下方的锥面2 2y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零: ),(,0),(0000==y x f y x f y x 证不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x 类似地可证 ),(00=y x f y

导数与函数的极值 最值问题 解析版

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步判断'()f x 在方程的根的左、右两侧值的符号; 第四步利用结论写出极值. 例1已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于() A .11或18B .11C .18D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2 ,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或? ??=-=33b a .?

当???=-=33b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.?当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 () A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为函数x m x m x x f )1(2)1(2 1 31)(23-++-= 在)4,0(上无极值, 而()20,4∈,所以只有12m -=,3m =

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

多元函数极值的判定

. .. . 目录 摘要 (1) 关键词 (1) Abstract............................................................................................................. .. (1) Keywords.......................................................................................................... .. (1) 引言 (1) 1定理中用到的定义 (2) 2函数极值的判定定理.............................................................. .. (5) 3多元函数极值判定定理的应用 (7) 参考文献 (8)

多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the

function of many variables and the conditional extremum of the function of many variables . Keywords : extremum; conditional ;partial derivative 引言 在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二 元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去. 1 定理中用到的定义 定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点 0(,)()P x y U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点. 定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在 0x 的某一领域有定义,则当极限 0000000(,)(,)(,) lim x xf x y f x x y f x y x x →+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作 00(,) x y f x ??. 定义1.3[]3 设n D R ?为开集,12(,, ,)n P x x x D ∈,00 0012 2(,,,)P x x x D ∈ :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有 000 ()()() lim P P f P f P A P P P P →----, 则称n 元函数12(,, ,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

多元函数求极值(拉格朗日乘数法)

第八节 多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法 求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的任 一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从

几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面 2243y x z +=的顶点。 例2 函数22y x z +-=在点(0,0)处有极大值。因为在点(0,0)处函 数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负, 点(0,0,0)是位于xOy 平面下方的锥面22y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零: 0),(,0),(0000==y x f y x f y x 证 不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点 ),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x

(整理)多元函数的极值及其求法

第六节 多元函数的极值及其求法 在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题. 与一元函数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系. 下面我们以二元函数为例来讨论多元函数的极值问题. 内容分布图示 ★ 引例 ★ 二元函数极值的概念 例1-3 ★ 极值的必要条件 ★ 极值的充分条件 ★ 求二元函数极值的一般步骤 ★ 例4 ★ 例5 ★ 求最值的一般步骤 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 例11 ★ 条件极值的概念 ★ 拉格郎日乘数法 ★ 例12 ★ 例 13 ★ 例 14 ★ 例 15 ★ 例 16 *数学建模举例 ★ 最小二乘法 ★ 线性规划问题 ★ 内容小结 ★ 课堂练习 ★ 习题6-6 ★ 返回 内容提要: 一、二元函数极值的概念 定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 对于该邻域内异于),(00y x 的任意一点),(y x , 如果 ),,(),(00y x f y x f < 则称函数在),(00y x 有极大值;如果 ),,(),(00y x f y x f > 则称函数在),(00y x 有极小值; 极大值、极小值统称为极值. 使函数取得极值的点称为极值点. 定理1 (必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数, 且在点),(00y x 处有极值, 则它在该点的偏导数必然为零,即 .0),(,0),(0000==y x f y x f y x (6.1) 与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点. 定理2 (充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内有直到二阶的连续偏导

二元函数极值存在的判别方法

大庆师范学院 本科生毕业论文 二元函数极值存在的判别方法 院(系)数学科学学院 专业数学与应用数学 研究方向数学教育 学生姓名韩明 学号200801052602 指导教师姓名夏晶 指导教师职称副教授 2012年6月1日

摘要 在生活、生产、经济管理和各种资金核算中,常常要解决在一定的条件下怎么使投入最小、产量最大、效益最高等等问题.因此解决这些问题具有现实意义.这些经济和生活的问题常常都可以转化为数学中的函数问题来探讨,将问题数字化,简单、精确,进而转化为求函数中最大(小)问题,即函数的极值问题.因此,对函数极值问题的探讨具有十分重要的意义.本文主要探讨了二元函数极值存在的充分条件、必要条件的判定方法,以及如何求解,并对结果进行了简要的证明. 关键词:二元函数;极值;驻点;条件极值

Abstract In industrial and agricultural production,management of the economy and the economic accounting,we often solve the problems such as how to make input smallest,output most efficient in given conditions.In the life we often encounter how to achieve maximum profit,use the minimum materials and get maximum efficiency,to deal with the similar problems that have its realistic significance.Above problems can be transformed with function and its function of maximum and minimum value.The concept of extreme value originate from function of maximum and minimum value of mathematics,therefore approaching the extreme value have significance meanning. Keywords:function;extreme value;stagnation;conditional extremum

多元函数的极值及其求法

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有 极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 2 43y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2 2 43y x z +=的顶点,曲面在点 )0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x -+-=- 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

