指数式与对数式(基础+复习+习题+练习)

指数式与对数式(基础+复习+习题+练习)
指数式与对数式(基础+复习+习题+练习)

指数对数比较大小练习题=

指数、对数比较大小 1.下图是指数函数(1)x y a =,(2)x y b =,(3)x y c =,(4)x y d =的图象,则a , b , c , d 与1的大小关系是( ) A .1a b c d <<<< B .1b a d c <<<< C .1a b c d <<<< D .1a b d c <<<< 2.图中曲线是对数函数y =log a x 的图象,已知a 取431 3,,, 3510 四个值,则相应于C 1, C 2,C 3,C 4的a 值依次为( ) A .101, 53,34,3 B .53,101,34,3 C .101,53,3,34 D .5 3 ,101,3,34 3.已知()log a f x x =,()log b g x x =,()log c r x x =,()log d h x x =的图象如图所示则 a , b , c , d 的大小为( ) A .c d a b <<< B .c d b a <<< C .d c a b <<< D .d c b a <<< 4.如果01a <<,那么下列不等式中正确的是( ) A .113 2 (1)(1)a a -<- B .1(1)1a a +-> C .(1)log (1)0a a -+> D .(1)log (1)0a a +-< 5.若log 2log 20n m >>时,则m 与n 的关系是( ) y x 1O (4) (3) (2) (1)

A .1m n >> B .1n m >> C .10m n >>> D .10n m >>> 6.已知log 5log 50m n <<,则m ,n 满足的条件是( ) A .1m n >> B .1n m >> C .01n m <<< D .01m n <<< 7.设5 .1348 .029.0121,8 ,4-? ? ? ??===y y y ,则( ) A .213y y y >> B .312y y y >> C .321y y y >> D .231y y y >> 8.以下四个数中的最大者是( ) A .2(ln 2) B .ln(ln 2) C . D .ln 2 9.若a =2log π,b =7log 6,c =2log 0.8,则( ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a 10.设323log ,log log a b c π=== ) A .a b c >> B .a c b >> C .b a c >> D .b c a >> 11.设3.02 13 1)2 1(,3log ,2log ===c b a ,则( ) A .a b c >> B .a c b >> C .b a c >> D .b c a >> 12.设232555322555 a b c ===(),(),(),则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >> D .b c a >>

(完整版)指数与对数函数综合复习题型.doc

指数与对数函数 I 题型 一、利用指数和对数函数性质比较大小 1. (2010 3 52 2 53 2 52 , , c 的大小 安徽文)设 a ( ) , b ( ), c ( ) ,则 5 5 5 a b 关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a 2、下列大小关系正确的是( ) A. 0.42 30.4 log 4 0.3 ; B. 0.42 log 4 0.3 30.4 ; C. log 4 0.3 0.42 30.4 ; D. log 4 0.3 30.4 0.42 3、比较下列比较下列各组数中两个值的大小: ( 1) log 6 7 , log 7 6 ; ( 2) log 5 3 , log 6 3, log 7 3 . 4. 设 a 0 3 , b log 3, c 1,则 a,b, c 的大小关系是( ) A. a b c B. a c b C. b a c D. b c a 二、指数与对数运算 1、若 m = lg5 - lg2 ,则 10m 的值是( ) 5 B 、 3 C 、 10 D 、 1 A 、 2 1 2、 若 log 4 [log 3 (log 2 x)] 0 ,则 x 2 等于( ) A 、 1 2 B 、 1 2 C 、 8 D 、 4 4 2 3、化简计算: log 2 1 · log 3 1 · log 5 1 25 8 9 4. 化简: log 2 5+log 4 0.2 log 5 2+log 250.5 5、已知 3a 2 ,那么 log 3 8 2log 3 6 用 a 表示是( ) A 、 a 2 B 、 5a 2 C 、 3a (1 a) 2 D 、 3a a 2 6、 2log a ( M 2N ) log a M log a N ,则 M 的值为( ) A 、 1 N B 、4 C 、 1 D 、 4 或 1 4 1

