裂纹原因分析

裂纹原因分析
裂纹原因分析

裂纹

裂纹是锻压生产中常见的主要缺陷之一,通常是先形成微观裂纹,再扩展成宏观裂纹。锻造工艺过程(包括加热和冷却)中裂纹的产生与受力情况、变形金属的组织结构、变形温度和变形速度等有关。锻造工艺过程中除了工具给予工件的作用力之外,还有由于变形不均匀和变形速度不同引起的附加应力、由温度不均匀引起的热应力和由组织转变不同时进行而产生的组织应力。

?应力状态、变形温度和变形速度是裂纹产生和扩展的外部条件;金属的组织结构是裂纹产生和扩展的内部依据。前者是通过对金属组织及对微观机制的影响而对裂纹的发生和扩展发生作用的。全面分析裂纹的成因应当综合地进行力学和组织的分析。?(一)形成裂纹的力学分析

在外力作用下物体内各点处于一定应力状态,在不同的方位将作用不同的正应力及切应力。裂纹的形式一般有两种:一是切断,断裂面是平行于最大切应力或最大切应变;另一种是正断,断裂面垂直于最大正应力或正应变方向。?至于材料产生何种破坏形式,主要取决于应力状态,即正应力σ与剪应力τ之比值。也与材料所能承受的极限变形程度εmax及γmax有关。例如,①对于塑性材料的扭转,由于最大正应力与切应力之比σ/τ=1是剪断破坏;②对于低塑性材料,由于不能承受大的拉应变,扭转时产生45°方向开裂。由于断面形状突然变化或试件上有尖锐缺口,将引起应力集中,应力的比值σ/τ有很大变化,例如带缺口试件拉伸σ/τ=4,这时多发生正断。?下面分析不同外力引起开裂的情况。

1.由外力直接引起的裂纹?压力加工生产中,在下列一些情况,由外力作用可能引起裂纹:弯曲和校直、脆性材料镦粗、冲头扩孔、扭转、拉拔、拉伸、胀形和内翻边等,现结合几个工序说明如下。

弯曲件在校正工序中(见图3-34)由于一侧受拉应力常易引起开裂。例如某厂锻高速钢拉刀时,工具的断面是边长相差较大的矩形,沿窄边压缩时易产生弯曲,当弯曲比较严重,随后校正时常常开裂。?镦粗时轴向虽受压应力,但与轴线成45°方向有最大剪应力。低塑性材料镦粗时常易产生近45°方向的斜裂(见图片8-355)。塑性好的材料镦粗时则产生纵裂,这主要是附加应力引起的。?工件的几何形状对应力分布有明显影响。例如,拉伸试棒在缩颈形成前各处可以视为受均匀的单向拉应力,一旦形成缩颈后,缩颈表面就受三向拉应力;镦粗时也有类似的情况,只是应力的符号相反。

图3-34拔长时表面纵向裂纹形成过程示意图

?图片8-355 MB2镁合金锻件表面裂纹我们曾经对图3-35所示的凹凸两种试样进行镦粗。镦粗后在凸形的试样上出现45°剪裂(见图3-35b)。其主要原因是由于沿表层分布的力除沿轴向对两者都有压应力外,对于凹形试件还有径向应力分量(压应力)产生,而对于凸试件则由于存在径向压应力而产生切向拉应力,前者对表层纵向开裂起阻止作用,后者对表层纵向开裂起促进作用。生产上采用铆镦的方法锻高速钢,从力学上分析也是利用中凹的工件,使镦粗时不易出现纵裂。?另外,矩形断面毛坯在平砧下拔长时产生的对角线裂纹也是切应力引起的。

2.由附加应力及残余应力引起的裂纹

压力加工生产中,大多数裂纹都是由附加应力作用产生的,附加应力主要是由两种原因引起的。①变形不均匀;②变形时金属流速不均匀。结合几个典型工序介绍如下:?

(1)由变形不均匀引起的附加应力

一般材料镦粗时侧表面产生纵向裂纹,是由于表面受切向拉应力作用的结果,而这种切向拉应力是由于镦粗时变形不均匀引起的附加应力。镦粗时中心区(Ⅱ)的变形大,而周边区(Ⅲ区)的变形较小,Ⅱ区金属向外流动时,便使Ⅲ区金属沿切向受附加拉应力(见第四章图4-1)。?拔长时,当送进量l相对于坯料的高度较小时(l<0.5h=,这时变形区成双鼓形,中间部分锻不透,被上下部分金属强制延伸而受拉应力(见第四章图4-12),易弓l起锻件内部横向裂纹(见图4-8d)。这在大型锻件锻造中是常见的。?冲孔时,冲头下面的A区金属(见第四章图4-31)向外流动时,使B区金属沿切向受附加拉应力作用,常引起表面纵向裂纹(见图4-30)。

图3-35 凹形和凸形试样镦粗时的受力情况和开裂形式

(2)由流速不均引起的附加应力?挤压棒材时,由于受模口摩擦阻力影响,表层金属流得慢,中部金属流动很快,外表层受拉,中部金属受压,在表层易引起横裂(见图

3-36)。附加应力在外力消除后,仍以残余应力的形式留在工件内部,这是产生延时开裂的主要原因。如挤压后的黄铜棒,在潮湿的空气中,常由于应力腐蚀而产生开裂。

图3-36棒料挤压时的附加应力分布情况

3.由温度应力及组织应力引起的裂纹?当加热或冷却时由于温度不均匀造成热胀或冷缩不均匀而引起的内应力,总的规律是在降温较快(或加热较慢)处受拉应力,在降温较慢或升温较快处受压应力。?当组织转变不同时发生时,则易产生组织应力。总的规律是每一瞬间进行增加比容的转变区受压应力,进行减少比容的转变区受拉应力。奥氏体冷却时有马氏体转变的材料,冷却过程形成的温度应力及组织应力的分布情况如图3-37所示(图中应力都是指轴向应力)。?冷却初期工件表层温度较心部明显降低,表层的收缩趋势受到心部的阻碍,在表层产生拉应力,在心部产生与其平衡的压应力,随着冷却过程的进行,这种趋势进一步发展。但由于心部温度高,塑性较好,还可产生微量塑性变形,以缓和这种热应力。到了冷却后期,表层温度已接近常温,基本上不再收缩,而心部温度尚高,仍继续收缩,导致了热应力的反向,即心部由压应力转为拉应力,而表层则由拉应力转为压应力。这种应力状态保持下来构成材料的残余应力。

组织的变化是在一定的温度区间内完成的。当工件表层冷却至马氏体转变温度时产生体积膨胀,但由于心部仍然处于奥氏体状态,对表层的体积膨胀起牵制作用,因此表层这时受压应力。随着冷却过程的进行,这种趋势进一步发展。但随着心部发生马氏体转变,由于该处的体积膨胀而引起应力的松弛。当工件继续冷却,由于心部形成的马氏体含量愈来愈多,体积膨胀也越来越大,而表层体积已不再变化,这时心部的伸长趋势受到表层的阻止作用,结果导致组织应力的反向,心部转为压应力,表层则为拉应力。这种应力状态一直保持下来构成残余应力。

?由以上所述可以看出,工件在冷却过程中所形成的热应力及组织应力在不断变化,其分布方向恰好相反,但从数量上并不能正好抵消;热应力早在高温冷却初期即产生,而淬火组织应力则在较低的温度(Ms以下)时才开始出现;冷至室温后的最终残余内应力,其大小与分布情况取决于热应力与组织应力在每一瞬时相互叠加作用的结果。

对于无同素异构转变的锻件,在锻后空冷或其它缓慢的冷却过程中,热应力通常并不引起严重后果。虽然冷却初期温差较大,表层为拉应力(中心部分受压应力),但因温度较高,塑性较好,不致引起开裂;冷却后期温差不太大,且表层受压应力,所以也不引起开裂。奥氏体(如1Cr18Ni9Ti、50Mn18Cr4WN)的任何大断面锻件都可以直接空冷而不需缓冷,甚至水淬时也不产生裂纹。

?图3-37 冷却过程中的温度应力和组织应力分布情况组织应力在较低温度下才开始发生,这时材料塑性较低,这是造成冷却时开裂的主要原因。高速钢冷却裂纹(图片8-156)及马氏体不锈钢冷却裂纹(图片8-276)附近没有氧化脱碳现象也证明了这一点。对于马氏体不锈钢即使采取一些缓冷措施,仍必须退火后才能进行酸洗,否则在腐蚀时易出现应力腐蚀开裂。

?图片8-276裂纹由表面沿晶界向晶内扩展

?