多元函数条件极值的求解方法

多元函数条件极值求解方法 摘要:本文研究的是代入法、拉格朗日乘数法、标准量代换法、不等式法等九种方法在解 多元函数条件极值问题中的运用,较为全面的总结了多元函数条件极值的求解方法,旨在 解决相应的问题时能得以借鉴,找到合适的解决方法。 关键词:多元函数;条件极值;拉格朗日乘数法;柯西不等式 Abstract: This paper studies the substitution method, the Lagrange multiplier method, standard substitution method, inequality of nine kinds of method in solving multivariate function extremum problems, the application conditions are summed up the diverse functions of conditional extreme value method, to solve the corresponding problem is able to guide, to find the right solution. Key words: multiple functions; Conditional extreme value; Lagrange multiplier method; Cauchy inequality 时比较困难,解题过程中选择一种合理的方法可以达到事半功倍的效果,大大减少解题时间,拓展解题的思路。下面针对多元函数条件极值问题总结了几种方法供大家借鉴。 1.消元法 对于约束条件较为简单的条件极值求解问题,可利用题目中的约束条件将其中一个量用其他量表示,达到消元的效果,从而将条件极值转化为无条件极值问题。 例1 求函数(,,)f x y z xyz =在条件x -y+z=2下的极值. 解: 由x -y+z=2 解得 2z x y =-+ 将上式代入函数(,,)f x y z ,得 g(x,y)=xy(2-x+y) 解方程组 2 2 '2y 20 220 x y g xy y g x xy x ?=-+=??'=+-=?? 得驻点 12 22 P P =33 (0,0),(,-) 2xx y ''=-g ,222xy g x y ''=-+,2yy g x ''= 在点1P 处,0,2,0A B C === 22=0240AC B ?-=-=-<,所以1P 不是极值点 从而函数(,,)f x y z 在相应点(0,0,2)处无极值;

(完整版)求函数极值的几种方法

求解函数极值的几种方法 1.1函数极值的定义法 说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法 定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件. 例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,22 5 x = ,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表 说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题: Min (,)z f x y = s.t (,)0x y =

如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 利用这一性质求极值的方法称为Lagrange 乘法数 例2 在曲线3 1(0)y x x = >上求与原点距离最近的点. 解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函 数2231 ()w x y y x λ=++- 然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得 43 320201x x y y x λλ?+=?? +=???=? 解得 x y ?=? ?= ?? 这是唯一可能取得最值的点 因此 x y == . 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题 由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0 p

判定一类函数极值点的简单方法

第38卷 第4期 高 师 理 科 学 刊 Vol. 38 No.4 2018年 4月 Journal of Science of Teachers′College and University Apr. 2018 文章编号:1007-9831(2018)04-0010-03 判定一类函数极值点的简单方法 黄伟 (太原城市职业技术学院 信息工程系,山西 太原 030027) 摘要:对于一阶导数可分解为()1 i i q m p i i k x a =-?类型的函数,给出了判断函数极值点的简单方法.给 出判定此类型函数极大值点和极小值点的一种简单方法,并给出相关例题加以说明. 关键词:函数;极值点;极大值点;极小值点 中图分类号:O171 文献标识码:A doi:10.3969/j.issn.1007-9831.2018.04.004 The simple method for determining the extreme point of a type of function HUANG Wei (Department of Information Technology,Taiyuan City Vocational College,Taiyuan 030027,China) Abstract:For a type of function which first derivative can be decomposed into ()1 i i q m p i i k x a =-?,asimple method of determining the extreme point of a type of function is given.A simple method to determine the relative maximum point and relative minimum point of the type of function is given,and gives some related examples to illustrate. Key words:function;extreme point;relative maximum point;relative minimum 一般地,要求函数的极值点,首先要求出函数的一阶导数,得出可能的极值点,再利用极值点的充分 条件,逐一对这些可能的极值点进行判断,当这些可能的极值点较多时,判断起来较为繁琐.此外,在判定极大值点或极小值点时,无论利用极值第一充分条件还是第二充分条件,判定起来都不够方便.本文对一阶导数可分解为()1i i q m p i i k x a =-?类型的函数的极值点判断提供了一种简单便捷的方法,同时在确定极值点 的条件下,给出了判定此类型函数极大值点和极小值点的一种简单的规律性方法,并举例加以说明. 定理1 设()f x 在其定义域D 内可导,且其导数可分解为()1 ()i i q m p i i f x k x a =¢=-?的形式,即 () () ()() 121 2 12()i m i m q q q q p p p p i m f x k x a x a x a x a ¢=----L L (1) 其中:12, , , m a a a L 为互不相等的实数;k 为常数;1 1, , m m q q p p L 均为最简分数,那么 (1)i p 为偶数时,i x a =不是()f x 的极值点; (2)i p 为奇数,i q 为偶数时,i x a =不是()f x 的极值点; (3)i p 为奇数,i q 为奇数时,i x a =一定是()f x 的极值点. 证明 不妨假设12m a a a <<