指数式和对数式比较大小

指数式和对数式比较大 小 Document number:WTWYT-WYWY-BTGTT-YTTYU-

指数式和对数式比较大小五法 方法一:利用函数单调性 同底的指数式和对数式以及同指数的指数式的大小,可以利用函数的单调性来比较. 核心解读: 1.比较形如m a 与n a 的大小,利用指数函数x y a =的单调性. 2.比较形如log a m 与log a n 的大小,利用对数函数log a y x =的单调性. 3.比较形如m a 与m b 的大小,利用幂函数m y x =的单调性. 例1:比较下列各组数的大小 (1)0.30.3,30.3 (2)2log 0.8,2log 8.8 (3)0.30.3,0.33 [解](1)利用函数0.3x y =的单调性. 因为函数0.3x y =在R 上单调递减,<3,所以0.30.3>30.3. (2)利用函数2log y x =的单调性. 因为函数2log y x =在(0,)+∞单调递增,<,所以2log 0.8<2log 8.8. (3)利用函数0.3y x =的单调性. 因为函数0.3y x =在(0,)+∞单调递增,<3,所以0.30.3<0.33. 方法二:中间桥梁法 既不同底又不同指的指数式、对数式比较大小,不能直接利用函数的单调性来比较,可利用特殊数值作为中间桥梁,进而可比较大小. (1)比较形如m a 与n b 的大小,一般找一个“中间值c ”,若m a c <且m c b <,则m n a b <;若m a c >且n c b >,则m n a b >.常用到的特殊值有0和1.(0log 1a =,1log a a =,01a =) (2)比较形如m a 与n b 的大小,一般可以取一个介于两值中间且与题目中两数都能比较大小的一个中间值,即n a 或者m b ,进而利用中间值解决问题. 例2:比较下列各组数的大小 (1)0.41.9, 2.40.9 (2)124()5,139()10 [解](1)取中间值1. 因为0.4 01.9 1.91>=, 2.400.90.91<=,所以0.4 2.41.90.9>. (2)取中间值1 29()10 . 利用函数910 x y =()的单调性比较139()10和129()10的大小,易知139()10>129()10.利用函数12y x =单调性比较124()5和129()10的大小,易知124()5<129()10.所以139()10>1 24()5. (补充:对于指数相同底数不同的两指数式比较大小,也可以通过做比与1比较大小的方法比较两数的大小.)

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n (ΛN * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5 )= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为

指数与对数运算

指数与对数运算

作者: 日期: 2

-3 - 1、 化简 Vl6x 8y 4(x 0,y 0)得() 2、 3、 4、 A. 2x 2y 3 2 (33)3 (4) B. 2xy 2 C.4x 2y D. 2x 2 y 1 (0.002) 2 10(75 2) 1 ( ^/4ab)3 (0.1)2(a 3b 3)2 指数与对数运算 一.指数与指数运算 1 a n 需'(a 0), n / m V a (a 0,m 、n N *,-为既约分数). n m a m n ⑵—a a z m J mn ,八 / 丨 J n.n ⑶(a ) a ; (4)(ab) a b . 【练习题】 1、 指数式:形如a b N , a 叫做底数,b 叫做指数,N 叫做幕. 2、 0指数幕与分数指数幕: (1)a 0 1(a 0) ; (2) a 1 —^(a 0). a 3、 根式性质: (1) ( ^a )n a ;(2) a, n 为奇数 |a|,n 为偶数. 4、 分数指数幕: (1)正分数指数 5 、 (2)负分数指数幕: 巴 1 a n -m (a a^ 0,m 、 N *,m 为既约分数 n ). 指数幕运算法则: ,八 m n (1)a a

