第一章 水肥一体化技术基本原理

第一章 水肥一体化技术基本原理
第一章 水肥一体化技术基本原理

第一章水肥一体化技术简介

一、水肥一体化技术的基本概念

作物生产的目标是用更低的生产成本去获得更高的产量、更好的品质和更高的经济效益。从作物的生长要素来看,其基本生长要素包括光照、温度、空气、水分和养分。在自然生长条件下,前三个因素是人为难以调控的,而水分和养分因素则可人为调控。因此,要实现作物的最大生产潜力,合理调节水肥的平衡供应非常重要。

在水肥的供给过程中,最有效的供应方式就是如何实现水肥的同步供给,充分发挥两者的相互作用,在给作物提供水分的同时最大限度地发挥肥料的作用,实现水肥的同步供应,即水肥一体化技术。那么,什么是水肥一体化技术呢?狭义讲,就是把肥料溶解在灌溉水中,由灌溉管道带到田间每一株作物,以满足作物生长发育的需要。如通过喷灌及滴灌管道施肥。

图1-1 雷州半岛的香蕉园通过滴灌施用硫酸钾镁肥

图1-2 山地砂糖桔果园通过滴灌系统施用氯化钾

图1-3 内蒙古马铃薯种植区通过滴灌系统施肥的场面

广义讲,就是水肥同时供应以满足作物生长发育需要,根系在吸收水分的同时吸收养分。除通过灌溉管道施肥外,如淋水肥、冲施肥等都属于水肥一体化的简单形式。

图1-4 广东冬种马铃薯地区拖管淋水肥的场景

图1-5 菜农挑担淋水肥的场景

图1-6 海南西瓜种植户通过膜下水带施液体肥的场景

水肥一体化技术是现代种植业生产的一项综合水肥管理措施,具有显著的节水、节肥、省工、优质、高效、环保等优点。水肥一体化技术在国外有一特定词描述,叫“FERTIGATION”,即“FERTILIZATION(施肥)”和“IRRIGATION(灌溉)”各拿半个字组合而成,意为灌溉和施肥结合的一种技术。国内根据英文字意翻译成“水肥一体化”、“灌溉施肥”、“加肥灌溉”、“水肥耦合”、“随水施肥”、“管道施肥”、“肥水灌溉”、“肥水同灌”等多种叫法。“水肥一体化”这个称谓目前被广泛接受,而“管道施肥”笔者认为更加形象贴切,肥料自身不会从管道流动,必须要溶解于水才能随管道流动。这很容易区别于传统的施肥。针对于具体的灌溉形式,又可称为“滴灌施肥”、“喷灌施肥”、“微喷灌施肥”等。

灌溉的理论基础是植物的蒸腾失水及土面蒸发失水,必须要源源不断补充土壤水分作物才能正常生长。而水肥一体化的理论基础是什么呢?这要从植物是如何吸收养分说起。植物有两张“嘴巴”,根系是它的大嘴巴,叶片是小嘴巴。大量的营养元素是通过根系吸收的。叶面喷肥只能起补充作用。施到土壤的肥料怎样才能到达植物的嘴边呢?通常有三个过程。一个叫扩散过程。肥料溶解后进入土壤溶液,靠近根表的养分被吸收,浓度降低,远离根表的土壤溶液浓度相对较高,结果产生扩散,养分向低浓度的根表移动,最后被根系吸收。第二个过程叫质流。植物在有阳光的情况下叶片气孔张开,进行蒸腾作用(这是植物的生理现象),导致水分损失。根系必须源源不断地吸收水分供叶片蒸腾耗水。靠近根系的水分被吸收了,远处的水就会流向根表,溶解于水中的养分也跟着到达根表,从而被根系吸收。第三个过程叫截获,即养分正好就在根系表面而被吸收。扩散和质流是最重要的养分迁移到根表的过程。这两个过程都离不开水做媒介。因此,肥料一定要溶解才能被吸收,不溶

解的肥料植物“吃不到”,是无效的。在实践中就要求灌溉和施肥同时进行(或叫水肥一体化管理)

,这样施入土壤的肥料被充分吸收,肥料利用率大幅度提高。

图1-7 质流过程示意图图1-8 扩散过程示意图

从对肥料浓度的控制条件看,通过灌溉系统施肥可以按下面两种方式进行。

1、按数量施肥

在施肥时只考虑每次施入的肥料总量。如对大田作物要求每公顷施多少公斤肥料,而对木本果树则要求每株施多少公斤肥料。在施肥过程中,随着施肥时间的延长,被灌溉水带走的肥料浓度越来越低,最后趋于零,这种施肥方法称为按数量施肥(图1-9)。传统的肥料撒施即是按数量施肥。

浓浓度曲线

施肥时间

图1-9 肥料浓度随施肥时间的变化

2、按比例施肥(固定浓度施肥)

在施肥时既考虑施肥数量同时又考虑施肥浓度,要求施肥过程中养分浓度是均匀一致的,这种施肥方法称为按比例施肥(图1-10)。

料肥料浓度

施肥时间

图1-10 肥料浓度随施肥时间的变化

对这两种施肥方式的选择主要根据作物的种类、根系生长介质和施肥成本来确定。总体来讲按数量施肥的设备成本要低于按比例施肥。一般大田种植的作物多采用按数量施肥,而温室栽植的蔬菜、花卉等多采用按比例施肥。因为温室栽培多采用砂、泥炭、岩棉等疏松透气的基质。这些基质虽然有很好的保水和通气性能,但对养分的吸附和缓冲性能低。给根系供应恒定的适宜的养分浓度,可使根系免受高浓度养分造成的肥害。在水肥一体化技术条件下的各种施肥设备有的是按数量施肥,有的是按比例施肥。

二、水肥一体化技术的优缺点

1、水肥一体化技术的优点

与常规施肥方法相比,通过灌溉系统施肥有以下优点:

(1)节省施肥劳力。在果树的生产中,水肥管理耗费大量的人工。如在华南地区的香蕉生产中有些产地的年施肥次数达18次之多。每次施肥要挖穴或开浅沟,施肥后要灌水,需要耗费大量劳动力。而在水肥一体化技术条件下可实现水肥的同步管理,节省大量用于灌溉和施肥的劳动力。南方地区很多果园、茶园及经济作物位于丘陵山地,施肥灌溉非常困难,采用滴灌施肥可以大幅度减轻劳动强度。作者在深圳市南山区西丽果场(主要种植荔枝)调查发现,采用滴灌施肥后,可节省用于灌溉和施肥的人工95%以上。现在劳动力价格越来越高,应用水肥一体化技术可以显著节省生产成本。

图1-11 人工拖管淋水肥示意图图1-12 采用管道施肥可以节省大量人力

(2)提高肥料的利用率。在水肥一体化技术条件下,溶解后的肥料被直接输送到作物根系最集中部位,充分保证了根系对养分的快速吸收。对微灌而言,由于湿润范围仅限于根系集中的区域及水肥溶液最大限度的均匀分布,使得肥料利用效率大大提高;同时,由于微灌的流量小,相应地延长了作物吸收养分的时间。在滴灌下,含养分的水滴缓慢渗入土壤,延长了作物对水肥的吸收时间;而当根区土壤水分饱和后可立即停止灌水,从而可以大大减少由于过量灌溉导致养分向深层土壤的渗漏损失,特别是硝态氮和尿素的淋失。但在传统耕作中施肥和灌溉是分开进行的,肥料施入土壤后,由于没有及时灌水或灌水量不足,肥料存在于土壤中,并没有被根系充分吸收;而在灌溉时虽然土壤可以达到水分饱和,但灌溉的时间很短,因此根系吸收养分的时间也短。研究结果表明,在田间滴灌施肥系统下,番茄氮的利用率可达90%,磷达到70%,钾达到95%。肥料利用率提高意味着施肥量减少,从而节省了肥料。

图1-13 滴灌条件下水分只湿润根区土壤

(3)可灵活、方便、准确地控制施肥数量和时间,可根据作物养分需求规律有针对性施肥,做到缺什么补什么,实现精确施肥。例如果树在抽梢期,主要需要氮;在幼果期,需要氮磷钾等多种养分;在果实发育后期,钾的需求增加。可以根据作物的养分特点,研制各个时期的配方,为作物提供完全营养。根据灌溉的时间和灌水器的流量,可以准确计算每株树或单位面积所用的肥料数量。有些作物在需肥高峰时正是封行的时候(如甘蔗、马铃薯、菠萝等),传统的施肥无法进行。而如采用滴灌施肥则不受限制,可以随时施肥,真正按作物的营养规律施肥。覆膜栽培可以有效地提高低温、抑制杂草生长、防止土壤表层盐分累积、减少病害发生。但覆膜后通常无法灌溉和施肥。如采用膜下滴灌,这个问题就可迎刃而解。

图1-14 马铃薯封行后田间人工追肥非常困难

图1-15 木瓜覆膜栽培后人工追肥非常困难

(4)施肥及时,养分吸收快速。对于集约化管理的农场或果园,可以在很短时间内完成施肥任务,作物生长速率均匀一致,有利于合理安排田间作业。作者对深圳西丽果场的荔枝滴灌施肥时间调查表明,52公顷荔枝采用滴灌施肥1人24小时可完成1次施肥,而以往人工操作情况下需32人

1个星期才能完成。及时快速的灌溉和施肥对果树的生长有现实意义。抽梢整齐方便统一喷药而控制病虫害,果实成熟一致方便集中采收。

(5)有利于应用微量元素。金属微量元素通常应用螯合态,价格较贵,而通过微灌系统可以做到精确供应,提高肥料利用率,降低施用成本。

(6)改善土壤环境状况。微灌灌水均匀度可达90%以上,克服了畦灌和淋灌可能造成的土壤板结。微灌可以保持土壤良好的水气状况,基本不破坏原有土壤的结构。由于土壤蒸发量小,保持土壤湿度的时间长,土壤微生物生长旺盛,有利于土壤养分转化。