W18Cr4V钢锻件一侧因锻后激冷形成的裂纹

加热时温度分布及其变化情况与冷却时正相反,升温过程中表层温度超过心部温度,并且导热性越差,断面越大,温差也越大。?对于热应力,这时表层受压内层受拉,在受拉应力区由于温度低,塑性差有可能形成开裂。在加热初期金属尚处于弹性状态的时候,在加热速度不变的条件下,根据计算,在圆柱体坯料轴心区沿轴向的拉应力是沿径向和切向拉应力值的两倍。因此,加热时坯料一般是横向开裂。?加热过程中由于相变不同时进行也有组织应力发生,但这时由于温度较高,材料塑性较好,其危险程度远较冷锭快速加热时为小。

(二)形成裂纹的组织分析

对裂纹的成因进行组织分析,有助于了解形成裂纹的内在原因,也是进行裂纹鉴别的客观依据。

从大量的锻件裂纹实例分析和重复试验中可以观察到,金属材料的组织和性能是否均匀,

1.对组织和性能比较均匀的材料

对裂纹有重要影响。?

锻造过程中,首先在应力最大,先满足塑性条件的地方发生塑性变形。在变形过程中位错沿滑移面运动,遇着障碍物,便会堆塞,并产生足够大的应力而产生裂纹,或由于位错的交互作用形成空穴、微裂,并进一步发展成宏观的裂纹。这主要产生在变形温度较低(低于再结晶温度),或变形程度过大、变形速度过快的情况。这种裂纹常常是穿晶或穿晶和沿晶混合的图片8-356为MB2镁合金在低于再结晶温度下变形时产生的穿晶裂纹。但是由于高温下原子具有较高的扩散速度,有利于位元错的攀移,加速了恢复和再结晶,使变形过程中已经产生的微裂纹比较容易修复,在变形温度适宜、变形速度较慢的情况下,可以不发展为宏观的裂纹。

裂纹处的显微组织250×

2.对组织和性能不均匀的材料

对组织和性能不均匀的材料,裂纹通常在晶界和某些相接口发生。这是因为锻造变形通常是在金属的等强温度以上进行的。晶界的变形较大,而金属的晶界往往是冶金缺陷、第二相和非金属夹杂比较集中的地方。在高温下某些材料晶界上的低熔点物质发生熔化,严重降低材料的塑性;同时,在高温下周围介质中的某些元素(硫、铜等)沿晶界向金属内扩散,引起晶界上第二相的非正常出现和晶界的弱化;另外,基体金属与某些相的接口由于两相在力学性能和理化性能上的差异结合力较弱。

锻造所用的原材料通常是不均匀的。因此,高温锻造变形时裂纹主要沿晶界或相界发生和发展。

下面对组织和性能不均的材料,具体分析金属组织对锻造裂纹发生和发展的影响。

(1)微观裂纹的产生

锻造过程中金属组织状况对微观裂纹的产生主要有下列三种情况。?1)冶金和组织缺陷处应力集中。在原材料的冶金和组织缺陷处,如疏松、夹杂物等的尖角处,在外力作用下发生应力集中;在第二相和基体相交界处,特别是第二相的尖角处容易产生应力集中。在应力集中处较早达到金属的屈服点,引起塑性变形,当变形量超过材料的极限变形程度和应力超过材料的极限强度时便产生微观裂纹。图片3-19为MB15镁合金在缺陷尾端由于应力集中产生的裂2)第二相及夹杂物本身的强度低和塑性差。第二相及夹杂物本身强度低,纹。?

塑性差,受外力或微量变形时即产生开裂。具体的有下列一些情况:?①晶界为低熔点物质。锻造过程中常见的铜脆、红脆和锡脆等皆是由于在晶界的剪切和迁移中微观裂纹首先于晶界处的低熔点物质本身中发生而后发展的。实例11、图片8-58为裂纹沿渗铜晶界开裂的情况,实例19、图片8-93为裂纹沿渗硫处开裂的情况。坯料过烧时时,晶界发生氧化和熔化,裂纹沿晶界发展(见图片3-28)

②晶界存在脆性的第二相或非全属的夹杂物。脆性物质包括:碳化物、氮化物、氧化物、硅酸盐、硼化物及金属间化合物。当晶界剪切和滑移时,上述物质有不同程度的破碎,当晶界物质的破碎得不到及时修复时,微观裂纹便在此处发生和发展。实例64、图片8-299为 LDll

铝合金活塞模锻件中裂纹沿脆性的铁相发生的情况。图片 3-29为 MB5镁合金杠杆模锻件中沿(Mg4A13)脆性相开裂的情况。?③第二相为强度低于基体的韧性相。亚共析钢、奥氏

体不锈钢、马氏体不锈钢中的铁素体属于此种情况。由于铁素体的σs小,压力加工变形时,首先是铁素体局部变形,当超过极限应变时,便形成微观裂纹,当铁素体呈网状分布于晶界时危害更大。

3)第二相及非金属夹杂与基体之间在力学性能和理化性能上有差异。在此种情况下,微观裂纹往往产生在它们交界处,这是他们之间结合力较弱的缘故。例如奥氏体不锈钢中存在铁素体相时,两相具有不同的变形抗力,由于热锻时两者的变形程度不同产生了附加应力,常常在奥氏体与铁素体的交界处产生微观裂纹而后扩展(图片8-249)。又例如MnS和Fe(α)具有不同的热膨胀系数,因而MnS与Fe(α)交界处的结合力较弱,裂纹常沿交界处发生。

?图片3-19折叠尾端扩展的裂纹 400×??图片8-58 50钢法兰盘锻件表面龟裂

?

?图片3-28 过图片8-93裂纹附近有渗入物100×?

烧组织(晶粒粗大晶间熔化)500×?

?图片8-299呈链

状分布的铁相、破碎脱落而形成的裂纹500×

图片3-29沿Mg4Al3200×?

图片 8-249 沿α-γ相界面发生的小裂纹500×

(2)微观裂纹的扩展

断裂过程是沿着能量降低的方向,遵循阻力最小的途径进行的。裂纹扩展的阻力由裂纹前缘金属的性能和微观的断裂机制来决定。应力状态、温度、应变速度及介质对裂纹扩展的阻力有一定影响。它们是通过对性能和断裂机制的影响来影响裂纹扩展阻力的。本节侧重研究性能(组织)的影响。

裂纹前缘金属的韧性愈好,则裂纹扩展的阻力愈大。韧性是断裂过程所需能量的参量,而这种能量取决于材料的强度和塑性,它是材料强度和塑性的综合表现。在保证一定强度的前提下提高塑性,对提高韧性和裂纹扩展的阻力具有重要的影响。?因此,热锻过程中,在均匀受力的情况下,裂纹主要沿着强度低和塑性差的“弱区”(晶界和结合力弱的相接口等)扩展。“弱区”的性能主要取决于第二相及夹杂物的性能、形状和分布特点。“弱区”的强度愈低,塑性愈差,则扩展的速度愈快。图片3-28和图片8-93为裂纹沿晶界扩展;图片8-249为沿相界扩展。在具有纤维组织或带状组织的锻坯中,裂纹较易沿纤维方向或带的方向开裂。各主要成形工序中常见的缺陷与对策图片5-5为高速钢锻件沿碳化物带开裂。图片3-30

为裂纹沿硫化锰夹杂扩展的情况。

?图片5-5 沿碳化物偏析带淬裂(箭头所指)40×

?图片3-30裂纹沿硫

化锰夹杂扩展500×

(3)宏观裂纹的扩展

上面所论述的是微观裂纹的扩展途径,而锻件上宏观裂纹的实际走向是由受力情况和材料的组织情况二者决定的。而且,总的趋势(方向)是由受力情况决定的。例如当二相呈细小均匀分布时,宏观裂纹的扩展方向往往与正应力的垂直方向或切应力的方向一致(图片8-316和图片8-355)。当夹杂物集中在金属的某些地区并呈条带状分布时,条带方向便是裂纹扩展阻力最小的方向。例如在镦粗变形时常常可以观察到与主拉应力的垂直方向及最大剪应力方向不完全一致的情况。

?图片8-316 合格的a)和锻裂的b)锻坯

??图片8-355MB5合金锻件上的裂纹(箭头所指)

1.锻造裂纹的鉴别

(三)锻造裂纹的鉴别与防止产生裂纹的主要对策?