-4 - 3 3 2 2 a 2 a 2 ⑶——1 2 2 a 2 a 2 a 叫做底,N 叫做真数. (2)对数恒等式: a logaN N (a 0,且a 1, ⑷对数的性质: ①负数与零没有对数; ②log a a 1, log a 1 0 ;③log a b log b a 1 10为底的对数log .o N 叫做常用对数,简记作Ig N ; e 为底的对数log e N 叫做自然对数,简记作In N 。 2.对数的运算性质 M log a M log a N ; (2) log a —— log a M log a N ; --------------- N (3) log a M n log a M ; (4) log a m M 【练习题】 1.【例题1】计算 (i)ig 0.01 Jog, 3 1 ;log232 二.对数与对数运算 1.对数定义:若a b N(a 0,且a 1),则b 叫做以a 为底N 的对数,记作b log a N , (3)对数换底公式:log b N log a N log a b 若a 0,且a 1,M 0, N 0 ;则 1 5、已知a 2 1 2 3,求下列各式的值. (1)a a 1 ; N 0) ⑸常用对数:以 自然对数:以 (l)Iog a (MN ) n —log a M . m

指数和对数比大小专题

指数和对数比大小问题专题 方法一:同步升(降)次法 例1.(2019?大连二模)设4log 3a =,5log 2b =,8log 5c =,则( ) A .a b c << B .b c a << C .b a c << D .c a b << 方法二:去常数再比 例2(2019?开福区)设3log 18a =,4log 24b =,34 2c =,则a 、b 、c 的大小关系是() A .a b c << B .a c b << C .b c a << D .c b a << 方法三:由x x x f ln )(= 引出的大小比较问题 例3:(2017?新课标Ⅰ)设x 、y 、z 为正数,且235x y z ==,则( ) A .235x y z << B .523z x y << C .352y z x << D .325y x z << 例4.利用函数的性质比较122,133,16 6 例5.(2019?洛阳三模)若m ,n ,(0,1)p ∈,且35log log m n lgp ==,则( ) A .1113 5 10 m n p << B .1113 5 10 n m p << C .1111035p m n << D .1113105 m p n << 【例6】下列四个命题:①ln55ln 2;②ln e ;③11;④3ln 242e ;其中真命题 的个数是( )

A .1 B .2 C .3 D .4 方法四:糖水不等式解决对数比大小 【例7】比较10log 9和11log 10大小. 【例8】利用对数函数的性质比较0.2 3、3log 2、5log 4的大小. 【例9】比较31log 4和π1 log 1.4 【例10】(1)比较2log 3和2 3 log 2的大小;(2)比较3log 2与20.log 30.. 强化训练 1.已知5445 58,138<<,设5813log 3,log 5,log 8a b c === A .a b c << B .b a c << C .b c a << D .c a b << 2.(2020?全国I 卷)若242log 42log a b a b +=+,则( ) A. 2a b > B. 2a b < C. 2a b > D. 2a b < 3.(2020?全国II 卷)若2233x y x y ---<-,则( ) A. ln(1)0y x -+> B. ln(1)0y x -+< C. ln ||0x y -> D. ln ||0x y -<