(7)采用微灌施肥方法可使作物在边际土壤条件下正常生长。如沙地或沙丘,因持水能力很差,水分几乎没有横向扩散,传统的浇水容易深层渗漏,水肥管理是个大问题,大大影响作物的正常生长。采用水肥一体化技术后,可保证作物在这些条件下正常生长。国外已有利用先进的滴灌技术配套微灌施肥开发沙漠,进行商品化作物栽培的成功经验。如以色列在南部沙漠地带广泛应用微灌施肥技术生产甜椒、番茄、花卉等,成为冬季欧洲著名的“菜篮子”和鲜花供应基地。我国有大量的滨海盐土和盐碱土,采用膜下滴灌施肥,可以使这些问题土壤也能生长作物。

(8)应用微灌施肥可以提高作物抵御风险的能力。近几年来,华南许多地区秋冬或秋冬春连续干旱,持续时间长,在应用水肥一体化技术的地块可保证丰产稳产,而人工灌溉地块则成苗率低、产量低。水肥一体化技术条件下的作物由于长势好,相对提高了作物的抗逆境能力。

(9)采用水肥一体化技术,有利于保护环境。我国目前单位面积的施肥量居世界前列,肥料的利用率较低。由于不合理的施肥,造成肥料的极大浪费,致使大量肥料没有被作物吸收利用而进入环境,特别是水体,从而造成江河湖泊的富营养化。在水肥一体化技术条件下,通过控制灌溉深度,可避免将化肥淋洗至深层土壤,从而大大减少由于不合理施肥、过量施肥等对土壤和地下水造成污染,尤其是硝态氮的淋溶损失可以大幅度减少。

(10)在水肥一体化技术中可充分发挥水肥的相互作用,实现水肥效益的最大化,相对地减少了水的用量。

(11)水肥一体化技术的采用有利于实现标准化栽培,是现代农业中的一个重要技术措施。在一些地区的作物标准化栽培手册中,已将水肥一体化技术作为标准技术措施推广。

(12)由于水肥协调平衡,作物的生长潜力得到充分发挥,表现为高产、优质,进而实现高效益。

2、水肥一体化技术的局限性

(1)尽管水肥一体化技术已日趋成熟,有上述诸多优点,但因其属于设施施肥,需要购买必须的设备,其最大局限性在于一次性投资较大。根据近几年的灌溉设备和施肥设备市场价格估计,大

田采用灌溉施肥一般每亩设备投资在400~1500元,而温室灌溉施肥的投资比大田高。投资大小与众多因素有关(后面有详细的分析)。

(2)除投资外,水肥一体化技术对管理有一定要求,管理不善,容易导致滴头堵塞。如磷酸盐类化肥,在适宜的pH值条件下易在管内产生沉淀,使系统出现堵塞。而在南方一些井水灌溉的地方,水中的铁质引致的滴头铁细菌堵塞常会使系统报废。

(3)用于灌溉系统的肥料对溶解度有较高要求。对不同类型的肥料应有选择性施用。肥料选择不当,很容易出现堵塞,降低设备的使用效率。没有配套肥料,上述部分优点不能充分发挥。

图1-16 肥料含杂质过多会严重堵塞过滤器与滴头

(4)采用水肥一体化技术后,施肥量、肥料种类、施肥方法、肥料在生长期的分配都与传统施肥存在很大差别,要求用户要及时转变观念。而生产中很多用户安装了先进灌溉设备,但还是按传统的施肥方法,结果会导致负面结果。

(5)在水肥一体化条件下,施肥通常只湿润部分土壤,根系的生长可能只局限在灌水器的湿润区,有可能造成作物的限根效应,造成株型较大的植株矮小。这在干旱半干旱地区只依赖滴灌供水的地区可能会出现这种情况,但在华南地区有较丰富的降水,设施灌溉并不是水分的唯一来源,在此情况下基本不存在限根效应。

(6)长期应用微灌施肥,特别是滴灌施肥,容易造成湿润区边缘的盐分累积。但在降雨充沛的地区,雨水可以淋洗盐分。如在我国南方地区田间应用灌溉施肥,则不存在土壤盐分累积的问题。而在大棚中多年应用滴灌施肥,盐分累积问题比较突出。

图1-17 滴灌施肥后产生的地表盐斑

(7)有可能污染灌溉水源。施肥设备与供水管道联通后,在正常的情况下,肥液被灌溉水带到田间。但若发生特殊情况如事故、停电等,则有时系统内会产生回流现象,这时肥液可能被带到水源处。另外,当饮用水与灌溉水用同一主管网时,如无适当措施,肥液也可能进入饮用水管道,这些都会造成对水源水的污染。但在设计和应用时采取一定的安全措施,如安装逆止阀、真空破坏阀等,就可避免污染的发生。

三、水肥一体化技术的发展历史

水肥一体化技术是现代集约化灌溉农业的一个关键因素,它起源于无土栽培(也叫营养液栽培)的发展。18世纪末,英国的乌特渥尔特(John Woodward)将植物种植在土壤的提取液中,这是第一个人工配制的水培营养液。19世纪中期,法国的布森高(Jean Baptiste Boussingault)利用惰性材料做植物生长介质并以含有已知化合物的水溶液供应养分,从而确定了9种植物必需营养元素,并阐明了植物最佳生长所需的矿质养分比例。后来,撒奇士(von Sachs)提出了能使植物生长良好的第一个营养液的标准配方。在1925年以前,营养液只用于植物营养试验研究,并确定了许多营养液配方(如霍格兰营养液配方,1919)。

1925年温室工业开始利用营养液栽培取代传统的土壤栽培。“营养液栽培”(hydroponics)

这个词最初是指没有用任何固定根系基质的水培;之后,营养液栽培的含义扩大了,指不用天然土壤而用惰性介质如石砾、砂、泥炭、蛭石或锯木屑和含有植物必需营养元素的营养液来种植植物。现在一般把固体基质栽培类型称为无土栽培,无固体基质栽培类型称为营养液栽培。

第二次世界大战加速了无土栽培的发展,成为美军新鲜蔬菜的重要来源。第一个大型营养液栽培农场就建在南大西洋荒芜的阿森宣岛上,这项采用粉碎火山岩做生长基质的技术后来也应用到其它太平洋岛屿如冲绳岛和硫黄岛。二战后美军在日本调布建起了一个22公顷的无土栽培生产基地。

20世纪50年代,无土栽培的商业化生产开始在荷兰、意大利、西班牙、法国、英国、德国、瑞典、苏联和以色列发展。之后,中东、阿拉伯半岛的沙漠地区、科威特和撒哈拉沙漠以及中美洲、南美洲、墨西哥和委内瑞拉海岸的阿鲁巴和库拉考地区也开始推广无土栽培技术。在美国,无土栽培生产主要集中于伊利诺伊斯州、俄亥俄州、加利福尼亚州、亚利桑那州、印地安那州、密苏里州和佛罗里达州。全美国有上百万家庭式无土栽培装置。在俄罗斯、法国、加拿大、南非、荷兰、日本、澳大利亚和德国等国家也可见到这种家庭无土栽培装置。

塑料容器和塑料管件的发展以及平衡的营养液配方促进了无土栽培的进一步发展,生产成本和管理费用都大大降低。

20世纪50年代中期,美国进行灌溉施肥的规模很小,只在地面灌溉、漫灌和沟灌中应用。当时最常用的肥料有氨气、氨水和硝酸铵,由于灌溉水的利用率很低,使得肥料的氮利用率也很低。随着波涌灌的发展,地面灌溉的水分供应更加精确,紧接着又应用波涌阀注入肥料,这项技术极大地提高了地面灌溉的肥料利用率。在荷兰,从20世纪50年代初以来,温室数量大幅增加,通过灌溉系统施用的肥料量也大幅增加,水泵和用于实现养分精确供应的肥料混合罐也得到研制和开发。

自20世纪60年代初起,以色列开始普及水肥一体化灌溉施肥技术。全国43万公顷耕地中大约有20万公顷应用加压灌溉系统。果树、花卉和温室作物都是采用水肥一体化灌溉施肥技术,而大田蔬菜和大田作物有些是全部利用水肥一体化灌溉施肥技术,有些只是某种程度上应用,这取决于土壤本身的肥力和基肥施用。滴灌湿润的土壤范围很小,根系要吸收充足的养分则需要水和养分的同步供应。在其它微灌系统中,如喷灌和微喷灌系统,水肥一体化灌溉施肥技术对作物的作用效果也很好。随着喷灌系统由移动式转为固定式,水肥一体化灌溉施肥技术也被应用到喷灌系统中。20世纪80年代初,开始将水肥一体化灌溉施肥技术应用到自动推进机械灌溉系统。现在,以色列农业灌溉面积(除辅助灌溉外)有90%以上采用水肥一体化灌溉施肥技术。最初,由于使用肥料罐,灌溉施肥的养分分布不均匀;后来采用文丘里施肥器和水压驱动肥料注射器,养分分布较为均衡;引入全电脑控制的现代水肥一体化灌溉施肥技术设备,养分分布的均匀度得到显著提高。

滴灌是目前应用最广泛、最节水的灌溉技术。通过滴灌施肥肥料利用率最高,最容易实现养分

的精确调控。滴灌是怎么产生的?滴灌的构想产生于20世纪30年代初的以色列。当时恩格.申巴.布拉斯先生受邀去滨海地带的一个小农场参加傍晚茶会。他发现主人的众多葡萄柚中有一棵长得特别大,但是这棵树并没有明显的灌溉水源。经过进一步调查,他发现一条通往房子的很细的饮用水铁管在此处有一个小裂口,从这个裂口处有水滴滴出。流出的水可湿润范围仅为25厘米,而这棵树的树冠直径为10米。这么大一棵树竟能从容积如此小的土壤中获得所需水分,这个现象触发布拉斯先生产生滴灌的想法。不幸的是,那时研究滴灌存在许多实际困难,以致于这个想法无法实现。但是17年后,即1959年,塑料管的应用使这个想法的实现成为可能。经过3年的反复试验,最后终于成功了。与喷灌和沟灌相比,应用滴灌的番茄产量增加一倍,黄瓜产量增加了两倍。