鉴别裂纹形成的原因,应首先了解工艺过程,以便找出裂纹形成的客观条件,其次应当观察裂纹本身的状态,然后再进行必要的有针对性的显微组织分析,微区成分分析。举例如下: 对于产生龟裂的锻件,粗略分析可能是:①由于过烧;②由于易溶金属渗入基体金属(如铜渗人钢中);③应力腐蚀裂纹;④锻件表面严重脱碳。这可以从工艺过程调查和组织分析中进一步判别。例如在加热钢以后加热钢料或两者混合加热或钢中含铜量过高时,则有可能是铜脆。从显微组织上看,铜脆开裂在晶界,除了能找到裂纹外,还能找到亮的铜网,而在单纯过烧的晶界只能找到氧化物。应力腐蚀开裂是在酸洗后出现,在高倍观察时,裂纹的扩展呈树枝状形态。

锻件严重脱碳时,在试片上可以观察到一层较厚的脱碳层。?裂纹与折叠的鉴别,不仅可以从受力及变形的条件考察,亦可以低倍和高倍组织来区分。一般裂纹与流线成一定交角,而折叠附近的流线与折叠方向平行,而且对于中、高碳钢来说,折叠表面有氧化脱碳现象。折叠的尾部一般呈圆角,而裂纹通常是尖的。?具有裂纹的锻件经加热后,裂纹附近有严重的氧化脱碳,冷却裂纹则无此现象。?由缩管残余引起的裂纹通常是粗大而不规则的。

?由冷校正及冷切边引起的裂纹,在裂纹的周围有滑移带等冷变形痕迹。

?2.防止裂纹产生的对策

(1)提高静水压力的数值?由前面分析可以看出,裂纹的产生与受力情况和材料的塑性有关,塑性是材料的一种状态,它不仅取决于变形物体的组织结构,而且还取决于变形的外部条件(包括应力状态、变形温度和变形速度)。应力状态的影响在有些文献中用静水压力来衡量,当温度和应变速度一定时,由拉应力引起开裂的条件为

cσ≌a-bp+cε

由切应力引起开裂的条件为

Cτ≌A-Bp+ Cε

式中P——静水压力,即三个主应力的平均值,拉为正,压为负;

ε——等效应变,代表加工硬化;l?a、b、c、A、B、C——系数。?三向等压应力不仅不会使裂纹扩展,既使变形中存在微小的未被氧化的裂纹,在高的三向压应力作用下,也是可以锻合的。对于低塑性材料采用反推力挤压及带套激粗都是用增加静水压力的数值来防止开裂。挤压和拔长时减少附加拉应力,是防止开裂的非常有效措施(例如静液挤压)。?(2)严格控制变形温度

变形温度对材料的塑性有重要影响,温度低,冷变形硬化严重,塑性下降;温度过高,易过热、过烧。镁合金等密排六方晶格的金属材料在常温下仅有一组滑移面(即基面),温度超过200℃以后才增加新的滑移面,因此,应当保证在变形过程中,能够充分地进行再结晶,并尽可能在单相的状态下变形。“

(3)采用合适的应变速度

应变速度对于低塑性材料有很大的影响,应根据具体材料选用合适的锻造设备。例如,某厂MB5镁合金在锤上热锻易裂,而在水压机上用同样温度锻压则不产生锻裂。其原因是镁合金再结晶过程进行缓慢,高速下变形易开裂。文献[1]仲介绍MA3(相当于MB5)合金在压力机上变形时再结晶温度为350℃,而在冲击载荷下需在600℃变形才能获得完全的再结晶组

织。?(4)必要时需进行中间退火

冷变形程度过大时往往易引起开裂,需要中间退火,以消除硬化和变形所引起的部分缺陷。? (5)采用热压变形?热变形时通常由于再结晶过程能顺利进行等原因,使变形引起的缺陷部分地得到消除,因而使塑性有所提高。?(6)改善坯料的组织为提高材料的塑性,从组织上应避免晶界上出现低熔点物质和脆性化合物。

?(7)采用高温均匀化

高温均匀化可以改善组织不均匀性,提高材料的塑性。

混凝土地面产生裂缝的原因分析及处理措施

混凝土地面产生裂缝的原因分析及处理措施 钢筋混凝土结构破坏倒塌的工程质量事故,绝大多数是从裂缝的扩展开始的;其实,只要 仔细观察不难发现,普通的钢筋混凝土结构一般都是带裂缝受力工作的,假如借助仪器, 甚至还可以发现裂缝是时刻发生变化的,随着裂缝的发展变化,结构构件的耐久性和适用 性会不同程度的降低,严重的甚至会导致结构构件的破坏;所以研究裂缝的形态、分析裂 缝产生的原因和裂缝对结构功能的影响并加以控制是十分重要的。 一、混凝土裂缝种类: 外荷载引起的裂缝:外荷载作用下产生的结构裂缝一般具有很强的规律性,通过计算分 析就可以得出正确的结论。如:矩形楼板板面裂缝成环状,沿框架梁分布,板底裂缝成十 字或米字集中于跨中;转角阳台或挑檐板裂缝位于板面起始于墙板交界以角点为中心成米 字形向外延伸。受力裂缝,其裂缝与荷载有关,预示结构承载力可能不足或存在严重问题。 温度收缩裂缝:温度收缩裂缝是一种建筑最常见的裂缝,主要是由于结构的温度变形及材 料的收缩变形受阻及应力超标所致。现浇板收缩裂缝主要集中在房屋的中部和房屋四周阳 角处,裂缝成枣核状止于梁边。房屋四周阳角处的房间在离开阳角1米左右,即在楼板的 分离式配筋的负弯矩筋以及角部放射筋未端或外侧发生45度左右的楼地面斜角裂缝。其 原因主要是砼的收缩特性和温差双重作用所引起的,并且愈靠近屋面处的楼层裂缝往往愈大。从设计角度看,现行设计规范侧重于按强度考虑,未充分按温差和混凝土收缩特性等 多种因素作综合考虑,配筋量因而达不到要求。而房屋的四周阳角由于受到纵、横二个方 向剪力墙或刚度相对较大的楼面梁约束,限制了楼面板砼的自由变形,因此在温差和砼收 缩变化时,板面在配筋薄弱处(即在分离式配筋的负弯矩筋和放射筋的未端结束处)首先 开裂,产生45度左右的斜角裂缝。虽然楼地面斜角裂缝对结构安全使用没有影响,但在 有水的情况下会发生渗漏,影响正常使用。 地基不均匀沉降产生的裂缝:由于地基沉降不均匀使上部结构产生附加应力,导致楼板裂缝。不均匀沉降产生的裂缝多属贯穿性裂缝,其走向与沉降情况有关。 使用商品混凝土引起的收缩裂缝:商品混凝土由于采用泵送,混凝土的流动性要好,因此 一般商品混凝土的坍落度都较大,水灰比较大,如保证水灰比则要增加水泥用量,这样就 使混凝土在硬化阶段出现收缩裂缝。裂缝的产生大多在砼浇筑初期,即浇捣后4~6小时 左右,裂缝形状不规则且长短不一,互不连贯,产生裂缝部分大多为水泥浮浆层和砂浆层。有于砼坍落度偏大,表面经过振捣形成一层水泥含量较多,收缩性较大的水泥浮浆层及砂 浆层一方面由于砼初凝时表面游离水分蒸发过快产生急剧的体积收缩,而此时砼早期强度 较低(面层为砂浆层强度更低),不能抵抗这种变形应力而导致砼表面开裂,另一方面由于 面层浮浆或砂浆的收缩值比基层砼大许多,而造成变形值不同导致面层开裂。 预埋管线引起的楼板裂缝:预埋线管处沿管线方向出现表面裂缝;局部出现呈发散状或龟 裂状的不规则裂缝。预埋线管,特别是多根线管的集散处是截面砼受到较多削弱,从而引

沥青路面纵向裂缝病因分析

沥青路面纵向裂缝病因分析 刘哲峰 (中交远洲交通科技有限公司石家庄050031) 摘要:对于当前高速公路沥青路面出现的纵向裂缝与形变,本文从土基深层的强度不足与失稳方面进行了分析。指出路堤压实中的取土天然含水量过大,造成湿土夹层软弹,往往是导致纵向裂缝与形变的一个主要诱因。 关键词:路表弯沉;天然含水量;软弹;过湿土;疲劳破坏在高速公路沥青路面的诸多损害病变中,纵向裂缝和形变则又是一种较为常见的破坏现象。一般都在通车运营这三、五年之后,出现在行车道的两条轮迹带上,超车道、硬路肩亦有发生。此种病害的特征缝隙走向比较规则,呈现粗而疏的大裂缝,有些断断续续可以延伸几百米长。伴随缝隙在纵向轮迹条带上,垂直形变明显,起伏凹陷,道路技术状况显著下降,严重的影响到行车的舒适、安全和道路的使用寿命。 1、裂缝的诱因 导致纵向裂缝与形变的诱因可以来自许多方面,总体来论,大多是由于路面整体强度的不足,行车荷载作用下路面结构层底,受拉压发生开裂,而导致的疲劳性破坏。强度的不足则是来自路面结构层及路基土体的某些质量缺陷,承载能力强度上的不足与衰变。

路表弯沉的变化,是个多因素作用的复杂过程,反映的是整体结构体系的材料性质、压实、温度、湿度、强度和稳性以及行车荷载作用下的受力条件和技术状况,都会对弯沉产生直接影响。如由于设计的不当,施工的不规范,某些质量隐患弊端,透水性水损害病变等众多病害,由于上部层位直接受力的缘故,这类病害的反应也就相对“敏感”。裂缝明显、清晰,与病害的针对性也强,呈现有零星性破损,在车轮荷载的作用下,一一地反映出来。对于这类上层部位的水损害病变的调查研究,已有很多论证,可大体以浅层病害来区分,本文不再敖述。 浅层病变的表现特征是:对应、明显、分布零散,如面部的密集性网裂,清晰的轮廓辙槽等等。面对基层以下的某些深层病变,出自下面基础的问题较多,反映到路表上,其表现特征多时一些较长距离、大范围的裂缝与形变,分布面大,多呈弧状形变,不像浅层病变那样明显直接,分析判断上也有一定难度。 2、裂缝的产生 行车荷载,车道渠化,大量重载、超载及重复荷载作用之下,无疑将加剧了软荷对半刚性材料层地面产生的拉应力。而影响拉应力除了面层,基层的厚度、弹性模量之外,又与下承层直到土基的弹性模量直接相关。计算可知,当基层厚度、回弹模量一定的情况下,土基的回弹模量越大,基层底部所产生的拉应力会越小。大体是土基回弹模量每增加一倍,基层底部的拉应力约可减少一半。所以,正常状态下,半刚性基层上的沥青面层是不会产生弯拉疲劳性破坏的,只有当