指数与对数运算及大小比较教案

指数、对数及其运算 知识点: 1.根式的概念 一般地,如果a x n =,那么x 叫做a 的n 次方根。a 的n 次方根用符号n a 表示.式子n a 叫做根式(radical ),这里n 叫做根指数(radical exponent ),a 叫做被开方数(radicand ). 负数没有偶次方根;0的任何次方根都是0。 2.分数指数幂 规定: (1)零指数幂)0(10≠=a a (2)负整数指数幂()10,n n a a n N a -*=≠∈ (3)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (4)负分数指数幂()110,,,1m n m n m n a a m n N n a a -*==>∈> (5)0的正分数指数幂等于0,0的负分数指数幂没有意义. 3.有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a ab =)( ),0,0(Q r b a ∈>>. (4) a a n n =)( (5) 当n 是奇数时,a a n n = 当n 是偶数时,???<≥-==) 0()0(||a a a a a a n n 4. 无理指数幂 一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂. 5.对数的概念 一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数(Logarithm ) ,记作:N x a log = a — 底数,N — 真数,N a log — 对数式 两个重要对数: ○1 常用对数(common logarithm ):以10为底的对数N lg ; ○2 自然对数(natural logarithm ):以无理数 71828.2=e 为底的对数的对数N ln . 6. 对数式与指数式的互化 x N a =log ? N a x = 对数式 ? 指数式 对数底数 ← a → 幂底数 对数 ← x → 指数 真数 ← N → 幂 7. 对数的性质 (1)负数和零没有对数; (2)1的对数是零:01log =a ; (3)底数的对数是1:1log =a a ; (4)对数恒等式:b a N a b a N a ==log ,log ; (5)n a n a =log . 8. 对数的运算性质

专题08 利用指数函数、对数函数、幂函数的性质解决大小比较问题

专题8 利用指数函数、对数函数、幂函数的性质解决大小比较问题 一、选择题 1.【山东寿光现代中学2018届高三开学考】已知实数,那么它们的大小关系是() A. B. C. D. 2.【安阳市第三十五中学2018届高三开学考】设,,,则,,的大小关系是()A. B. C. D. 3.【山东省寿光现代中学2018届高三开学考】若,则下列不等式错误的是() A. B. C. D. 4.【南阳市一中2018届高三第一次考】设,则() A. B. C. D. 5.【河北省正定中学2016-2017学年月考】已知,,,则() A. B. C. D. 6.【安徽省亳州市2016—2017学年高一期中】如图①,②,③,④,根据图象可得a、b、c、d与1的大小关系为() A. a<b<1<c<d B. b<a<1<d<c C. 1<a<b<c<d D. a<b<1<d<c 7.【甘肃省天水市一中2016-2017学年期末】已知a b=0.3 2,0.2 0.3 c ,则a,b,c三者的大 小关系是()

A . b >c >a B . b >a >c C . a >b >c D . c >b >a 8.【赣州市2016-2017 学年期末】设log a = 0.013b =, c =,则( ) A . c a b << B . a b c << C . a c b << D . b a c << 9.【宁夏石嘴山市三中2016-2017学年期末】已知ln x π=, 5log 2y =, 12 z e - =,则( ) A z x y << B y z x << C z y x << D x y z << 10.【梅河口五中2016-2017学年期末】设0.1359 2,ln ,log 210 a b c ===,则,,a b c 的大小关系是( ) A . a b c >> B . a c b >> C . b a c >> D . b c a >> 11.【山东寿光现代中学2016-2017学年模块监测】下列关系式中,成立的是( ). A . 03131log 4log 105??>> ??? B . 0 1331log 10log 45?? >> ??? C . 03131log 4log 105??>> ??? D . 0 133 1log 10log 45?? >> ??? 12.【烟台市2016-2017学年期末】已知1a b >>, 01c <<,则下列不等式正确的是( ) A . c c a b < B . a b c c > C . log log a b c c > D . log log c c a b > 13.【山东菏泽一中、单县一中2016-2017学年期末】若0.633log 0.6,3,0.6a b c ===,则( ) A . c a b >> B . a b c >> C . b c a >> D . a c b >> 14.【山东省潍坊寿光市2016-2017学年期末】若0.633log 0.6,3,0.6a b c ===,则( ) A . c a b >> B . a b c >> C . b c a >> D . a c b >> 15.【河南南阳一中2018届第一次考】已知1 3 2a -=, 2 1log 3b =, 12 1 log 3c =,则( ) A . a b c >> B . a c b >> C . c a b >> D . c b a >> 16.【甘肃省天水一中2016-2017 学年期末】已知a = 0.32b =, 0.20.3c =,则,,a b c 三者的大小 关系是( ) A . b c a >> B . b a c >> C . a b c >> D . c b a >> 17.【四川省南充高级中学2016-2017 学年期末】设log a =, 0.01 3b =, ln 2 c =,则( )