这项新灌溉技术的一个关键问题是养分的供应问题。它湿润的土壤容积只是耕作层的一小部分,特别是砂土条件下,这个问题更为明显。因此若在土壤表面撒施肥料,大部分肥料仍留在土壤表面而不能被植物利用。在初始阶段,通过灌溉系统进行施肥有两种方法。一种是利用喷雾泵将肥料溶液注入灌溉系统;另一方法是将灌溉系统的水引到装有水和固体肥料的容器内,然后又回到灌溉系统内。这两种施肥方法虽然简单但不精确,但是应用这两种施肥方法后产量可显著增加。

20世纪60年代末,以色列由于出口花卉的需要,温室面积开始扩大。滴灌与施肥技术的结合极大地加速这个密集的、高投入的种植产业体系的发展。同时生产蔬菜和大田作物的农户也开始应用水肥一体化灌溉施肥技术。

20世纪60年代中期,随着滴灌的发展,应用肥料罐施肥是主要的施肥方法。一些温室应用两用途的喷雾泵来进行喷施农药和灌溉施肥,而果园则应用移动式喷雾器将肥料溶液直接注入灌溉系统。20世纪70年代初,液体肥料的应用促进了水力驱动泵的发展。第一种开发的水力驱动泵为膜式泵,它将肥料溶液从一个敞开的容器中抽取后再注入灌溉系统,这种泵产生的压力是灌溉系统中压力的两倍。第二种水力驱动泵为活塞泵,依靠活塞来进行肥料溶液的吸取和注入。这些肥料泵的应用实现了水和肥料的同步供应。同样在20世纪70年代初,开始应用低流量的文丘里施肥器,主要应用于苗圃和盆栽温室。它的应用解决了早期肥料泵的一个主要缺点,即在低流量时的不精确性。在有电的地方,主要在温室内,电驱动的肥料泵可以对肥料溶液进行精确供应。20世纪90年代初,用于精确施用低中流量肥料溶液的新型肥料泵得到发展。

在肥料施用量的控制方面,随着施肥设备的不断更新,对肥料用量的控制也越来越精确。最初需要手工来调节肥料罐的进流量和出流量,后来应用机械化设备来自动控制水和肥料的同步供应。现在已有非常复杂的控制设备,如计算机与监控肥料混合罐的酸度计、电导率仪及灌溉控制器相连接,实现对肥料用量更为精确的控制,如在温室中施肥机的应用等。

除施肥设备上不断的更新和完善外,用于灌溉施肥的专用肥料也得到大力发展。在众多的肥料

类型中,液体肥料最适合用于灌溉施肥。在以色列,液体肥料占总肥料的80%以上,美国液体肥料占总肥料的38%以上,目前仍在继续增长。

目前,在一些水肥一体化灌溉施肥技术发达的国家(如以色列、美国、澳大利亚、西班牙、荷兰、塞浦路斯等),已形成了完善的设备生产、肥料配制、推广和服务的技术体系。他们的设备和技术除满足于国内市场外,现正大力寻求海外市场。

我国水肥一体化技术的发展相比发达国家来讲要迟近20年。现普遍的看法是从1974年开始。当年我国引进了墨西哥的滴灌设备,试验点仅有3个,面积约5.3公顷,试验取得了显著的增产和节水效果。1980年我国第一代成套滴灌设备研制生产成功。

1981年后,在引进国外先进生产工艺的基础上,我国灌溉设备的规模化生产基础逐步形成,在应用上由试验、示范到大面积推广,取得显著的节水和增产效益。在进行节水灌溉试验的同时,开始开展水肥一体化灌溉施肥的试验研究。

从20世纪90年代中期开始,灌溉施肥的理论及应用技术日趋被重视,技术研讨和技术培训大量开展。2000年开始至今,全国农技推广中心节水处每年在我国不同地区举办灌溉施肥技术培训班(最初的几届与国际钾肥研究所(IPI)合办),由国内外专家系统地介绍灌溉施肥的理论和技术。灌溉施肥的面积逐步扩大。特别是温室及大棚蔬菜的生产,推动了水肥一体化技术的不断完善和发展。一些研究单位和企业结合,研究开发出适合当地条件的施肥设备和灌溉技术,如压差施肥罐、文丘里施肥器、移动式灌溉施肥机、施肥综合控制系统、重力自压施肥系统、泵吸施肥法、泵注肥法、膜下滴灌施肥技术等。

当前水肥一体化灌溉施肥技术已经由过去局部试验示范发展为大面积推广应用,辐射范围由华北地区扩大到西北干旱区、东北寒温带和华南亚热带地区,覆盖了设施栽培、无土栽培、果树栽培,以及蔬菜、花卉、苗木、大田作物等多种栽培模式和作物。在经济发达地区,水肥一体化技术的水平日益提高,涌现了一批设备配置精良、并实现了专家系统智能自动控制的大型示范工程。部分地区因地制宜实施的山区重力自压滴灌施肥、瓜类栽培吊瓶滴灌施肥、华南地区利用灌溉系统施用有机液肥等技术形式使水肥一体化技术日趋丰富和完善,形成了适合中国国情的、有中国特色的水肥一体化技术体系。特别是新疆地区的膜下滴灌施肥技术处于世界领先水平。除在棉花上大面积应用外,目前已推广到加工番茄、色素菊、辣椒、玉米、蔬菜、瓜类、花卉、果树、烤烟等作物,推广面积达几千万亩。

水肥一体化技术应用与理论研究逐渐深入,由过去侧重土壤水分状况、节水和增产效益试验研究,逐渐发展到灌溉施肥条件下的水肥耦合效应、作物生理及产品产量与品质的影响、养分在土壤

中运移规律等方面的研究;由单纯注重灌溉技术、灌溉制度转变到灌溉与施肥的综合运筹。我国灌溉施肥总体水平,已从80年代初级阶段发展提高到中级阶段。其中,部分微灌设备产品性能、大型现代温室装备和自动化控制已基本达到目前国际先进水平。微灌工程的设计理论及方法已接近世界先进行列;微灌设备产品和微灌工程技术规范,特别是条款的逻辑性、严谨性和可操作性等方面,已跃居世界领先水平。但是,从整体上分析,我国水肥一体化灌溉施肥技术系统的管理水平相对较低;应用灌溉施肥技术面积所占比例小,水肥结合理论与应用研究成果较少,深度不够;灌溉施肥用的专用肥料的研究和开发刚刚起步,某些微灌设备产品特别是首部配套设备的质量与国外同类先进产品相比仍存在较大差距。

四、水肥一体化技术研究和推广应用中存在的问题

1.我国设施灌溉技术的推广应用还处于起步阶段。设施灌溉面积不足总灌溉面积的3%,与经济发达国家相比存在巨大差异,在设施灌溉的有限面积中,大部分没有考虑通过灌溉系统施肥。即使在最适宜用灌溉施肥技术的设施栽培中,灌溉施肥面积也仅占20%左右。水肥一体化技术的经济和社会效益尚未得到足够重视。

另外,多数种植者对水肥一体化灌溉施肥技术存在认识上的偏差。目前,多数种植业者或管理人员对滴灌等灌溉形式的认识还停留在原有基础上,如由于设计不合理、管理不善等引起的滴头堵塞等问题,进而对水肥一体化技术本身加以否定;再有就是在他们的潜意识中,滴灌是将灌溉水一滴一滴滴下去,灌水量太少,根本满足不了作物生长的需要;对国外技术的过分依赖,认为只有使用国外的产品、让国外的技术人员来进行规划、设计、安装才是可行的,从而无形之中增加了水肥一体化技术的应用成本和推广难度。

2.灌溉技术与施肥技术脱离。由于管理体制所造成的水利与农业部门的分割,使技术推广中灌溉技术与施肥技术脱离,缺乏行业间的协作和交流。懂灌溉的不懂农艺、不懂施肥,而懂得施肥的又不懂灌溉设计和应用。目前,灌溉施肥面积仅占微灌总面积的30%,远远落后于先进国家(以色列为90%,美国为65%)。我国微灌工程首部有相当部分都设计有施肥配置,但大部分闲置不用。作者的调查表明,主要是设计者不懂得如何施肥(如施肥量和肥料浓度的确定),又害怕承担责任(万一肥浓度过高将作物烧死要赔偿),导致多数用户仍然沿用传统的人工施肥方法,灌溉系统效益没有得到充分发挥。即便是在有些示范园区,虽然安装了先进的施肥装备,如成套施肥机等,但因所选择肥料与之并不匹配,也难以体现水肥一体化技术的应有价值。与此同时,结合中国国情的灌溉与施肥结合的综合应用技术的研究也严重不足。这就使得广大用户一方面在到处寻找先进的技术和管

理模式,另一方面摆在眼前的技术又不知如何合理应用,阻碍生产的发展。

3.灌溉施肥工程管理水平低。目前我国节水农业中存在“重硬件(设备)、轻软件(管理)”问题。特别是政府投资的节水示范项目,花很大代价购买先进设备,但建好后由于缺乏科学管理或权责利不明而不能发挥应有示范作用。灌溉制度和施肥方案的执行受人为因素影响巨大,除了装备先进的大型温室和科技示范园外,大部分的灌溉施肥工程并没有采用科学方法对土壤水分和养分含量、作物营养状况实施即时监测,多数情况下还是依据人为经验进行管理,特别是施肥方面存在很大的随意性。系统操作不规范,设备保养差,运行年限短。

4.水肥一体化设备生产技术装备落后,针对性设备和产品的研究和开发不足。我国微灌设备目前依然存在微灌设备产品品种及规格少、材质差、加工粗糙、品位低等问题。其主要原因是设备研究与生产企业联系不紧密,企业生产规模小,专业化程度低。特别是施肥及配套设备产品品种规格少,形式比较单一,技术含量低;大型过滤器、大容积施肥罐、精密施肥设备等开发不足。