加固用的灌浆料经常会出现的问题分析

加固用的灌浆料经常会出现的问题分析 在进行加固改造工程时,我们很多选择使用灌浆料进行加固补强的方式,因为灌浆料本身具备早强、高强、微膨胀、自流性的特点。工程多数为废旧的梁柱工程,由于长时间的风化,化工原料的锈蚀,碰撞等问题,造成了混凝土梁、柱等部位的表面破坏问题。采用灌浆料进行浇注,是常用的方法,也是造价比较低的方法。但是在使用灌浆料浇注的时候,出现最多的问题就是塑性裂缝的问题。 塑性裂缝多在新浇注的混凝土构件暴露于空气中的上表面出现,塑性收缩是指灌浆料在凝结之前,表面因失水较快而产生的收缩。塑性收缩裂缝一般在高温天气或大风天气出现,裂缝多呈中间宽、两端细且长短不一,互不连贯状态,较短的裂缝一般长20~30cm,较长的裂缝可达2~3m,宽1~5mm。 灌浆料表面出现塑性裂缝产生的主要原因为:灌浆料本身具备早强、高强、微膨胀、自流性的特点。灌浆料中的水泥通过水化反应产生强度,体现出高强、早强性能,而灌浆料中的微膨胀剂则需要吸收水分才可以产生膨胀力,体现出它具有的微膨胀性能。在灌浆料凝固过程中,水化反应产生的收缩力应与微膨胀分子吸水后产生的分子膨胀力保持相对平衡。如果强度增长过快,耗去的反应水越多,收缩力势必就增大;而微膨胀的分子吸水减慢,膨胀力减小,此消彼长,裂缝就很快出现。 一般来说,针对这个问题,必须要做好养护措施,及时进行养护,

防止水分蒸发过快,混凝土表面失水过快,造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生裂缝。因此,在使用灌浆料或对设备二次灌浆料时,应先把基础用水湿润一下,灌浆料在灌浆完以后要继续保湿,连续7天有水养护,这样就能避免裂纹的出现。

常见塑料制品开裂的原因浅析及检测方法简述

常见塑料制品开裂的原因浅析及检测方法简述 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

常见塑料制品开裂的原因浅析及检测方法简述 引言 工程塑料因为其优异的特性——高强度、耐热、耐冲击、抗老化等而被广泛应用于工业零件及各种外壳制造上。但在制造或使用过程中,塑料制品很有可能被钉螺丝或涂胶水,这样的处理常常会诱发塑料制品的应力开裂,致使次品率很高。而开裂是塑料制品经常出现的致命缺陷,包括制作表面丝状裂纹、微裂、顶白、开裂及因制件粘模、流道粘模而造成的创伤。引起开裂的原因涉及模具、成型工艺、塑料材料、环境应力等方面。 开裂原因浅析及改进建议 不同的开裂原因会导致不同的开裂类型,如果按照开裂的时间分类,塑料制品开裂现象通常有两种情况: (一)脱模开裂,塑料制品从模具脱出或在机器加工过程中出现开裂,这种开裂原因和后果比较容易预估; (二)应用开裂,塑料制品在放置一段时间后或使用过程中出现开裂,这种开裂往往难以预测,且产生的后果可能是毁灭性的。 以下主要从塑料材料的选择和环境应力的角度出发,结合以上两种开裂类型简单阐述开裂原因及改进建议。

1. 材料类型所致开裂的原因分析及改进建议 下面通过两个案例,从选材背景及加工后出现的问题来分析材料选择对产品开裂可能造成的影响。 圆孔性连接器(代表成型中空制品) 一直以来,客户在生产成型小型圆孔时,选择的都是聚苯硫醚PPS GF30/GF40这种材料,器件没有出现任何开裂现象。在开发大圆孔径系列连接器时,客户再次选用全球多家知名厂家的PPS GF30/GF40材料。加工的结果是制品开裂非常严重,有些属于脱模开裂,有些属于应用开裂,而且不同厂家同类型含量的PPS均存在制品开裂问题。客户和材料厂商起初怀疑是塑料冲击强度不够,但同时发现冲击强度比PPS GF30/GF40低的PA6和PC材料却反而不开裂。在选用一些知名厂家提供的高抗冲击性PPS GF40材料后,开裂问题依然存在(图1)。 根据客户提供的信息,我们分析,很可能是由于成型塑料圆孔的模具型芯采用的是硬质合金材料。金属材料导热和散热能力较强,而一般塑料材料散热能力较弱,金属材料和塑料挤出时不可避免会产生收缩相差较大的情况,塑料产品不同部位温度也有较大差别,对于延展性不好(断裂伸长率偏小)的塑料,无疑会发生断裂的现象。

砼表面裂缝原因分析

砼表面裂缝原因分析 The manuscript was revised on the evening of 2021

砼表面裂缝原因分析 一、混凝土裂缝类型及成因 实际上,钢筋混凝土结构裂缝的成因复杂而繁多,甚至多种因素互相影响,但每一条裂缝均有其产生的一种或几种原因,其中最常见的是混凝土早期裂缝,混凝土早期裂缝有以下几种:1、塑性沉降裂缝此类裂缝产生的主要原因是由于混凝土骨料沉降时受到阻碍(如钢筋、模板)而产生的。这种裂缝大多出现在混凝土浇注后小时至3小时之间,混凝土尚处在塑性状态,混凝土表面消失水光时立即产生,沿着梁及板上面钢筋的走向出现,主要是混凝土塌落度大、沉陷过高所致。另外在施工过程中如果模板绑扎的不好、模板沉陷、移动时也会出现此类裂缝。 1、塑性收缩裂缝 此类裂缝产生的主要原因是混凝土浇筑后,在塑性状态时表面水分蒸发过快造成的。这类裂缝形状不规则、长短宽窄不一、呈龟裂状,深度一般不超过50mm.多在表面出现,产生的原因主要是混凝土浇注后3—4小时左右表面没有被覆盖,特别是平板结构在炎热或大风天气混凝土表面水分蒸发过快,或者是基础、模板吸水过快,以及混凝土本身的水化热高等原因造成混凝土产生急剧收缩,此时混凝土强度趋近于零,不能抵抗这种变形应力而导致开裂。 2、温度的变化与湿度的变化 裂缝:混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。 3、原材料质量引起的裂缝