专题08 利用指数函数、对数函数、幂函数的性质解决大小比较问题-

一、选择题 1.下列各式比较大小正确的是( ) A. B. C. D. 【-=-=答案=-=-】B 【解析】

2.若,是任意非零实数,且,则(). A. B. C. D. 【-=-=答案=-=-】B 【解析】 3.设,则的大小顺序是( ) A. B. C. D. 【-=-=答案=-=-】D 【解析】 , 因为,所以. 故-=-=答案=-=-为:D 4.已知实数,则的大小关系为()A. B. C. D. 【-=-=答案=-=-】D 【解析】 因为,所以a<b.

因为,所以c>b, 故-=-=答案=-=-为:D 5.若满足,则 A. B. C. D. 【-=-=答案=-=-】A 【解析】 6.下列大小关系正确的是() A. 0.43<30.4<log40.3 B. 0.43<log40.3<30.4 C. log40.3<0. 43<30.4 D. log40.3<30.4<0.43 【-=-=答案=-=-】C 【解析】 因为且,故,选C. 7.已知,,,则的大小关系是( ) A. B. C. D. 【-=-=答案=-=-】B 【解析】 由题意得, ∴. 故选B. 8.已知函数的图像如图所示,则

A. B. C. D. 【-=-=答案=-=-】A 【解析】 由图象,得在上单调递增,即,在上单调递增,且增加得越来越慢,即,则.故选A. 9.设,则() A. B. C. D. 【-=-=答案=-=-】D 【解析】 ,故,故选D. 10.若===1,则a,b,c的大小关系是() A. a>b>c B. b>a>c C. a>c>b D. b>c>a 【-=-=答案=-=-】D 【解析】 11.若函数在区间上递增,且,则() A. B. C. D. 【-=-=答案=-=-】B

指数函数与对数函数对比分析总结---答案

指数函数与对数函数总结 一、 [知识要点]: x a log x 定义 图象 定义域 值域 性质 奇偶性 单 调 性 过定 点 值的分布 最值 y =a x (a>0且a ≠1) 叫指数函数 a>1 (-∞,+ ∞) (0,+∞) 非奇 非偶 增 函数 (0,1) 即a 0 =1 x>0时y>1;00时01 y = a log (a>0且a ≠1) 叫对数函数 a>1O y x (0,+∞) (- ∞,+∞) 非奇 非偶 增 函数 (1,0) 即 log a 1=0 x>1时 y>0; 01时 y<0; 00 对称性 函数y =ax 与y =a -x (a>0且a ≠1)关于y 轴对称;函数y =a x 与y =log a x 关于y =x 对称 函数y =log a x 与y =1log a x (a>0且a ≠1)关于x 轴对称 2. ① ② 3. 几个注意点 (1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。研究指数、对数函数问题,尽量化为同底,并注意对数问题中的定义域限制。 【典型例题】 例1. (1)下图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a 、b 、c 、d 与1的大小关系是( )