5.灌溉施肥研究和技术培训不足。目前,在中国大部分农业大学尚未设置水肥一体化方面的专门课程,农业技术推广部门也缺乏专业推广队伍。在研究方面人力物力投入少,对农业技术推广人员和农民缺乏灌溉施肥专门知识培训,同时也缺乏通俗易懂的教材、宣传资料等。

6.缺乏综合型专门技术人才。灌溉施肥技术涉及农田水利、灌溉工程、作物、土壤、肥料等多门学科,需要综合知识,应用性很强。但我国目前有这些基础知识的综合性人才奇缺,现有的农业从业人员(包括管理人员、农技人员及农民)的专业背景又存在较大差异,即使有部分人士意识到水肥一体化技术的重要性,但到哪里去寻找技术援助仍是一大问题。如一些研究单位或灌溉公司的农业工程技术人员可以设计单纯的灌溉系统,但对施肥部分不熟悉,也就不能使灌溉施肥系统真正发挥其应有的作用。

7.由于技术问题的疏漏所导致的负效应影响了普及推广。灌溉施肥技术相对较复杂,在某些示范项目实施中,由于系统设计、设备选用、过滤、以及肥料施用等问题,造成了灌溉施肥系统效益低甚至失败,给推广带来阻力。如有的设计不合理,大量消耗电力;有的管理不善,没有很好地发挥过滤系统的作用,造成滴头堵塞最终使系统报废。过量灌溉导致肥料淋失,结果作物长势差、叶发黄。

8.缺少专业公司的参与。虽然在设备生产上我国己达到先进水平,国产设备可以满足市场需要,但技术服务公司非常少,而在水肥一体化技术普及的国家,则有许多公司提供灌溉施肥技术服务。水肥一体化技术是一项综合管理技术,它不仅需要有专业公司负责规划、设计、安装,还需要有相关的技术培训、专用肥料的供应、农化服务等。如在实践过程中,有用户在施用氯化钾的同时施用硫酸镁,结果很快形成微溶于水的硫酸钾,久而久之便造成过滤器、滴头的堵塞,影响系统的正常

工作。同时,我国的灌溉设备企业主要集中在长江以北,而华南地区在农业方面比较专业的灌溉设备公司则很少,因此,辖区内灌溉施肥设备的选择要么主要从北方购买,要么依赖进口,这无形之中增加了高额的运输费用,进而增加系统的投资成本。

9.灌溉施肥技术的成本较高,而农产品价格偏低,这是目前技术推广的最大障碍。农业生产本身也是一项经济活动。一项技术再好,如果用户不能产生经济效益也无法推广开去。目前,我国绝大部分的农用水是不收费或很低收费,因此,从节水角度鼓励农民使用节水灌溉收效不大,绝大部分是从节肥省工高效来考虑。但目前较高的成本使他们犹豫再三,不敢尝试。水肥一体化灌溉施肥技术是一项综合管理技术措施,涉及到多项成本构成,具体有:

(1)设备成本包括设备来源(国产或进口)、系统寿命的长短、自动化程度的高低、材料的等级及规格等。以滴灌管为例,有些可以用15年以上,有些只能一年半载;同样的材料有些管壁厚有些壁薄;对内置滴灌管而言,滴头间距越小,成本越高。很显然,寿命长、管壁厚、滴头间距小的滴灌管价格就要高。

(2)水源工程在水肥一体化系统的规划设计中,只要是符合农田灌溉水质标准的水都可以作为灌溉水源,如河水、井水、水库水、池塘水、湖水、降水等。很显然,水源工程越复杂,花费越多。一些地方需要打深井,一些要建引水渠,修蓄水池,拉电源等,所涉及的成本差异大。

(3)作物种类包括种植作物的种类、行间距、年龄等。如单位面积茶园应用滴灌技术的成本要高于苹果,因为茶的行距远小于苹果,需要更多的滴灌管。蔬菜通常比果树成本高。

(4)地形及土壤条件如土壤质地、地形坡度等。很显然在复杂的地形条件下可能需要消耗更多的材料且增加安装成本。与平坦地带相比,当高差很大时要用压力补偿式滴灌管,增加成本。土壤质地与滴头间距有关,砂土间距小,滴头多,相应成本增加。

(5)地理位置交通不便的地方材料购置与运输困难,通常会大幅度增加系统成本。

(6)系统规划设计一般来说,合理的设计可节省材料,系统的安装和运行成本相对较低;而不合理的设计通常导致材料的浪费,系统运行成本也会相应增加。

(7)系统所覆盖的种植区域面积一般来说,无论种植区面积大小,都必须至少有一套灌溉施肥首部系统。面积越大,首部系统分摊到单位面积的成本就越少。

(8)肥料在系统运行过程中,肥料的选择有多种,有普通肥或专用肥、进口肥或国产肥之分。一般而言,用普通肥料自行配肥是便宜的。但配肥需要有专业知识。

(9)施肥设备和施肥质量要求在施肥设备中,既有简易的、低成本施肥装置,也有复杂的、价格相对昂贵的施肥机等。在施肥方式上,有按比例施肥和按数量施肥两种。总体而言,按比例施肥用的设备要比按数量施肥用的设备昂贵。

(10)设备公司的利润

(11)销售公司的利润包括灌溉材料、施肥设备、肥料等的利润。

(12)安装公司的利润等

因上述每项都是一个变数,要确定某一灌溉施肥系统的详细成本需视具体情况而定。正如建房子,相同面积的房子价格可以相差几十上百倍,但房子居住的基本功能却是相似的。随着我国水肥一体化技术的发展,市场会越来越成熟,灌溉施肥的模式也会越来越多,成本也将越来越低。在目前情况下,水肥一体化技术可以优先用在经济效益较好的作物上(如花卉、果树、蔬菜、药材、烟草、棉花、茶叶及其它特产经济作物等)。

五、水肥一体化技术的应用前景

水肥一体化技术是现代农业生产中最重要的一项综合管理技术措施之一。具有显著的节水、节肥、节能、省工、高效、环保等诸多特点和优点,使该技术在世界范围内得到快速推广应用。欧洲很多地区并不缺水,但仍采用水肥一体化技术,考虑的是该技术的其它优点,特别是对环境的保护。

我国作为世界最大发展中国家,拥有占世界人口25%的人口,人口众多但资源有限,社会生产发展受到包括气候条件、水、肥、劳动力、土地等资源短缺的制约。

我国的可耕种土地面积非常有限,其中绝大部分是比较贫瘠的,这就意味着有相当大一部分的土地需要水分和养分的补充。在可耕种土地当中,灌溉耕地面积约占43%,57%是靠自然降水。但是雨水的季节性分布不均,大部分降雨发生在夏季和秋季;旱灾发生频率很高,几乎覆盖了全国的各个农业生态区,特别是在我国北方和南方的部分地区,干旱缺水的情况比较严重,如被认为雨水充足的广东、海南,虽然年均降雨量在1800毫米以上,但连年的秋冬连旱或秋冬春连旱已成为农业生产发展的最主要限制因素之一。

我国又是世界化肥消耗大国,单位面积施肥量居世界前列,养分利用率不高。从全国的情况看,一是不同地区的施肥水平不均衡,西部和北部地区施肥水平相对较低,而在南方和蔬菜生产中则施肥过量;二是养分的分布不均衡,有些地方过多地使用氮肥,导致氮、磷、钾比例失调,而有些地方虽注意了氮、磷、钾肥的平衡施用,但大量元素肥料和中微量元素肥料之间的比例失衡,严重影响作物产量和产品质量的提高;三是施肥技术比较落后,大多数地区依然使用传统的施肥方式,如肥料撒施或大水冲施,这种施肥方式导致肥料利用率低下,不仅浪费大量的肥料资源,也引起大量的能源损失。而肥料资源的浪费则意味着对水体、土壤或大气的污染,是对环境的破坏。因此,在农业生产中,如何提高水肥利用率,不仅体现在节约水肥资源、降低农业生产能耗,还体现在如何

减少对环境的破坏与污染、保护我们的生存环境。

随着我国经济的发展,劳动力短缺现象将愈加明显,劳动力价格也将越来越高,这在无形中增加了生产的成本。据调查,在现有的农业生产中,真正在生产一线从事劳动的主要是40岁上下的妇女,而青壮年所占的比例很小,劳动力群体结构明显不合理、年龄断层严重。可以预见,在未来的若干年以后,一旦现有的这部分从业人员不再劳作,将很难有人来替代她们的工作,劳动力矛盾将更加突出;再有,现在的劳动力薪酬已是5年前的两倍甚至更高,按这种发展速度,有朝一日,这一成本将使不断增长的生产成本不堪重负。因此,在我国传统的“精耕细作”农业逐步向“集约化农业”转型的今天,如何实现高效低成本的生产将是每个经营者都必须考虑的问题。

上述诸多因素的分析,让我们看到在我国发展水肥一体化技术的重大意义和美好前景,它的合理应用将有利于从根本上改变传统的农业用水方式,大幅度提高水资源利用率;有利于从根本上改变农业的生产方式,提高农业综合生产能力;有利于从根本上改变传统农业结构,大力促进生态环境保护和建设,最终实现农产品竞争力增强、农业增效和农民增收的目的。

小结:

水肥一体化技术是现代种植业发展的一项综合管理措施。它是在灌溉的同时,通过灌溉设施将肥料输送到作物根区的一种施肥方式,具有显著的节水、节肥、省工、高效、优质、环保等优点。其理论基础是植物营养学的质流和扩散理论。水肥一体化技术能提高肥料利用率的关键是促进了养分的吸收。由于劳力短缺、水资源短缺及国家对灌溉设备的补贴,该技术具有广阔的发展前景。