多元函数的极值及其应用

多元函数的极值及其应用 作者:程俊 指导老师:黄璇 学校:井冈山大学 专业:数学与应用数学

【摘要】 多元函数的极值是函数微分学中的重要组成部分,本文对几种特殊的多元函数进行了简单的介绍,对多元函数的极值常见的求法进行了研究,并引入其在生活中、生产中解决实际问题的广泛应用,突显这一学术课题在生活中的重大意义。如今构建经济型节约社会慢慢成为我们共同努力的方向,而最优化问题是达到这一目标的有效途径,其常常有与多元函数的极值息息相关。对函数极值的研究不仅把理论数学推上一个高度,给经济方面,生活方面带来的益处不容小觑,本人浅谈极值问题,为了抛砖引玉,希望这一课题能有更广大额发展空间 【关键词】:多元函数;极值;生活中的应用

目录 Ⅰ引言 (1) Ⅱ多元函数极值的介绍………………………………………… 2.1什么是多元函数………………………………………… 2.2函数的极值理论………………………………………… Ⅲ几种函数的极值的常见求法……………………………… 3.1高中极值求法的弊端………………………………… 3.2拉格朗日乘数法……………………………………… 3.3消元法…………………………………………………… 3.4均值不等式法…………………………………………… Ⅳ多元函数在生活中的应用……………………………………

引言 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它有助于我们提高对函数的认识。而函数的极值的作用已经蔓延到经济领域,在各种解决最优化中应用广泛,从而引发了本人对该课题的研究兴趣。 编者 2014年2月

多元函数条件极值的几种求解方法

多元函数条件极值的几种求解方法 摘 要 本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。 关键词 极值;拉格朗日乘数法;柯西不等式 Multivariate function of several conditional extreme value solution Abstract This paper mainly discusses the multivariable function conditional extreme value problem solving, including the unconditional extreme value, conditional extreme value concept of multivariate function is introduced, and several methods of solving condition limit the wraparound, including direct generation into law, Lagrange multiplier method, methods of cauchy inequality, including Lagrange multiplier method also introduces the differential and second-order partial derivative namely Hesse matrix method, etc. This paper introduces the multivariable function about solving several methods of conditional extreme value, which can provide in solving the relevant question readers may be reference when, find the appropriate way to solve the problem. Meanwhile introducing method also has some deficiencies in its done, and further discussion. Key words Extreme; Lagrange multiplier method; Cauchy inequality

推荐-多元函数极值的判定

目录 摘要.................................................................... .. (1) 关键词.................................................................... .. (1) Abstract............................................................. .. (1) Keywords............................................................. .. (1) 引言.................................................................... . (1) 1定理中用到的定义................................................................ .. (2) 2函数极值的判定定理.............................................................. . . (5) 3多元函数极值判定定理的应用..................................................................

.7

参考文献.................................................................... (8) 多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极 值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the function of many variables and the conditional extremum of the function of many

(整理)多元函数的极值.

实验六 多元函数的极值 【实验目的】 1. 多元函数偏导数的求法。 2. 多元函数自由极值的求法 3. 多元函数条件极值的求法. 4. 学习掌握MATLAB 软件有关的命令。 【实验内容】 求函数3282 4-+-=y xy x z 的极值点和极值 【实验准备】 1.计算多元函数的自由极值 对于多元函数的自由极值问题,根据多元函数极值的必要和充分条件,可分为以下几个步骤: 步骤1.定义多元函数),(y x f z = 步骤2.求解正规方程0),(,0),(==y x f y x f y x ,得到驻点 步骤3.对于每一个驻点),(00y x ,求出二阶偏导数,,,22222y z C y x z B x z A ??=???=??= 步骤4. 对于每一个驻点),(00y x ,计算判别式2B AC -,如果02 >-B AC ,则该驻点是极值点,当0>A 为极小值, 0

MATLAB 中主要用diff 求函数的偏导数,用jacobian 求Jacobian 矩阵。 可以用help diff, help jacobian 查阅有关这些命令的详细信息 【实验方法与步骤】 练习1 求函数3282 4-+-=y xy x z 的极值点和极值.首先用diff 命令求z 关于x,y 的偏导数 >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans =4*x^3-8*y ans =-8*x+4*y 即.48,843y x y z y x x z +-=??-=??再求解正规方程,求得各驻点的坐标。一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。求解正规方程的MATLAB 代码为: >>clear; >>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y') 结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4).下面再求判别式中的二阶偏导数: >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>A=diff(z,x,2) >>B=diff(diff(z,x),y) >>C=diff(z,y,2) 结果为 A=2*x^2 B =-8 C =4 由判别法可知)2,4(--P 和)2,4(Q 都是函数的极小值点,而点Q(0,0)不是极值点,实际上,)2,4(--P 和)2,4(Q 是函数的最小值点。当然,我们可以通过画函数图形来观测极值点与鞍点。 >>clear; >>x=-5:0.2:5; y=-5:0.2:5; >>[X,Y]=meshgrid(x,y);

相关文档
最新文档