路基纵向裂缝的防治

路基填筑纵向裂缝的防治 在道路施工过程中,路基上有时会出现规则的纵向裂缝,并表露到路面面层上。这些裂缝的产生一般是施工的原因,但有时也会是设计上的原因。一旦出现了这种裂缝,我们就应认真分析,并及时给予有效的处 理,以免产生更大的质量事故。 纵向裂缝往往开始出现在靠近路面的边部不远处.沿纵向有可能很长,并且连通.裂缝处会出现错台。当发展到一定阶段后,路中可能会产生新的纵向裂缝(即形成了新的滑动面)。路基规则的纵向裂缝与龟裂有着本质的区别.其危害性往往更严重。导致纵向裂缝的产生主要有以下几个方面的原因。 设计边坡坡度过陡,边坡处于不稳定状态。这时在路基上就会形成滑动面,出现裂缝,并会导致整个路基的破坏。路基边坡的稳定性与土质、土的状态(如密实度、湿度以及是否原状土等)及防护情况等因素有关,所以在设计时应充分考虑有关因素,对于特殊的情况(如高路堤段),应按土质土力学理论重点验算 路基边坡的稳定性。 原地貌的横断面上有特殊的变化.如在坡度很陡的模断面上半填半挖,或者路基的半侧在沟塘中或者位于软土地基上等等,而又未进行认真的施工技术处理,从而导致半侧土基下滑或下沉.出现纵向裂缝。在坡度很陡的段面上半填半挖时.如果斜坡上不设反向台阶,填筑的半侧路基作为一个土锲.在斜坡上有一个自然的滑动面,必然会滑移,从而产生纵向裂缝,严重时会导致路基的毁坏。如果路基的半侧在沟塘中时,未进行彻底的清淤,则会造成半侧路基下沉,产生纵向裂缝;或者在清淤后回填时未进行认真的分层夯实,这部分土基会产生较大的压缩下沉.即路基不均匀下沉,从而产生纵向裂缝。如果路基的半侧直接位于软土地基上,而未清除软土层或未对软土底基进行加固处理,路基填筑后,软土地基在路基的压力作用下会产生较大的固结下沉,而非软土地基的半侧原地基下沉量很小,从而产生较大的不均匀沉降,并 反应到路基的顶部,出现纵向裂缝。 如果路基横向不同步填筑;在填筑后半侧路基时未对结合部(即前半侧路基的斜坡上)进行反向台阶的技术处理,后半侧路基很容易会沿着该结合部滑移,从而出现纵向裂缝。 路基边部未碾压的虚土有可能导致路基纵向裂缝的产生。现在对高等级公路都要求路基两侧加宽填筑(一般每边比设计宽度宽20~30cm),以保证路基的有效压实宽度(因为压路机不可能碾压到边)。如果加宽填筑的虚土不及时铲除,在雨水的作用下虚土会很快自然密实而下沉,虚土结合部位首先产生纵向裂缝。其下沉的方向是沿着虚实结合部的斜坡方向。由于土颗粒间有内摩阻力和粘结力的作用.虚土的下沉必然会在虚实结合部位的斜坡上对实土基产生较大的斜向力(向下)作用。这种较大的斜向向下的外力可能会使边部密实路基不稳定,即产生滑动土锲.从而在密实路基上产生新的裂缝。 路基纵向裂缝是一种质量事故,是不应该发生的。只要我们理解了产生纵向裂缝的种种原因,并在设计和施工中加强注意,纵向裂缝是完全可以避免的。下面是我们应该注意的几个主要方面。 在设计中对于特殊的路基(如高填方路基或特殊的土质等)应注意加强路基边坡稳定性的验算,不能一味地套标准图(有时1:1.5的边坡不一定是稳定的边坡)。 施工中发现与设计不符的特殊地基地貌,应及时向监理和设计部门汇报.办理有关设计变更,在路基 填筑前拿出施工技术处理方案。 对于坡度很陡的横断面上(如山坡处)半填半挖的路基,在填筑前应清除表土,并设置反向台阶,以加强结合部处的整体性。如果斜坡为石方.则更要设此台阶,不能省事。 路基横向要求同步填筑。如遇特殊情况而必须采取不同步填筑时.则在填筑后半侧路基时应在前半侧的路基上设置反向台阶,分层压实至要求的密实度,以加强前后填筑部分结合的整体性,防止形成土锲。 |路基半侧位于沟塘中时,应将路基范围内的淤泥全部清除后分层填筑碾压至实,而不应采取直接推填挤淤的方法。设计上最好设置浸水挡墙,并有抗滑踵。 路基半侧位于软土地基上时.路基填筑应予以处理。如软土层不厚时,可以直接清除干净后回填。软土层较厚时.可以采取先填筑路基至定高度的办法进行预压.待观察沉降稳定后.在继续填筑或做路面。不过,这种预压所需的时间较长,一般情况下至少需半年以上。当工期要求较紧时,可采取软土地基加固的办法(如采用塑料排水板固结法、砂桩、碎石桩或石灰桩挤密法等).使得加固后达到设计要求。

PC开裂原因分析

PC开裂原因分析与验证 一、不良描述: 不良产品:1200LED龙A日光灯管(T8 S3014冷白) 不良时间:2013.08.12 上午8:00 不良地点:六楼老化车间 不良现象:老化72H透光罩输入端15CM内(特点:端盖为6孔透气;此端安装有电源)有不同程度内部开裂 现象(非边缘开裂,非龟裂,非松纹裂,非单向 开裂,开裂处内外表面手摸无触感) 不良率:全检总数:500PCS,不良数:33PCS,不良率: 6.6%

二、不良原因分析: PC灯罩开裂的主要原因是PC分子链结构受到破坏,分子链断开,导致产品开裂或者说表面有裂纹。 影响分子链结构的因素有以下三种: 1、反复使用。(反复使用是最常见的问题。很多老板为了节约成本,使用回收料、水口料、废料,以次充好、坑蒙客户、扰乱市场)反复使用时,产品在不断的高温作用下,产品的分子就会发生裂变。分子链就会发生断裂、裂解。由高分子物质变成低分子物质,材料变脆。 该实验数据由深圳某塑胶科技有限公司提供,主要说明杂料对产品内应力开裂时间的影响。 2、应力过大,分为两种:应力过大是设计和使用问题。首先,产品本身形状以及模具本身设计的尺寸及脱模所产生的应力。(1.材料的结构决定材料的性能,材料的性能反映材料的结构。内应力开裂原理:在成型聚碳酸酯PC时,分子链被迫取向,但是由于聚碳酸酯分子链上具有苯环,所以取向比较困难,而在成型后,被取向的链有恢复自然状态的趋势,但是由于整个分子链已经被冻结和大分子链之间的相互作用,从而造成制品存在残留应力,而残余应力的存在,就造成产品可能出现应力开裂,注意,这里说的是可能,为什么是可能呢?这是因为聚碳酸酯内部还存在很多力,而其中比较重要的是:抗开裂力,这个力的大小取决分子链的长短,链间的缠结数目,分子之间的作用力。当抗开裂能力和内应力平衡时,产品不会出现开裂现象,而当抗开裂能力小于内应力时,就会出现。简单来说就是:分子链上苯环——成型取向——制品成型后出现内应力——当内应力和抗开裂能力平衡——好制品——当内应力大于抗开裂能力——产品开裂。可以通过改性,加入抗应力开裂剂,其作用是:在成型PC或PC/ABS合金时,快速恢复被迫取向分子链回复自然状态,消除残留应力,防止应力开裂现象的发生。 2.模具温度。内应力是因为成型时候分子链被冻结引起的,模具的温度对冻结和分子链的解取向有很大影响,很明显,模具温度越高,分子链肯定容易运动,所以,提高模具温度,不仅对充模有利,并且可以调整制品冷却速度,使其变得更均匀,从而有利于聚碳酸酯中取向分子的松弛,也就是解取向。模具温度假如能控制,在100—120度是成型聚碳酸酯的最佳温度了。2.成型条件。在成型时:成型温度、成型压力、成型速度、保压时间、保压压力五点很重要。聚碳酸酯的加

混凝土结构裂缝产生原因分析,继续教育

第1题 造成结构不均匀沉降的原因主要有()个方面? A.3 B.4 C.5 D.6 E.7 答案:C 您的答案:C 题目分数:11 此题得分:11.0 批注: 第2题 有()个因素能引起结构温差裂缝? A.1 B.2 C.3 D.4 E.5 答案:C 您的答案:C 题目分数:11 此题得分:11.0 批注: 第3题 防止碱-集料反应而引起结构裂缝,有()项措施? A.3 B.4 C.5 D.6 E.7 答案:A 您的答案:A 题目分数:11 此题得分:11.0 批注: 第4题 塑性收缩裂缝,一般出现在()天气中?

A.湿热 B.干热 C.大风 D.暴风雨 E.干燥 答案:B,C 您的答案:B,C 题目分数:11 此题得分:11.0 批注: 第5题 ()构件保护层越厚,其在荷载作用下的横向裂缝就越容易出现? A.受拉构件 B.受弯构件 C.受压构件 D.偏心受压构件 E.偏心受拉构件 答案:A,B,D 您的答案:A,B,D 题目分数:11 此题得分:11.0 批注: 第6题 骨料级配不好,易造成结构()。 A.空洞 B.麻面 C.漏筋 D.涨模 E.凝结时间延长 答案:A,B,C 您的答案: 题目分数:12 此题得分:0.0 批注: 第7题 断面配筋率满足设计要求,钢筋规格粗细对结构裂缝影响不大。答案:错误 您的答案:错误

题目分数:11 此题得分:11.0 批注: 第8题 水泥越细,水化热越慢。 答案:错误 您的答案:错误 题目分数:11 此题得分:11.0 批注: 第9题 防止结构养护裂缝,养护水跟水温也有关系。答案:正确 您的答案:正确 题目分数:11 此题得分:11.0 批注: 试卷总得分:88.0 试卷总批注:

路基缺陷引起路面纵向裂缝的原因及预防措施

路基缺陷引起路面纵向裂缝的原因及预防措施 摘要:公路通车运营后,路面不同程度出现纵向裂缝这一常见病害,既影响行车舒适性和路面美观,严重时甚至危及行车安全,又容易使水渗入路面甚至到达基层顶面,在行车荷载的反复作用下会产生冲刷作用和唧泥、唧浆现象使路面结构承载力下降,加速路面整体破坏,严重影响路面的使用性能和使用寿命。文章分析了由路基缺陷使路面产生纵向裂缝的几种原因及预防措施。 关键词:路基缺陷;路面纵向裂缝;压实不均匀 公路通车运营后,路面不同程度出现纵向裂缝这一常见病害,既影响行车舒适性和路面美观,严重时甚至危及行车安全,又容易使水渗入路面甚至到达基层顶面,在行车荷载的反复作用下会产生冲刷作用和唧泥、唧浆现象使路面结构承载力下降,加速路面整体破坏,严重影响路面的使用性能和使用寿命。纵向裂缝有由路基缺陷引起的纵向裂缝,也有由路面缺陷引起的纵向裂缝。现就由路基缺陷使路面产生纵向裂缝的几种原因及预防措施剖析如下: 一、路基压实不均匀或压实度不足 路基整个横断面压实不均匀。在行车荷载作用下形成不均匀沉陷并进一步发展成纵向裂缝。这种纵向裂缝会逐步发展为块状裂缝或沉陷病害。路堤填土压实度不足,尤其是边坡压实度不足,其实际压实度于路堤中部的压实度有显著差异。边部密实度不均匀,雨季,雨水逐渐从土路肩和边坡坡面等处侵入路堤边部密实度较小的土体,使土体进一步松散,路堤边部产生沉降,导致边部路面产生纵向裂缝。为了预防这类裂缝产生,施工时要按规范和设计要求加强路堤碾压。要加大压实度的检测频率,以试验数据指导生产,确保路堤的密实度尽可能均匀。 二、位于低洼地段的路堤 路线从局部洼地通过,洼地的土层上部往往是土质较细的沉积土。在旱季或干旱地区其承重能力较大,其上填筑路堤后,洼地上部土层的含水量在短期内不会发生明显的变化。如雨季降雨量较大,地表水会向路堤两侧集中,如路堤两侧没有有效的排水设施,则路堤两侧将有积水。积水渗入土层并逐渐从路堤两侧坡脚下的土层向路堤中部下土层渗透。路堤下的地基就变成横向承载能力显著不均匀的地基,即两侧受水侵入,含水量较大,地基的承载力急剧下降;中部含水量变化较小,对地基承载能力影响较小。路堤产生不均匀沉降,使路堤两侧边部产生外倾式沉降,将路面和路基掰开,在路基及路面上产生宽度较大的纵向裂缝。其特点是上宽下窄。这种情况下产生的裂缝往往以中线为中心两侧都有,而且基本上是对称的。路堤两侧的积水,水位较高时,除向地基渗透外,还可能渗入路堤下部边部的土层中,并通过毛细作用逐渐向上,使路堤上部边部的土层也变湿。由于路堤边部上层的压实度较中间部分差,一旦边部土层变成潮湿,边部土就会产生固结变形,并导致硬路肩产生纵向裂缝。为了预防这种类型的纵向裂缝,在路线不可避免穿过低洼地段的情况下,应该在路堤两侧设置畅通的排水设施截断

灌浆后的裂缝如何避免

灌浆料应用于电厂、造纸厂、设备底板基础的二次灌浆,重要的作用是防止钢筋锈蚀。在设备加固改造修补等施工中,可能会产生灌浆后产生裂缝的现象。下面为大家详细介绍一下形成原因及预防措施。 灌浆料造成裂缝的原因 1、灌浆料拌和物的温度高。灌浆料硬化前期,因为长期的裂日暴晒和干热风的危害,使做成灌浆料的原料温度上升(灌浆料拌和物入模温度时的温度过高),混凝土凝固发烫的速度更快,热管散热少,导致灌浆料內部温升降机值提高,因而,更非常容易因为温度差进而灌浆料产生温度裂缝。 2、原料不符合规定,或是混凝土的安全系数欠佳等,使灌浆料內部澎涨,造成裂开,造成氧化作用而导致裂缝。 3、温度高、干燥。夏天平均气温高,灌浆料硬底化前水分挥发迅速,非常容易早凝而丧失流通性,表面易干躁;另外,灌浆料身体一部分水分被干躁的基层所消化吸收,导致灌浆料造成初期干缩裂缝,即塑性变形收缩裂缝。 4、白天黑夜温度差的危害。大白天高溫自然环境下注浆的灌浆料,在晚上周边温度降

低,非常容易造成胀缩不匀称,因而造成的温度差更非常容易使灌浆料产生裂缝。 5、灌浆料泌水性大。以便填补快速蒸发的水分增加混凝土水灰比,导致了灌浆料的泌水性大。灌浆料因为泌水。体积相对降低,泌出的水分挥发后,将再次造成收拢,产生灌浆料在终凝之前造成沉降收拢裂缝。 防范措施 1、严苛检测石料品质,防止石料反应,提升混凝土产品质量检验,提升灌浆料的密实度性。 2、在灌浆料灌溉地区围湿草苫,不在危害路基工程抗压强度的状况下提早撒水潮湿基层,灌浆料注浆完毕后,将灌浆料表面遮盖,喷撒适当的水保养,人为因素造就适合的地区性微气候避免温度上升和干燥。 3、白天浇筑的灌浆料,待表面整修进行后,在其表面遮盖塑料膜。若因原材料等缘故不可以立即遮盖时,可依据状况洒小量的水,避免因阳光及风速造成干躁,减少温度差,而且留意在灌浆料表面硬底化前,不可因为实际操作而造成损害。 4、严格执行生产厂家规定的加水量加水,选用生产厂家规定的拌和器材与工程施工流程开展拌和。

裂缝原因分析和处理报告

xxxxxx工程 裂 缝 评 估 报 告 xxxx检验站二O一二年九月

xxx工程裂缝评估报告 报告编号:xxxx 报告编制: 审核: 主检: 批准: xxxxx检验站 二O一二年九月

第一章概述 1.2检测评定手段及目的 (1)外观检查:检测顶板裂缝宽度,评定顶板外观质量; (2)超声波法:检测裂缝深度。 1.3评估依据 本项目研究所依据的相关规范、规程以及相关文件主要有: (1)《超声法检测混凝土缺陷技术规程》(CECS 21:2000)。 (2)《混凝土结构设计规范》(GB 50010—2010)。 第二章外观检查、裂缝宽度和深度检测 2.1概述 在现场检测期时,对xxxxx箱涵左顶板外观进行了详细的检测,检测内容包括裂缝宽度、桥墩外观质量、裂缝深度检测等。 现场检测发现桥墩墩身出现纵向裂缝。裂缝宽度检测测采用KON-KF(B)裂缝宽度监测仪(见附图)。裂缝深度检测采用KON-FSY裂缝深度测试仪。 xxxxx箱涵共分三块施工,左块于2012年9月16日16点左右施工,右块于9月16日2点左右施工,中块于9月17日施工。只有在顶板左块于浇筑第二天出现了20多起纵向裂缝,少量横向裂缝。裂缝最长1.2m,80%的裂缝长度30-50mm;裂缝间间距80%为20-30mm;裂缝宽度为0.35-2.44mm;裂缝深度为9-51mm,其中85%的裂缝深度为25-30mm,其中2条裂缝深度为51mm。 图1 裂缝分布示意图

2.2原因分析 顶板裂缝:顶板裂缝形成原因多样复杂,一般以下几方面原因较突出。 (1)混凝土浇筑振捣后,粗骨料沉落挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后(如爆晒、风吹),易形成干缩裂缝。 (2)模板浇筑混凝土之前洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。 (3)混凝土浇捣后在初凝前后没有进行抹平压光和养护不当也易引起裂缝。 (4)顶板浇注后,上人上料过早,上料集中,也易造成裂缝。 (5)混凝土过量使用外加剂,或水灰比、坍落度过大 结合工程调查和检测分析,裂缝产生的原因可能为①混凝土坍落度过大;②初凝前后没有进行抹平压光,造成表面水分蒸发后,表面砂浆层干缩大于下层混凝土,易形成干缩裂缝;③顶板左板混凝土浇筑后初凝在晚上8点左右,终凝在晚上2点左右,这时内外温差最大,且混凝土在刚失去塑性,强度很低,这也加大了表面收缩开裂。 第三章结论和建议 3.1结论 xxxxx顶板出现的裂缝进行超声波分析和外观检测,综合分析各类测试结果,结论如下: (1)xxxxx工程k0+628箱涵左顶板的纵向裂缝宽度在0.35-2.44mm之间, 大于《混凝土结构设计规范》(GB 50010—2010)规定的裂缝宽度容许值]=0.3mm。此类裂缝属混凝土表面收缩引起的干缩裂缝。 [W lim (2)通过非金属超声波分析仪对检测点检测,结果表明:裂缝深度在85%在25mm-30mm之间,裂缝开展深度值大部分在混凝土保护层内。 综合分析该裂缝对结构无显明影响,但影响结构的整体性和耐久性。 3.2建议 (1)加强对顶板的裂缝观测:观察其宽度和长度是否有加深加长的趋势。 (2)对于顶板裂缝进行有效的封闭处理。(详见第四章) 总之,xxxx顶板裂缝按上述建议进行有效处理后,结构的整体性和耐久