水肥一体化技术

水肥一体化技术 水肥一体化技术是将灌溉与施肥融为一体的农业新技术。水肥一体化是借助压力灌溉系统,将可溶性固体肥料或液体肥料配兑而成的肥液与灌溉水一起,均匀、准确地输送到作物根部土壤。采用灌溉施肥技术,可按照作物生长需求,进行全生育期需求设计,把水分和养分定量、定时,按比例直接提供给作物。压力灌溉有喷灌和微灌等形式,目前常用形式是微灌与施肥的结合,且以滴灌、微喷与施肥的结合居多。微灌施肥系统由水源、首部枢纽、输配水管道、灌水器四部分组成。水源有:河流、水库、机井、池塘等;首部枢纽包括电机、水泵、过滤器、施肥器、控制和量测设备、保护装置;输配水管道包括主、干、支、毛管道及管道控制阀门;灌水器包括滴头或喷头、滴灌带。 一、适宜范围 该项技术适宜于有井、水库、蓄水池等固定水源,且水质好、符合微灌要求,并已建设或有条件建设微灌设施的区域推广应用。主要适用于设施农业栽培、果园栽培和棉花等大田经济作物栽培,以及经济效益较好的其他作物。 二、技术要点 1.微灌施肥系统的选择 根据水源、地形、种植面积、作物种类,选择不同的微灌施肥系统。保护地栽培、露地瓜菜种植、大田经济作物栽培一般选择滴灌施肥系统,施肥装置保护地一般选择文丘里施肥器、压差式施肥罐或注肥泵。果园一般选择微喷施肥系统,施肥装置一般选择注肥泵,有条件的地方可以选择自动灌溉施肥系统。 2.制定微灌施肥方案 (1)微灌制度的确定 根据种植作物的需水量和作物生育期的降水量确定灌水定额。露地微灌施肥的灌溉定额应比大水漫灌减少50%,保护地滴灌施肥的灌水定额应比大棚畦灌减少30%-40%。灌溉定额确定后,依据作物的需水规律、降水情况及土壤墒情确定灌水时期、次数和每次的灌水量。以褐土区重壤土设施栽培番茄为例,微灌制度见表1。 表1 设施栽培番茄微灌灌溉制度 (2)施肥制度的确定 微灌施肥技术和传统施肥技术存在显著的差别。合理的微灌施肥制度,应首先根据种植作物的需肥规律、地块的肥力水平及目标产量确定总施肥量、氮磷钾比例及底、追肥的比例。作底肥的肥料在整地前施入,追肥则按照不同作物生长期的需肥特性,确定其次数和数量。实施微灌施肥技术可使肥料利用率提高40%-50%,故微灌施肥的用肥量为常规施肥的50%-60%。仍以设施栽培番茄为例,目标产量为10000公斤/亩,每生产1000公斤番茄吸收 N:3.18公斤、P 2O 5 :0.74公斤、K 2 O:4.83公斤,养分总需求量是N:31.8公斤、P 2 O 5 :7.4 公斤、K 2 O:48.3公斤;设施栽培条件下当季氮肥利用率57%-65%,磷肥为35%-42%,钾肥为 70%-80%;实现上述产量应亩施N:53.12公斤、P 2O 5 :18.5公斤,K 2 O:60.38公斤,合计132

水肥一体化技术应用的现状及发展前景

水肥一体化技术应用的现状及发展前景 【摘要】近来随着我国经济的加速发展,农业的进程也逐渐加快,对农业方面的要求也越来越高。农业生产从种植到收获,以及对土地的状况都要进行极为高效有益的评估,所以本文重点介绍了水肥一体化在国内外的发展现状,多角度的分析其优点,同时也找出了其中的局限性,积极展望了该技术的应用前景。 【关键词】水肥一体化;应用现状;发展前景 在我国,水肥一体化技术又称微灌施肥技术,其主要的机制是借助压力系统,或者借助地形自然落差,充分结合微灌和施肥技术,以水为载体,灌溉同时施肥,结果达到水和肥一体化利用,水和肥的管理更高效,当然,也可以根据不同作物的特点,如植物的需肥特点,对土壤环境的要求,以及养分含量的具体状况进行设计。可以满足作物的生育期需水和需肥规律,使水和肥料以最优质的结合在土壤中被作物吸收和利用。 1、水肥一体化技术国内外发展及应用现状 1.1国外应用与发展状况 水肥一体化的进程在以色列表现的较为经典。20世纪中期,伴随着国家的塑料工业的发展开始发展滴灌开始使用水肥一体化的技术。如今的以色列,该技术广泛应用于各个方面,果园,温室,大田以及绿化等,使用的面积以及占灌溉面积的一半以上,位居世界之首。在世界范围上的水肥一体化技术,大都广泛应用在干旱缺水和经济发达的地区和国家[1]。 1.2我国应用与发展状况 我国最早应用的水肥一体化技术是引进于墨西哥,1974年引进的滴灌设备试点的面积达到了5.3hm,从此以后该滴灌技术开始得到了进一步的研究。十年后的1998年,我国就自主研制出了第1代滴灌设备。自此以后,随着我国引进的先进生产工艺技术,规模化的灌溉生产也在我国逐步的形成。水肥一体化的技术在应用上逐渐从试验和示范田推广到到大面积的应用。到了20世纪后期,水肥一体化的技术愈来愈得到高度的重视,我国组织专业的人员开展该技术的技术培训,并拨款进行研讨。2000年水肥一体化的技术培训和指导得到进一步的发展,中央农业部的全国农业技术推广中心参与国际合作,连续5年在我国举办水肥一体化技术培训班,该次培训的指导专家是国内外的一级专业人员,将理论技术和实际操作结合在一起,加大了微灌施肥的面积[2]。当前。水肥一体化技术已经由过去的局部试验、示范发展,成为现在的大面积推广应用,辐射范围从华北地区扩大到西北旱区、东北寒温带和华南亚热带地区。覆盖设施栽培、无土栽培、果树栽培,以及蔬菜、花卉、苗木、大田经济作物等多种栽培模式和作物,特别是西北地区膜下滴灌施肥技术处于世界领先水平。为了响应国家“菜篮子工程”以及省农业厅“百万亩设施蔬菜工程”规划。加快发展设施蔬菜产业,丰富城

第一章 水肥一体化技术基本原理

第一章水肥一体化技术简介 一、水肥一体化技术的基本概念 作物生产的目标是用更低的生产成本去获得更高的产量、更好的品质和更高的经济效益。从作物的生长要素来看,其基本生长要素包括光照、温度、空气、水分和养分。在自然生长条件下,前三个因素是人为难以调控的,而水分和养分因素则可人为调控。因此,要实现作物的最大生产潜力,合理调节水肥的平衡供应非常重要。 在水肥的供给过程中,最有效的供应方式就是如何实现水肥的同步供给,充分发挥两者的相互作用,在给作物提供水分的同时最大限度地发挥肥料的作用,实现水肥的同步供应,即水肥一体化技术。那么,什么是水肥一体化技术呢?狭义讲,就是把肥料溶解在灌溉水中,由灌溉管道带到田间每一株作物,以满足作物生长发育的需要。如通过喷灌及滴灌管道施肥。 图1-1 雷州半岛的香蕉园通过滴灌施用硫酸钾镁肥

图1-2 山地砂糖桔果园通过滴灌系统施用氯化钾 图1-3 内蒙古马铃薯种植区通过滴灌系统施肥的场面 广义讲,就是水肥同时供应以满足作物生长发育需要,根系在吸收水分的同时吸收养分。除通过灌溉管道施肥外,如淋水肥、冲施肥等都属于水肥一体化的简单形式。

图1-4 广东冬种马铃薯地区拖管淋水肥的场景 图1-5 菜农挑担淋水肥的场景

图1-6 海南西瓜种植户通过膜下水带施液体肥的场景 水肥一体化技术是现代种植业生产的一项综合水肥管理措施,具有显著的节水、节肥、省工、优质、高效、环保等优点。水肥一体化技术在国外有一特定词描述,叫“FERTIGATION”,即“FERTILIZATION(施肥)”和“IRRIGATION(灌溉)”各拿半个字组合而成,意为灌溉和施肥结合的一种技术。国内根据英文字意翻译成“水肥一体化”、“灌溉施肥”、“加肥灌溉”、“水肥耦合”、“随水施肥”、“管道施肥”、“肥水灌溉”、“肥水同灌”等多种叫法。“水肥一体化”这个称谓目前被广泛接受,而“管道施肥”笔者认为更加形象贴切,肥料自身不会从管道流动,必须要溶解于水才能随管道流动。这很容易区别于传统的施肥。针对于具体的灌溉形式,又可称为“滴灌施肥”、“喷灌施肥”、“微喷灌施肥”等。 灌溉的理论基础是植物的蒸腾失水及土面蒸发失水,必须要源源不断补充土壤水分作物才能正常生长。而水肥一体化的理论基础是什么呢?这要从植物是如何吸收养分说起。植物有两张“嘴巴”,根系是它的大嘴巴,叶片是小嘴巴。大量的营养元素是通过根系吸收的。叶面喷肥只能起补充作用。施到土壤的肥料怎样才能到达植物的嘴边呢?通常有三个过程。一个叫扩散过程。肥料溶解后进入土壤溶液,靠近根表的养分被吸收,浓度降低,远离根表的土壤溶液浓度相对较高,结果产生扩散,养分向低浓度的根表移动,最后被根系吸收。第二个过程叫质流。植物在有阳光的情况下叶片气孔张开,进行蒸腾作用(这是植物的生理现象),导致水分损失。根系必须源源不断地吸收水分供叶片蒸腾耗水。靠近根系的水分被吸收了,远处的水就会流向根表,溶解于水中的养分也跟着到达根表,从而被根系吸收。第三个过程叫截获,即养分正好就在根系表面而被吸收。扩散和质流是最重要的养分迁移到根表的过程。这两个过程都离不开水做媒介。因此,肥料一定要溶解才能被吸收,不溶