指数与对数比较大小专项练习汇编

指数与对数比较大小专项练习 一.选择题(共30小题) 1.已知a=21.2,b=()﹣0.8,c=ln2,则a,b,c的大小关系为() A.c<a<b B.c<b<a C.b<a<c D.b<c<a 2.已知a=0.52.1,b=20.5,c=0.22.1,则a、b、c的大小关系是() A.a<c<b B.b>a>c C.b<a<c D.c>a>b 3.已知a=0.40.3,b=0.30.4,c=0.3﹣0.2,则() A.b<a<c B.b<c<a C.c<b<a D.a<b<c 4.已知a=0.30.3,b=0.31.3,c=1.30.3,则它们的大小关系是() A.c>a>b B.c>b>a C.b>c>a D.a>b>c 5.已知,则a,b,c三者的大小关系是()A.c<b<a B.c<a<b C.b<a<c D.b<c<a 6.设a=0.20.3,b=0.30.3,c=0.30.2,则下列大小关系正确的是() A.c<a<b B.b<a<c C.a<b<c D.c<b<a 7.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.c<a<b 8.设a=0.80.7,b=0.80.9,c=1.20.8,则a,b,c的大小关系是() A.a>b>c B.b>c>a C.c>a>b D.c>b>a 9.已知a=(),b=(),c=(),则a,b,c的大小关系是() A.c<a<b B.a<b<c C.b<a<c D.c<b<a 10.下列关系中正确的是() A.<< B.<< C.<< D.<<

指数函数和对数函数综合题目与标准答案

指数函数、幂函数、对数函数增长的比较, 指数函数和对数函数综合 指数函数、幂函数、对数函数增长的比较 【要点链接】 1.指数函数、幂函数、对数函数增长的比较: 对数函数增长比较缓慢,指数函数增长的速度最快. 2.要能熟练掌握指数函数、幂函数、对数函数的图像,并能利用它们的图像的增减情况解决 一些问题. 【随堂练习】 一、选择题 1.下列函数中随x 的增大而增大速度最快的是( ) A .1100 x y e = B .100ln y x = C .100y x = D .1002x y =? 2.若112 2 a a -<,则a 的取值范围是( ) A .1a ≥ B .0a > C .01a << D .01a ≤≤ 3.x x f 2)(=,x x g 3)(=,x x h )2 1()(=,当x ∈(-)0,∞时,它们的函数值的大小关系 是( ) A .)()()(x f x g x h << B .)()()(x h x f x g << C .)()()(x f x h x g << D .)()()(x h x g x f << 4.若b x <<1,2 )(log x a b =,x c a log =,则a 、b 、c 的关系是( ) A .c b a << B .b c a << C .a b c << D .b a c << 二、填空题 5.函数x e y x x y x y x y ====,ln ,,3 2 在区间(1,)+∞增长较快的一个是__________. 6.若a >0,b >0,ab >1,a 2 1log =ln2,则log a b 与a 2 1log 的关系是_________________. 7.函数2 x y =与x y 2=的图象的交点的个数为____________. 三、解答题 8.比较下列各数的大小: 5 2)2(-、21 )23(-、3)3 1(-、54 )32(-. 9.设方程2 22x x =-在(0,1)内的实数根为m ,求证当x m >时,2 22x x >-. 答案 1.A 指数增长最快. 2.C 在同一坐标系内画出幂函数2 1 x y =及2 1- =x y 的图象,注意定义域,可知10<

指数与对数比较大小专项练习

指数与对数比较大小专项练习 一.选择题(共30小题) 1.已知a=21.2,b=()﹣0.8,c=ln2,则a,b,c的大小关系为() A.c<a<b B.c<b<a C.b<a<c D.b<c<a 2.已知a=0.52.1,b=20。5,c=0.22.1,则a、b、c的大小关系是() A.a<c<b B.b>a>c C.b<a<c D.c>a>b 3.已知a=0.40.3,b=0.30.4,c=0。3﹣0。2,则() A.b<a<c B.b<c<a C.c<b<a D.a<b<c 4.已知a=0.30。3,b=0。31.3,c=1.30。3,则它们的大小关系是() A.c>a>b B.c>b>a C.b>c>a D.a>b>c 5.已知,则a,b,c三者的大小关系是()A.c<b<a B.c<a<b C.b<a<c D.b<c<a 6.设a=0。20。3,b=0.30。3,c=0.30。2,则下列大小关系正确的是() A.c<a<b B.b<a<c C.a<b<c D.c<b<a 7.若a=log20。5,b=20。5,c=0.52,则a,b,c三个数的大小关系是() A.a<b<c B.b<c<a C.a<c<b D.c<a<b 8.设a=0。80。7,b=0.80.9,c=1.20。8,则a,b,c的大小关系是() A.a>b>c B.b>c>a C.c>a>b D.c>b>a 9.已知a=(),b=(),c=(),则a,b,c的大小关系是() A.c<a<b B.a<b<c C.b<a<c D.c<b<a 10.下列关系中正确的是() A.<< B.<< C.<< D.<< 11.数的大小关系是()