混凝土裂缝原因分析及预控、处理措施

浅析混凝土楼板裂缝的原因及预防措施 随着城镇化的快速发展,从上世纪90年代开始,城市住宅建设步伐越来越快,为适应这种不断成倍增长的建设量,同时还要保证质量的前提下,混凝土的商品化应运而生。混凝土的商品化即保证了工程实体质量,又保证了观感及施工速度,更节约了资源,大大提高了建设水平。然而在商品混凝土的使用过程中也出现了各种质量问题,如现浇楼板浇捣过程中普遍存在裂缝的情况,已经是目前比较严重的施工质量通病之一,特别是高层、超高层使用大流动性泵送商品混凝土楼板,然而混凝土裂缝的诱因和种类较为复杂繁多,所以显得防治尤为重要,必须引起我们的重视。因此针对该缺点根据有关资料并结合以往施工经验和一些实际情况,对现浇混凝土楼板裂缝的产生原因和防治措施谈谈自己的认识。望各项目部结合本部工程的结构设计特点、施工部署、进度要求等具体实际情况进行严格控制,做好施工过程中的预控措施工作。 一、裂缝种类及不同阶段产生的原因: (一)、混凝土现浇楼板常见裂缝种类: 1、45°斜裂缝:此类裂缝大部分为板角斜裂缝,实际工程中这类裂缝非常常见。板角45°斜裂缝一般在板角位置大约0.5m~ 1.5m范围内出现,裂缝位于和超出板角放射筋长度范围的情况同时存在。通常楼板一个房间有1~ 2条斜裂缝,有时可能在4条以上的裂缝,一个板角通常有1条裂缝,有时有2条,甚至3条,对应于这种情况,一般楼板底面也会有l条斜裂缝存在,这条裂缝的位置或者与一条裂缝位置吻合,或者位于两条裂缝之间。板角45°斜裂缝的分布情况还与楼板的走向有一定关系,从数据反映的情况来看,楼板西端的板角裂缝多于东端。而在楼板凹凸部位,突出开间的阳角部位开裂情况与板角非常类似,也是存在斜裂缝的主要部位。 2、横向、纵向裂缝:楼板跨中裂缝的分布和数量则呈现一定的随机性,但以横向、纵向最多,大跨度开间中部出现裂缝的几率相对较大,裂缝多为横向,少数为纵向。横向裂缝是指平行于楼板的短边,垂直于楼板长边的裂缝,纵向裂缝是平行于长边,垂直于短边的裂缝。纵向裂缝多发生在具有连续长横墙附近,有时板面会出现无规则的龟裂。裂缝通常位于楼板中部板跨度范围内,有时1条横向裂缝在中间,也有2条裂缝在1/3跨两端的情况。混合结构中楼板大多为双向板,裂缝在接近方形板的双向板中出现概率极高。由于调查的存在裂缝的房屋中无

高速公路沥青路面发生纵向裂缝的分析

试析沪杭甬高速公路沽宁段 拓宽工程老沥青路面纵向裂缝的成因及对处治的建议 舟山市普陀区交通局林群 山东立平工程咨询有限公司孙青松 山东立平工程咨询有限公司张延丽 青岛公路建设集团有限公司涂淑芳 摘要:本文通过分析沪杭甬高速公路沽宁段拓宽工程老沥青路面纵向裂缝的成因,提出了处治措施和建议。 关键词:沥青路面、纵向裂缝、成因、措施 一、沽宁段拓宽工程软土路基施工概述 沪杭甬高速公路沽渚至宁波段拓宽工程,由双向四车道拓宽为双向八车道,是在保持原四车道通车营运的情况下拓宽施工的。工程于2004年10月正式开工,首先进行软基处理。软基处理有塑料排水板、预应力砼管桩、贫砼桩和粉喷桩四种类型,施工于2005年6月30日全部结束。塑排板地段拓宽路基的填筑从2005年6月中旬陆续开始,当年10月31日全部结束,加载预压同时完成。其余地段的路基填筑于2005年11月至2006年一季度陆续基本完成,部份有施工障碍的地段和少数余方于2006年二季度填筑基本完毕。 软基处理塑排板深度6~25m不等;预应力管桩深度一般在7~20m,少数地段有达到22~31m的;粉喷桩深度一般在8m以下;贫砼桩深度在7~11m。 拓宽路基填筑高度有四分之三地段在4m以下,四分之一地段超过4m,最高的填筑高度接近6m。 软基处理地段路基,按设计要求,以每周25cm一层的速率向上填筑,没有抢进度突击施工的现象。路基填料基本上为宕碴,仅少数地段或部份层次的填料

为砂性土。 二、老路裂缝的发现及发展 第二驻地办监理的路段起自K81+100,止于K110+200,全长29.1Km。拓宽施工期间的老沥青路面裂缝首次发现于2005年1月11日,是在雨夹雪的不良天气之后发现的,裂缝位于K87+217通道桥左侧往杭州方向,纵向连续长约40m,缝宽0.5cm~1.5cm,裂缝在主车道内。当时该段左侧正在进行管桩处理施工,预应力管桩长20m,已接近完成。打插顺序是从新老路基搭接处向拓宽外侧,自甬往杭向进行。紧靠拓宽范围外有一水塘。 第二次发现老沥青路面裂缝是2005年3月16日,也是在小雨之后发现的。裂缝纵向连续长约20m,缝宽0.5~2cm左右。裂缝位于K87+217通道桥右侧往杭州方向,与第一次发现裂缝地段大致左右对称,裂缝在主车道内。当时正在进行管桩打插,管桩长20m。该段拓宽范围内外地下水丰富。 这二次裂缝在软基处理结束后,未填筑路基前,就逐渐趋于稳定。缝宽虽有发展,但最终宽度都在3cm左右,极少超过5cm。 其它地段在各类型软基处理期间,没有发现过路面开裂现象。但拓宽路基填筑之后,软基处理地段从2005年8月末开始,陆续发生多处路面开裂现象。 路基填筑后最早发现裂缝是2005年8月28日,位置在K105+690~780右侧。该处裂缝发展迅速,在50余天内裂缝最宽处达16cm。在主车道有多道裂缝,裂缝分布区内,路面明显凹陷。

主体工程质量案例分析——楼板裂缝

案例二 主体工程质量案例分析——楼板裂缝 一、事故简述 某工程地下室顶板设计为18厘米厚C30混凝土,混凝土浇筑完成后覆盖熟料薄膜和毛毡。项目部春节放假,放假期间安排了值班人员对混凝土进行养护,养护人员责任心较强,每天都对混凝土进行浇水。春节过后复工检查时发现,地下室顶板出现大量不规则裂缝,裂缝间距小,长度短,且有不少贯穿裂缝,后经检测混凝土强度合格,对裂缝进行了灌浆封堵处理,处理费用30余万元。 二、原因分析 项目技术负责人对冬期施工混凝土养护知识掌握不全面,未明确混凝土冬期养护的具体措施及方法,存在交底不清的问题。 养护人员每天浇水,打湿了起保温作用的稻草上,使保温作用失效,同时,浇水直接接触到混凝土,水化升温过程中的混凝土急剧降温,导致结构板开裂。

三、预防措施 1.冬期施工前应编制专项施工方案,明确混凝土冬期施工的配合比、养护措施等内容。 2.项目技术负责人应掌握混凝土水化凝结的相关过程原理,确保采取科学合理的技术措施,并进行详细交底。 四、处理原则和方法 1.发现混凝土裂缝应向公司技术部门报告,配合公司做好事故原因调查,一般有材料和施工两方面原因。 2.对于不影响结构承载力的裂缝,采用灌浆料进行封堵即可。 五、导致楼板裂缝的其他原因 1.楼板过早受荷:处于工期方面的考虑,不少项目在混凝土初凝后便施加施工荷载,此时,混凝土还未达到终凝即被拉裂,在开间较大的板面上此现象尤为明显。 2.使用已经初凝的混凝土浇筑梁板: 1)混凝土浇筑过程中出现堵管现象,待泵管疏通后将泵中已初凝的混凝土加水拌和后,送入布料机。 2)商混站提供至现场的混凝土坍落度太小,无法满足施工要求,退回后,加水搅拌再送进施工现场。 3.支撑体系立杆下沉、刚度不足也是楼板开裂的一个主要原因。