水肥一体化的相关知识

(一)水肥一体化 1、什么是水肥一体化 水肥一体化技术是将灌溉与施肥融为一体的农业新技术。水肥一体化是借助压力系统(或地形自然落差),将可溶性(固体或液体)肥料,按土壤养分含量和作物种类的需肥规律和特点,配兑成的肥液与灌溉水一起,通过可控管道系统供水、供肥,使水肥相融后,通过管道和滴头形成滴灌、均匀、定时、定量,浸润作物根系发育生长区域,使主要根系土壤始终保持疏松和适宜的含水量,同时根据不同的作物的需肥特点,土壤环境和养分含量状况;作物不同生长期需水,需肥规律情况进行不同生育期的需求设计,把水分、养分定时定量,按比例直接提供给作物。 2、水肥一体化使用范围 主要适用于设施农业栽培、果园栽培和棉花等大田经济作物栽培,以及经济效益较好的其他作物。 3、水肥一体化的优缺点 优点:省肥节水、省工省力、降低湿度、减轻病害、增产高效 a、水肥均衡:传统的浇水和追肥方式,作物饿几天再撑几天,不能均匀地“吃喝”。而采用滴灌,可以根据作物需水需肥规律随时供给,保证作物“吃得舒服,喝得痛快”! b、省工省时:传统的沟灌、施肥费工费时,非常麻烦。而使用滴灌,只需打开阀门,合上电闸,几乎不用工。 c、节水省肥:滴灌水肥一体化,直接把作物所需要的肥料随水均匀的输送到植株的根部,作物“细酌慢饮”,大幅度地提高了肥料的利用率,可减少30~50%的肥料用量,水量也只有沟灌的30%-40%。 d、减轻病害:大棚内作物很多病害是土传病害,随流水传播。如辣椒疫病、番茄枯萎病等,采用滴灌可以直接有效的控制土传病害的发生。滴灌能降低棚内的湿度,减轻病害的发生。 e、控温调湿:冬季使用滴灌能控制浇水量,降低湿度,提高地温。传统沟灌会造成土壤板结、通透性差,作物根系处于缺氧状态,造成沤根现象,而使用滴灌则避免了因浇水过大而引起的作物沤根、黄叶等问题。 f、增加产量,改善品质,提高经济效益:滴灌的工程投资(包括管路、施肥池、动力设备等)约为1000元/亩,可以使用5年左右,每年节省的肥料和农药至少为700元,增产幅度可达30%以上。

SDNYGC-1-2078-2018 山东省棉花膜下滴灌水肥一体化技术规范

SDNYGC-1-2078-2018 山东省棉花膜下滴灌水肥一体化技术规范 编制人:卢桂菊 所在单位:山东省土壤肥料总站 1.水肥一体化系统配置 水肥一体化系统由水源、首部枢纽、输配水管网、灌水器等部分组成。 灌溉水可利用机井、河流、水库等作为水源,水中泥沙等杂质含量较高时应设置沉砂池并配备相应过滤设备,避免使用pH过高的灌溉水进行膜下滴灌。首部枢纽包括水泵、过滤器、施肥系统、控制设备和仪表等,常用过滤设备包括网式过滤器、叠片式过滤器,含沙多的水源需加装离心过滤器,含苔藓等杂物多的水源需加装介质过滤器,施肥系统包括文丘里施肥器、注肥泵、施肥罐等,系统中应安装阀门、流量和压力调节器、流量表或水表、压力表、安全阀、进排气阀等。输配水管网包括干管、支管、毛管三级管道,灌水器使用滴灌管。 2. 播前准备 (1)耕翻整地,灌水造墒 播种前春耕、春灌。耕翻深度在25~30厘米,当棉田墒情不足时应在棉花播种15~20天前浇水造墒,然后整地保墒等待播种。当0~20厘米土层相对含水量低于70%需灌水造墒。一般每666.7平方米灌水量50~60立方米,盐碱地棉田压碱的每666.7平方米灌水量80~100立方米。但3月底4月初再次压碱的,每666.7平方米灌水40~50立方米。 (2)平衡施足基肥 播前撒施翻入地下,包括全部有机肥和40%的氮肥、磷肥和钾肥、锌硼微量元素肥料或棉花配方肥。 (3)化学除草 播种前用除草剂进行化学除草。选择适宜除草剂,采用拌土(沙)撒施、喷洒地表后耙地混土等方式施用。 (4)地膜准备 使用便于回收的高强度加厚地膜或能够完全降解的地膜。 3.播种 (1)品种选用 根据当地气候、土壤条件选择生育期适宜、丰产潜力大、抗逆性强的品种。棉种纯度达到97%以上,净度99%以上,棉种发芽率93%以上,健籽率95%以

详解水肥一体化四大要点

详解水肥一体化四大要点 水肥一体化能否落地生根,既取决于农民的意愿和接受程度,同时作为一个集成度较高的技术活,其也需要兼顾水源、肥料、农机配套、设备日常维护四大板块的整合。 水源 灌溉水源是指可以用于灌溉的水体,一般分为地表水和地下水两种,主要包括井水、泉水、水库、渠道、江河、湖泊、池塘等,但水质必须符合灌溉水质的要求。 首部建设——遇到“砂水井”怎么办 滴灌首部受水源条件影响最大的是过滤器。过滤器类型主要包括砂介质过滤器、离心过滤器、筛网过滤器和叠片式过滤器等。 地下水源主要包括深水井和浅水井。深水井井深超过20米,水质较好,含砂量较少,一般通过“离心+筛网”或“离心+叠片”二级过滤后即可直接进入灌溉管道。如含砂量较多一般不选用叠片式过滤器,普遍选用“离心+筛网”二级过滤器组合。浅水井井深在20米以内的,水质受地域影响较大,含砂量相对较多,需安装“离心+筛网”二级过滤器组合。如含砂量较大的“砂水井”一般在水源处修建沉淀池,然后通过水泵加压再进行“离心+筛网”二级过滤器组合,或水源经过“离心+筛网”二级过滤器组合后只过滤掉颗粒较大的粗砂,粒径较小的细砂直接进入毛管,灌水完成后打开毛管堵头对管道进行冲洗。 地表水源与地下水源相比不仅含砂量大,同时有机物等杂质含量也较多,因此需在首部修建沉淀池,首部过滤器系统可选用“砂石+筛网”二级过滤组合。 施肥器——哪种价廉物美受农民欢迎 目前市场上的施肥器主要包括压差式施肥罐、注肥泵以及文丘里施肥器等,施肥器的选择主要受轮灌区面积的影响。压差式施肥罐虽然制造简单、价格低廉,但溶液浓度变化大、无法控制、罐体容积有限,添加化肥次数频繁且较麻烦,因此没有得到农民的广泛认可。因此,建议在大田作物应用注肥泵,控制面积200亩左右,一方面操作方便,另一方面可以轻松掌控施肥时间和施肥量。在温室大棚及小面积栽培作物上应用文丘里施肥器,控制面积3亩以内,造价较低且便于安装操作。 输配水管网——管材选择如何因地制宜+ 滴灌输配水管网是由干管、支管、辅管、毛管及各种连接件和控制、调节器按设计要求组合安装而成。干管的选择主要受地形影响,在地势平坦地区,输水干管承压要求大于工作压力即可。山坡地、梯田等有垂直落差的地块,应考虑垂直落差对管道造成的压力,估算方法为每100米垂直落差对管道造成的压力为1兆帕(10个压),输水干管的承压能力应大于工作压力和垂直落差产生的压力之和。对于过滤器以后的管道最好全部采用塑料管,以防

水肥一体化技术应用存在的问题及对策

龙源期刊网 https://www.360docs.net/doc/335267613.html, 水肥一体化技术应用存在的问题及对策 作者:孙彦国 来源:《乡村科技》2017年第29期 [摘要] 在我国南方地区,水肥一体化技术在农业生产中得到了广泛的应用,全面提高了 农作物的产量,也达到了节水灌溉的目的。但是,在这项技术的应用过程中存在一些问题有待解决。基于此,本文对水肥一体化技术在农业生产中应用存在的问题进行深入分析,并结合实际提出有效的改善对策,以期全面提升水肥一体化技术的整体应用水平。 [关键词] 水肥一体化技术;农业生产;节水灌溉 [中图分类号] S275;S147.2 [文献标识码] A [文章编号] 1674-7909(2017)29-69-1 1 水肥一体化技术应用中的不足 1.1 推广宣传力度不够 在对水肥一体化技术进行宣传的过程中,因宣传力度不足,导致广大农户没有真正地认识到这项技术的优势。同时,宣传力度也较为单一,在一定程度上导致农户对于水肥一体化技术的了解及应用缺乏全面性。虽然水肥一体化技术是我国农业部门重点推广的技术,但在实际的宣传过程中宣传力度远远不够,并与相关部门如水利、科技等部门缺乏一定的沟通,导致相关社会人士的参与度较低,因而宣传效果不理想。 1.2 试点工作的开展不够完善 对于水肥一体化技术的应用来说,要想全面推广开来,对于相关的试验工作必须要加大重视力度,通过技术示范来使农户全面了解水肥一体化技术的实际应用效果。但是,在实际的试点示范中,还没有发现比较专业的水肥一体化技术的示范基地,同时也缺乏相关的配套设施设备,这就导致试验效果非常不理想,进而导致农户不能全面了解水肥一体化技术的实际应用效果,因此会阻碍水肥一体化技术的推广与应用。 1.3 水肥资源未得到有效利用 水肥一体化技术应用的主要目的就是节省现阶段我国的水肥资源,以达到全方位满足我国农业灌溉发展的需要。但是,目前在水肥一体化技术的应用过程中,由于节水灌溉方法不够科学合理,导致许多地区的农业用水量仍较大,进而影响了农业总体经济效益的提升。因此,在推广应用水肥一体化技术时,必须重新建立一些基础设施,以提高技术应用效果。 1.4 相关设备研发和市场运行机制不完善