指数对数练习题

专题四:指数函数和对数函数 一、知识梳理 1.指数函数 (1)指数函数的定义 一般地,函数y =a x (a >0且a ≠1)叫做指数函数. (2)指数函数的图象 a > ) 1 (0 底数互为倒数的两个指数函数的图象关于y 轴对称. (3)指数函数的性质 ①定义域:R . ②值域:(0,+∞). ③过点(0,1),即x =0时,y =1. ④当a >1时,在R 上是增函数;当0<a <1时,在R 上是减函数. 2. 对数函数 (1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数. (2)对数函数的图象 a <11)) 底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 二、基础练习 1.若函数y =a x +b -1(a >0且a ≠1)的图象经过二、三、四象限,则一定有( ) A.0<a <1且b >0 B.a >1且b >0 C.0<a <1且b <0 D.a >1且b <0 解析:作函数y =a x +b -1的图象.答案:C

2. 已知c a b 2 12 12 1log log log <<,则( A ) A . 2b >2a >2c B .2a >2b >2c C .2c >2b >2a D .2c >2a >2b 3.函数) 34(log 1 )(22-+-= x x x f 的定义域为 (1,2)∪(2,3) 4. 若011log 22<++a a a ,则a 的取值范围是 )1,2 1 ( 5.若函数)1,0( )(log )(3 ≠>-=a a ax x x f a 在区间)0,2 1 (- 内单调递增,则a 的取值范围是 )1,4 3[ 6.方程2 lg lg(2)0x x -+=的解集是 }2,1{- . 7.函数y =( 2 1)222+-x x 的递增区间是___________. 解析:∵y =(2 1 )x 在(-∞,+∞)上是减函数,而函数y =x 2-2x +2=(x -1)2+1 的递减区间是(-∞,1),∴原函数的递增区间是(-∞,1). 8.若f -1(x )为函数f (x )=lg (x +1)的反函数,则f - 1(x )的值域为_(-1,+∞). 解析:f - 1(x )的值域为f (x )=lg (x +1)的定义域. 由f (x )=lg (x +1)的定义域为(-1,+∞), ∴f - 1(x )的值域为(-1,+∞). 三、典型例题 例1.把下面不完整的命题补充完整,并使之成为真命题:若函数x x f 2log 3)(+=的图象与)(x g 的图象关于 对称,则函数)(x g = 。(注:填上你认为可以成为真命题的一件情形即可,不必考虑所有可能的情形). 答案:①x 轴,-3-log 2x ②y 轴,3+log 2(-x ) ③原点,-3-log 2(x ) ④直 线y=x , 2x - 3

指数函数对数函数比较大小题型总结

1、 已知0707..m n >,则m n 、的关系是( ) A 、 10>>>m n B 、 10>>>n m C 、 m n > D 、 m n < 2、三个数a b c =-==(.)(.).030320203,,,则a b c 、、的关系是( ) A 、 a b c << B 、 a c b << C 、 b a c << D 、 b c a << 3、三个数6l o g ,7.0,67.067.0的大小顺序是 ( ) A 、60.70.70.7log 66<< B 、60.70.70.76log 6<< B 、0.760.7log 660.7<< D 、60.70.7log 60.76<< 4 、 设 1.5 . 90 . 48 12 314 ,8 , 2y y y -??== = ??? ,则 ( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、 123y y y >> 5、当10<> B 、a a a a a a >> C 、a a a a a a >> D 、a a a a a a >> 6.设y 1=40.9,y 2=80.48,y 3=(1 2)-1.5,则( )