水泥砼路面纵向裂缝成因及处治方法

水泥砼路面纵向裂缝成因及处治方法 水泥混凝土路面的传荷顺序为面层、基层、垫层、路基。尽管面板传到路基顶面的荷载应力值小,往往不会超过0.05Mpa,但路基作为支承层却很重要。由于路基填料土质不均匀,湿度不均、膨胀性土,冻土,碾压不密实等原因,导致路基支承不均匀,在混凝土浇筑前,基底弹性模量在不符合规范要求情况下而盲目施工,在路基稍有沉陷时,在板块自重和行车压力作用下而产生纵向断裂。在拓宽路基时,由于路基处理不当,新路基出现沉降,混凝土板下沿纵向出现脱空,在行车荷载作用下,使混凝土板发生纵向断裂。 一、裂缝的形成原因 1、地基承载力不足。一般地方公路在修建时习惯沿线取土,从而在路基外侧形成带状沟塘,地基长期受水侵泡导致承载力下降。新路加宽部分路基填筑时如清淤工作不到位,会造成新老路基不均匀沉降过大。 2、新老路基的变形差异。运营已久的老路路基变形基本完成,或者可以视为弹性变形,而新建路基的塑性累计变形不可避免。这是加宽部路面纵向裂缝形成的主要原因。 3、基层施工接缝。路面基层施工过程中,接缝的处理不当容易造成接头处集料松散,基层局部强度不足,从而导致路面出现反射裂缝。 4、超载现象。这在我国是一普遍现象,往往一条路路面的损坏和超载重车有直接的联系。特别在老路加宽段,新建路基固结沉降尚未完成,新老路基的强度具有一定差异,超载重车的反复碾压势必造成差异沉降。 二、预防措施 水泥混凝土路面纵向裂缝的预防必须从治本开始。前边已经对混凝土路面裂缝产生的主要原因进行了分析,那么预防裂缝的发生就必须针对其采取有效措施。总的说来如下: 1、对于填方路基,应分层填筑、碾压,保证均匀、密实。 2、对新旧路基界面处的施工应设置台阶或格栅处理,保证路基衔接部位的严格压实,防止相对滑移。 3、河浜地段,淤泥必须彻底清除;沟槽地段,应采取措施保证回填材料有良好的水稳性和压实度,以减少沉降。 4、在上述地段应采用半刚性基层,并适当增加基层厚度;在拓宽路段应加强土基,使其具有略高于旧路的强度,并尽可能保证有一定厚度的基层能全幅铺筑;在容易发生沉陷地段,混凝土路面板应铺设钢筋网或改用沥青路面。 5、混凝土路面板厚度与基层结构应按现行规范设计,以保证应有的强度和使用寿命。基层必须稳定。宜优先采用水泥、石灰稳定类基层。 三、处理方法 水泥混凝土路面纵向裂缝的处理可采用局部处理和全部处理的办法。在处理之前,必须对裂缝产生的原因进行调查分析,确定是什么原因引起的,然后再确定用什么方法处理。如属于土基沉陷等原因引起的,则宜先从稳定土基着手或者等待自然稳定后,再着手修复。在过渡期可采取一些临时措施,如封缝防水;严

二次灌浆表面裂纹事宜

1#锅炉基础二次灌浆局部出现表面裂纹的 原因分析、修补方案及其预防措施 一、施工过程概况 2011年6月8日(6月8日~6月13日,平均气温23°C,最高气温36℃,最低气温17℃)我项目部接到安装单位递交的《安装交付土建中间交接验收表》之后,便立即组织进行1#锅炉基础的二次灌浆工作(灌浆料采用的是兰州福联建筑新技术有限公司生产的FGM-1普通型高强无收缩灌浆料,使用前我们进行了见证取样送检工作,该灌浆料复检合格)。灌浆前,于灌浆处用清水冲洗干净(并将油污、浮锈等彻底清除冲洗干净)并排尽积水,以保证新浇灌浆料与原混凝土结合牢固。我们根据施工图纸要求在外圈安装好了外模板,同时,灌浆层的上表面略有坡度(坡度向外),以防油、水流入设备底座。并且,灌浆工作一直连续进行未中断过。灌浆料的拌合我们采用的是盘式混凝土砂浆搅拌机进行拌合,掺水严格按照使用说明和规范要求进行,具体掺水量是灌浆料重量的13%,机械搅拌2-3分钟后,未出现离析现象;具体浇筑过程是将搅拌均匀的灌浆料从一个方向灌入灌浆部位。并借助钢钎导流,且适当轻轻敲打模板使灌浆料流淌和密实。灌浆后,在灌浆层四周及其上表面覆盖保温棉布并洒水养护不少于一周。 二、现场实体实际情况(表面龟裂情况) 在1#锅炉基础二次灌浆工作的施工完成之后的第四天(2011年6月13日)上午,我单位质检人员偕同监理在检查灌浆层的质量情况时发现,表面积比较大的局部有少许横向裂纹(裂纹位置在其长度方向约三分之一处),其裂纹长度约100毫米、宽度约0.2毫米、深度约5毫米。 三、产生表面裂纹的原因分析 由于高强灌浆料的早期强度来得快,其强度增长过程中吸水量大,并且其灌浆厚度较厚(100mm厚),同时,陕北空气很干燥、风

普通混凝土裂缝产生原因分析及处理措施

普通混凝土裂缝产生的原因分析及处理措施 第一部分裂缝产生原因分析 一、荷载引起的裂缝 混凝土在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。直接应力裂缝是指外荷载引起的直接应力产生的裂缝,次应力裂缝是指由外荷载引起的次生应力产生裂缝。 荷载裂缝特征依荷载不同而异呈现不同的特点。这类裂缝多出现在受拉区、受剪区或振动严重部位。但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。 二、温度变化引起的裂缝 混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。 三、收缩引起的裂缝

在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。 塑性收缩。发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。 缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。 自生收缩。自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。

沥青路面横向裂缝与纵向裂缝出现原因及处置方式

沥青路面横向裂缝与纵向裂缝出现原因及处置方式 摘要:裂缝是沥青路面最为常见的破坏型式,从延伸方向分为横向裂缝、纵向裂缝,从形成原因分为施工裂缝、反射裂缝、温度裂缝、疲劳裂缝。裂缝具有延伸性与贯通性,为水的进入提供通道,裂缝的出现与发展是路面大面积严重破损的前奏。 关键词:裂缝;类型;原因;处理方法 引言 近年来,高速公路建设飞速发展,沥青路面因其行车舒适性好、行车时产生噪音小、便于养护等优点,被广泛用于高速公路建设已有多年。在各条高速公路的使用过程中,沥青路面裂缝是较为普遍的路面病害,在路面研究和技术改进日益成熟的今天,仍然是较难解决的课题之一。 1 裂缝类型和表现形式 沥青路面的裂缝,尤其是横向裂缝,已经成为人们十分关注的问题。因为沥青路面在竣工使用后,不论基层是柔性的、半刚性的,还是面层沥青是国产的或进口优质沥青,都会不同程度地出现横向裂缝,横向裂缝是沥青路面的主要缺陷之一。 1.1 横向裂缝 横向裂缝表现为裂缝与路中心线基本垂直,线宽不一,缝长有的贯穿整幅路面,有的路面部分开裂。横向裂缝主要右以下四种产生原因:沥青质量没有达到本地区施工气候要求或者没有达到相关技术标准,致使沥青混凝土面层温度收缩或温度疲劳应力大于沥青混凝土的抗拉强度;施工缝处理不当,接缝不紧密,造成不同部位结合不良;半刚性基层由于水泥剂量、施工质量等综合因素产生的路面收缩裂缝;桥梁、涵洞等结构物回填部位没有按照要求进行施工,或处理不得当,从而产生不均匀沉降。 1.2 纵向裂缝 纵向裂缝的产生原因以下几种;路基填筑使用了不合格材料,吸水膨胀引起路面开裂;纵向加宽没有按照要求进行施工,或者碾压没有达到要求,从而造成加宽没有按照要求进行施工,或者碾压没有达到要求,从而造成加宽部位沉降;路基边坡坡度小于设计值,路基边坡压实度不足产生滑坡;边沟过深,使实际填土高度加大从而产生滑坡;面层前后摊铺相接处的冷接缝没有按照相关要求进行处理,结合不紧密二相互脱离。 1.3 网状裂缝 网状裂缝表现为裂缝纵横交错,缝宽在 1 毫米以上,缝间距离在 40 毫米以下,裂缝面积在 1 平米以上。网状裂缝产生原因;寒冷地区纵横裂缝继续扩展,冰冻水的侵入发展而成;沥青混合料质量差,拌合时间过长,拌合温度过高或者在储料仓中存储时间过长,沥青本身老化,导致混合料抗变形能力降低产生;沥青的性能差,尤其时低温抗变形能力过低;路面结构中含有软弱夹层,粒料层松动,水稳定性差;沥青层的厚度不足,水分侵入,导致层间结合较差,沥青总体强度不足,在损坏初期形成网裂,后裂缝逐步扩展,缝间距变小。 1.4 反射裂缝 反射裂缝基本表现为在产生裂缝后,通过温度和行车荷载的共同作用,裂缝逐渐反射到沥青混凝土面层,路面的裂缝形式与基层裂缝形式基本一致。其中半刚性基层以横向裂缝居多,柔性路面上加盖的沥青机构层,则裂缝形式不一,主要取决于下承层。反射裂缝产生原因;在已经开裂的旧沥青、旧水泥路面上加铺沥青面层,由于温度的变化(降低),老路面的裂缝继续拉开,从而使新铺层在旧裂缝处断开;半刚性基层温缩开裂;新铺半刚性基层随着混合料中水分的减少产生干缩和干缩应力。 2 处理方法 针对不同的裂缝,应该选取不同的处理方法,各种处理方法各有优劣,现在比较常见的处理办法有开槽灌缝、防渗膜贴缝、常温密封胶表面刷涂、高分子聚合物压浆、明胶沥青表面刷涂、硅酮玻璃胶抿缝以及其他处理方法。 2.1 开槽灌缝 开槽灌缝是一种针对于路面早期病害的预防性养护方式,主要用于处理道路初期通车后

相关文档
最新文档