国内外水肥一体化技术发展现状与趋势

第56卷 第6期Vol. 56 No. 6 2018年6月 June 2018农业装备与车辆工程 AGRICULTURAL EQUIPMENT & VEHICLE ENGINEERING doi:10.3969/j.issn.1673-3142.2018.06.004 国内外水肥一体化技术发展现状与趋势 李寒松1,贾振超1, 张锋2,赵峰1,贺晓东1,慈文亮1,李青1,李震3 (1. 250100 山东省 济南市 山东省农业机械科学研究院;2. 250200 山东省 济南市章丘区农业机械管理局; 3. 250100 山东省 济南市 山东农业工程学院) [摘要] 水肥一体化技术是解决我国当前灌溉水肥利用率低、消耗大、污染严重等问题的有效手段,是一 种新型的农业高新实用技术。文章介绍了水肥一体化技术的国内外现状和相关应用装备,分析了现今国内 技术发展的主要问题,并总结了解决途径和发展方向。 [关键词] 水肥一体化技术;现状;趋势 [中图分类号] S365 [文献标识码] A [文章编号] 1673-3142(2018)06-0013-04 Current Development Status and Trend of Fertigation Technology at Home and Abroad Li Hansong1, Jia Zhenchao1, Zhang Feng2, Zhao Feng1, He Xiaodong1, Ci Wenliang1, Li Qing1, Li Zhen3 (1. Shandong Academy of Agricultural Machinery Sciences,Jinan City,Shandong Province 250100, China 2. Zhangqiu District Agricultural Machinery Authority, Jinan City,Shandong Province 250200, China 3. Shandong Agriculture and Engineering University, Jinan City, Shandong Province 250100, China) [Abstract] Fertigation technology is an effective means to solve the current problems of low utilization of irrigation water and fertilizer, large consumption and serious pollution. It is a new type of agricultural high-tech practical technology. This paper introduces the current situation of fertigation technology and related application equipment, analyzes the main problems of domestic technology development, and summarizes the solutions and development direction. [Key words] fertigation technology; current status; trend 0 引言 我国是一个严重缺水的国家,水资源总量仅为世界的6%,我国耕地面积占世界的9%,每年生产占世界26%的农产品,属于水资源严重紧缺的国家。每年灌溉用水缺口300亿 m3以上,同时我国的灌溉水利用系数平均仅为0.3~0.4,仅为发达国家的1/2左右。我国化肥使用量却是世界之最,化肥年用量超 6 000万t,占世界总量的1/3,然而化肥利用率仅为30%,比发达国家低20%。目前这种水肥高消耗、低效率的生产方式已经造成了土壤性状恶化、资源浪费、环境污染、生态破坏等一系列问题,严重制约了我国农业的可持续发展[1]。针对当前问题,水肥一体化技术的进一步发展和推广势在必行。水肥一体化技术将灌溉和施肥融为一体,根据植物所需养分含量和土壤墒情,将可溶性固体肥料或液态肥与灌溉水融合,借助灌溉压力系统控制灌溉强度和灌溉深度,将根据作物要求和土壤养分需求所确定的水肥溶液准确直接输送到作物根系发育生长区域,使作物土壤始终保持作物所需的水分和养分,避免水肥的深层渗漏和超量棵间蒸发,从而达到节水、节肥的目的,改变田间气候,是一种新型的农业高新实用技术。相比一般的水肥施用方法,水的利用率可提高40%~60%,肥料利用率可提高30%~50%,在节水、节肥方面优势明显,是现代化农业发展的必然趋势[2]。为了提升我国水肥一体化的发展水平,本文总结了国内外现状和当前应用装备情况,分析现有问题,并提出问题的解决途径和未来发展趋势。 1 国内外发展现状 1.1 国外发展现状 国外发展水肥一体化技术起步较早,自20世纪30年代就开始研究运用喷灌技术,用于庭院花卉和草坪的灌溉。到20世纪三四十年代,随着金 基金项目:山东省农机装备研发创新计划项目(2017YH004)收稿日期: 2017-08-16 修回日期: 2017-08-25

新型喷灌机水肥一体化技术应用

关键词:喷灌机、卷盘式喷灌机、绞盘式喷灌机、卷盘喷灌机、喷灌设备、长尾词:厂家、价格、哪家好、多少钱、哪家先进、、、等等 企业介绍: 河北农哈哈机械集团有限公司是集农业全程机械化产品研发、生产、销售、服务于一体的行业龙头企业,拥有进出口权,“农哈哈”商标是中国第一个驰名商标。历经37年的发展,产品覆盖耕作、播种、植保、灌溉、收获、粮食烘干六大类农机产品;厂区占地面积300多亩,员工1000余人,产值近3亿元。 2013年,农哈哈公司开始涉足农业节水灌溉领域,并开创了中国智能卷盘式喷灌机的时代,引领国内卷盘喷灌技术的发展潮流;2015年,农哈哈公司从欧洲引进国际先进的喷灌技术,后经研发和创新,成功推出适合中国农业的新型卷盘平移式淋灌机,是国内唯一一家全套引进国外先进喷灌技术并实现国产化的灌溉产品,为中国卷盘式喷灌机贴上了节能、高效、节水的标签。 2017年,农哈哈公司成功开发了智能化固液态施肥机,与新型卷盘平移式淋灌机配套使用,实现水肥一体化作业。目前,在国内是唯一能够在卷盘式喷灌机上应用智能化固液态水肥一体化技术的产品。 新型卷盘平移式淋灌机核心技术: 节能:驱动装置采用扼流(直冲)式水涡轮,水能动力转换率70%以上,相比传统侧冲式水涡轮动力转换提高了约1.5倍,入机水压只需0.25Mpa就可正常喷洒作业。 减速装置采用6档变速齿轮箱,提升传动扭矩,降低驱动力需求;回收速度可调范围4-105米/小时,满足不同作物浇水量需要。 高效:喷洒装置采用40米幅宽30个8毫米口径喷头的淋灌架,出水量50立方米/小时,作业效率2.5-4公顷/昼夜。 节水:淋灌架喷洒装置离地距离约1.5-1.8米之间,低压喷洒,水滴无雾化,水份蒸发小于5%。 应用广泛: 1:抗风性能强:淋灌架喷头离地距离较低约1.5米,且水滴无雾化,在5-6级风天气情况下可正常喷洒作业,特别适合北方地区春季多风天气浇水作业。(配1张风中作业场景图片)

《赣南脐橙水肥一体化技术规范》

《赣南脐橙水肥一体化技术规范》 (草案)编制说明 一、工作简况 1. 任务来源 2014年《赣南脐橙水肥一体化关键技术研究与集成示范》(20141BDH80017)获得江西省对外科技合作计划立项支持。通过项目的前期研发,以及对当前国内水肥一体化应用技术的调研,2016年10月由江西省赣州市质量技术监督管理局提出立项建议,并经省质量技术监督局批准立项(立项编号:赣质监标字[2017]19号)。 2. 主要工作过程 本规程主要依据农业部农业行业标准,结合赣南脐橙水肥管理技术实际,并在多点多年田间试验示范的基础上进行总结分析。在上述一系列工作的基础上,综合草拟了本技术规范草稿。 3. 起草单位与主要起草人 本标准起草单位:国家脐橙工程技术研究中心。 本标准主要起草人:姚锋先,管冠,刘桂东,周高峰,钟八莲。 国家脐橙工程技术研究中心涵盖了育种与栽培技术、病虫害防控技术、商品化处理技术与装备研发、贮藏保鲜与资源综合利用、电子商务与信息化技术等五个研究领域。现有固定人员91人,其中具有高级职称的人员57人,博士学位54人;中组部“国家千人”计划专家1人,享受国务院特殊津贴3人,国家级百千万人才工程人选1人,全国优秀教师1人,教育优秀人才支持计划人员2人,江西省政府特殊津贴3人,“赣鄱英才555工程”领军人才培养计划刚性人才1人,江西省主要学科和学术带头人培养对象4人,江西省杰出青年人才10人,江西省百千万人才工程人选11人,江西省高校教学名师2人,江西省高校中青年学科带头人7人,江西省高校中青年骨干教师5人。研发基地设施面积达15300 平方米,脐橙示范园基地达3057 亩,仪器设备达2000余台(套),价值

水肥一体化技术的应用现状与发展前景

水肥一体化技术的应用现状与发展前景 摘要介绍水肥一体化国内外发展现状,分析其优点及特点,指出其存在的局限性,并对该技术的应用前景进行展望。 关键词水肥一体化;应用现状;优点;发展前景 水肥一体化技术在我国又称为微灌施肥技术,是借助压力系统(或地形自然落差),将微灌和施肥结合,利用微灌系统中的水为载体,在灌溉的同时进行施肥,实现水和肥一体化利用和管理,并根据不同作物的需肥特点、土壤环境和养分含量状况,作物不同生育期需水、需肥规律情况进行需求设计,使水和肥料在土壤中以优化的组合状态供应给作物吸收利用。 1水肥一体化技术国内外发展及应用现状 1.1国外应用与发展状况 20世纪60年代初随着塑料工业的发展,以色列开始发展滴灌。60年代末开始应用水肥一体化技术。目前,以色列在果园、温室、大田、绿化等方面已全面应用此项技术,应用面积占灌溉面积的67.9%,居世界之首。从世界范围看,水肥一体化技术广泛应用于干旱缺水以及经济发达的国家。 1.2我国应用与发展状况 1974年,我国从墨西哥引进滴灌设备,试点总面积5.3 hm2,自此开始滴灌技术的研究工作。1980年,我国自主研制生产了第1代滴灌设备[1]。自1981年后,在引进国外先进生产工艺的基础上,规模化生产在我国逐步形成,在应用上由试验、示范到大面积推广。20世纪90年代中期,我国开始大量开展技术培训和研讨,水肥一体化理论及应用受到重视。2000年开始,农业部全国农业技术推广中心与国际钾肥研究所(IPI)合作,连续5年在我国不同地区举办水肥一体化技术培训班,由国内外专家介绍水肥一体化理论技术和实际操作,促使微灌施肥的面积逐步扩大。当前,水肥一体化技术已经由过去的局部试验、示范发展,成为现在的大面积推广应用,辐射范围从华北地区扩大到西北旱区、东北寒温带和华南亚热带地区,覆盖设施栽培、无土栽培、果树栽培,以及蔬菜、花卉、苗木、大田经济作物等多种栽培模式和作物,特别是西北地区膜下滴灌施肥技术处于世界领先水平。 为了响应国家“菜篮子工程”以及省农业厅“百万亩设施蔬菜工程”规划,加快发展设施蔬菜产业,丰富城乡居民“菜篮子”工程,保障市场供应,促进农民增产增收。近年来,汉中市注重农业生产中开展“水肥”双节技术,在城固、勉县等地进行了设施蔬菜水肥一体化技术宣传、推广,取得了较好的成效。 2水肥一体化技术的优点