A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 7.设13<(13)b <(1 3)a <1,则( ) A .a a b >c B .a 0,且a ≠1). 12.设y 1=40.9,y 2=80.48,y 3=(1 2)-1.5,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 2.设a =lge ,b =(lg e)2,c =lg e ,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a 3.已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >c D .c >a >b 4.设a =log 1312,b =log 13 23,c =log 34 3,则a ,b ,c 的大小关系是( )

对数、指数综合试题

指数、对数运算精选练习题 一.基础知识 1.0,0,,a b r s Q >>∈时,r s a a =______; ()r s a =_______; ()r ab =_________ 分数指数幂:=n m a ;=-n m a 4.对数的性质和运算法则:恒等式①=N a a log ;②=N a a log ; ③ =a N b b log log ; ④b a log ______a b log 1; ⑤=n a b m log 积、商、幂、方根的对数 ①=+N M a a log log ; ②=-N M a a log log ; ③=n a M log 5.指数式与对数式互换N b N a a b log =?=解决指数问题时常用取对数。 二.练习题: 1.若0)](log [log log 432=x ,则x =___________ 2、___________________________25lg 50lg 2lg 2lg 2 =++)(化简 3.求值或化简 (1)2 1332312 1 ) ()1.0()4()4 1(----? b a ab (2) 1 .0lg 10lg 5 lg 2lg 125lg 8lg ?--+ (3).若32 12 1=+- x x ,求232 22 32 3-+-+-- x x x x 的值。 (4)计算:1075.023 1 3)1 31(256)61(027.0-----++-- (5).8log 4 1 (6). 625log 125 1

(7). 3 2 log1 2_ += (8). 66 23 11 _ log log += 4. 化简 3 3 11log 30 32 2 17 (0.027)()(2)1)log 29 --+--+; 5. 已知 (log)2 3 log 7 log0 x ?? ?? ??=,求x32-; 6. 设32 log x= ,求 33 22 22 x x x x - - - +; 7. 8. 若21 x a=,求 33 x x x x a a a a - - + + ; 9、化简 log 10化简)5.0 2 )( 2.0 5 (log log log log 25 5 4 2 + +

指数对数比较大小专项练习

指数与对数比较大小专项练习 一.选择题(共30小题) 1.已知a=21、2,b=()﹣0、8,c=ln2,则a,b,c的大小关系为( ) A.c<a<b B.c<b<a C.b<a<c D.b<c<a 2.已知a=0、52、1,b=20、5,c=0、22、1,则a、b、c的大小关系就是( ) A.a<c<b B.b>a>c C.b<a<c D.c>a>b 3.已知a=0、40、3,b=0、30、4,c=0、3﹣0、2,则( ) A.b<a<c B.b<c<a C.c<b<a D.a<b<c 4.已知a=0、30、3,b=0、31、3,c=1、30、3,则它们的大小关系就是( ) A.c>a>b B.c>b>a C.b>c>a D.a>b>c 5.已知,则a,b,c三者的大小关系就是( ) A.c<b<a B.c<a<b C.b<a<c D.b<c<a 6.设a=0、20、3,b=0、30、3,c=0、30、2,则下列大小关系正确的就是( ) A.c<a<b B.b<a<c C.a<b<c D.c<b<a 7.若a=log20、5,b=20、5,c=0、52,则a,b,c三个数的大小关系就是( ) A.a<b<c B.b<c<a C.a<c<b D.c<a<b 8.设a=0、80、7,b=0、80、9,c=1、20、8,则a,b,c的大小关系就是( ) A.a>b>c B.b>c>a C.c>a>b D.c>b>a 9.已知a=(),b=(),c=(),则a,b,c的大小关系就是( ) A.c<a<b B.a<b<c C.b<a<c D.c<b<a 10.下列关系中正确的就是( )