水肥一体化主要设施及技术规范

水肥一体化主要设施及技术规范 发表时间:2018-01-25T14:55:30.080Z 来源:《知识-力量》2017年11月上作者:邵凤成 [导读] 主要介绍包括首部枢纽、输配水管网和灌水器3个部分的水肥一体化主要设施及水肥一体化主要技术规范。 邵凤成 天津市武清区种植业发展服务中心天津武清 301700 摘要:主要介绍包括首部枢纽、输配水管网和灌水器3个部分的水肥一体化主要设施及水肥一体化主要技术规范。 关键字:水肥一体化;设施;技术规范 一、水肥一体化采用的主要设施 水肥一体化设备包括首部枢纽、输配水管网和灌水器3个部分。从水源到灌溉点,一般设备的排列顺序是:水泵、逆止阀、施肥(药)装置、压力表、过滤设备、压力表、阀门、流量表、进排气阀、干管、压力调节器、支管、毛管、灌水器。根据微灌施肥首部控制规模和水质,设备的配制方式会有所不同。 (一)首部枢纽: 首部枢纽的作用是从水源取水、增压,并将其处理成符合微灌施肥要求的水流送到系统中去,包括加压设备(水泵、动力机)、过滤设备、施肥(药)设备、控制及测量装置等。 (1)加压设备:加压设备的作用是满足微灌施肥系统对管网水流的工作压力和流量要求。加压设备包括水泵及向水泵提供能量的动 力机。微灌施肥系统常用的水泵有离心泵、潜水泵等,动力机可以使柴油机、电动机等。单户农户小面积施用微灌施肥设备,最好使用变频器。在有足够自然水源的地方可以不安装加压设备,利用重力进行灌溉。 (2)过滤设备:过滤设备的作用是将灌溉水中的固体颗料(砂石、肥料沉淀物及有机物等)滤去,避免污物进入系统,造成系统和 滴头堵塞。过滤设备安装在输配水管道之前。过滤器包括离心式过滤器、砂介质过滤器、网式过滤器、叠片式过滤器等。 (3)施肥设备:包括加压式施肥罐、文丘里注入器、注入泵。 (4)控制和测量装置:包括进排气阀、逆止阀、压力表。 (二)输配水管网: 输配水管网包括干管、支管和毛管,有各种管件、连接件和压力调节器等组成,其作用是向作物输水和配水。管件和连接件在系统中用量较大,选用的规格、质量等直接关系到工程费用、质量和使用寿命。输配水管网系统的干管主要用聚氯乙烯(PVC)管,输配水管网的支管和毛管主要是聚乙烯(PE)管。 (三)灌水器: 作用是将微灌施肥系统中的压力水(肥液)等,通过不同结构的流道或孔口,消减压力,使水流变成水滴、水雾或细流,直接作用于作物根部。 (1)滴头:通过流道或孔口将毛管中的压力水变成滴状或细流状流出的装置称为滴头,单个滴头的流量一般在2~12L/h之间,滴头安装 在微灌施肥管网的毛管上。 ①长流道型滴头:靠水流与流道壁之间的摩阻消能来调节出水量的大小。②压力补偿式滴头:压力补偿滴头是利用水流压力通过滴头内的弹性体(片),使流道形状改变或过水断面面积发生变化,即当水压减少时,过水断面面积增大,水压增大时,过水断面减小,从而使滴头出水量自动保持稳定,同时还具有自清洗功能。 (2)滴灌管(带):滴灌管(带)是将滴头与毛管制成一体,兼有输水和滴水功能。一个是内镶式滴灌管:是指在毛管制造过程中,将预先制造号的滴头镶嵌在毛管内。另一种是薄壁滴灌带。薄壁滴灌带有两种,一种是直接在0.5~1mm的薄壁软管上按一定间距打孔,灌溉水由孔口流出湿润土壤;另一种是在薄壁软管上热合出各种形状的流道,灌溉水通过流道以滴流的形式湿润土壤。 二、水肥一体化主要技术规范 (一)田间播种前处理 做畦栽培:垄高15~20cm,垄宽40cm。密度2500~3000株/667㎡。施底肥:施入腐熟的有机肥5~6m3/667㎡,复合肥50~75kg/667㎡,搅拌均匀,回土起垄,土垄高15-20cm,用平耙整成垄疏背型,然后铺滴灌管、覆膜。 (二)系统设施 微灌系统为滴灌,每畦铺设一条或两条滴灌带(管)。滴头间距与株距相当。施肥装置一般为压差式施肥罐或文丘里施肥器,施肥罐容积15L以上。 (三)肥料选择 水溶性好的固体肥或高浓度的液体肥,如尿素、磷酸二氢钾、硝酸钾、硝酸铵、氢化钾等,或者水溶性专用复合肥(专用配方肥)。推荐选用专用配方肥。 (四)微灌施肥方案 定植后及时浇一次透水,一般灌水20~30m3/667㎡。根据墒情,苗期每5~7天滴灌一次,每次灌水5~8m3/667㎡,果实膨大以后每隔7~10天滴灌一次,每次灌水8~10m3/667㎡。 (五)微灌施肥操作 (1)灌溉操作 灌溉时应关闭施肥罐(器)上的阀门,把滴灌系统支管的控制阀完全打开,按照微灌方案灌溉。灌溉结束时先切断动力。然后立即关闭控制阀。滴灌湿润深度一般为30cm。滴灌的原则是少量多次,不要以延长滴灌的时间达到多灌水的目的。 (2)施肥操作 先将肥料溶解于水,也可在施肥前一天将肥料溶于水中。施肥时用纱(网)过滤后将肥液导入压差式施肥罐,或倒入敞开的容器中用文丘里施肥器吸入。 压差式施肥法:施肥罐与主管上的调压阀并联,施肥罐的进水管要达罐底。施肥前先灌水20~30分钟,施肥时,拧紧罐盖,打开罐的

水肥一体化的技术要点

水肥一体化的技术要点 水肥一体化是借助压力灌溉系统,将可溶性固体或液体肥料溶解在灌溉水中,按作物 的水肥需求规律,通过可控管道系统直接输送到作物根部附近的土壤供给作物吸收。 其特点是能够精确地控制灌水量和施肥量,显著提高水肥利用率。水肥一体化常用形 式有微喷、滴灌、渗灌、小管出流等,在我省小麦、玉米上以微喷灌为主。因其具有 节水、节肥、节地、增产、增效等优势,是一项应用前景广阔的现代农业新技术。 一、水肥一体化工程构成 水肥一体化系统由水源、首部系统、输水管道和微灌带四部分组成。水源包括地 表水和地下水。首部系统主要包括潜水泵、加压泵、逆止阀、过滤器、压力表、水表、排气阀、施肥器、施肥罐或施肥池。输水管道包括干管与支管两级管道。干管可采用 地上软管或地埋硬管两种形式。地上软管多采用PE软管,地埋硬管多采用PVC管材,埋深0.8米,输水支管采用φ63的PE软管,微喷带常采用N65五孔或七孔微喷带。 微喷带铺设长度40~60米,间距1.8米或2.4米,输水支管的最大铺设长度50~70米。 二、水肥一体化肥料选择 1.肥料要求常温下能够具有以下特点:高度可溶性、养分含量高、杂质含量低、 溶解速度快,避免产生沉淀,酸碱度为中性至微酸性。 2.常用肥料有尿素、硫酸钾、溶解度高的复合肥、硝酸钾、硝酸铵等。 三、水肥一体化操作步骤 1.检查 首先检查微喷带的阀门状态,需要灌溉的地块开启,其他地块阀门全部关闭。应 根据机井的出水量和压力情况估算1个灌溉单元的微喷带条数。例如潜水泵出水量为 45立方米/小时,微喷带的喷水量10立方米/100米/小时,总微喷带应开启长度为 450米,单条微喷带长度50米,应开启9条,为防止压力过大造成爆带或接头憋开,实际应先开启10~11条。 2.启动 先开启潜水泵,待水充满微喷带并喷起后,再开启管道加压泵。根据实际压力状态调 整喷灌带开启条数以达到最佳喷水状态,以水雾单侧辐射微喷带间距的1/2左右为合 理状态,喷辐交叉不宜过多。 3.施肥方法

重庆滴灌水肥一体化技术方案.doc

葡萄基地智能水肥一体化 系统建设项目 技 术 方 案 本方案适合于葡萄、草莓、蔬菜等窄株距、小行距的作物。 2017年7月

葡萄水肥一体化系统设计方案 一、设计目标 1、构建一个智能型、经济型的葡萄滴灌施肥系统。该系统可通过田间电磁阀控制滴灌带灌溉,从而达到建设高标准示范基地的目的。 2、设计一个灌溉施肥系统,实现水肥一体化系统;在大大节约人工的同时,提高施肥效率,葡萄长势均匀,品质优,商品率高。 二、基本资料 1、地形 本灌溉区地势落差较大,地形为梯田式倾斜小块,灌溉区内最高点与最低点落差最大可达50m。灌溉区内种植由猕猴桃、香提、枇杷三种作物。猕猴桃GPS 面积4.8公顷,即73亩;其他作物种植GPS面积58亩,由于灌溉区采用同一种灌溉方式来进行灌溉。猕猴桃的种植行距约为其他作物的一半,按约2米的行距铺设滴灌带,即综合灌溉面积约合130亩。 2、水源 水源取自灌区自建水池。蓄水池可由降雨或提灌站引水补给,来水有保障。 3、灌区范围 整个灌区为不规则长楔形图形,葡萄基地种植面积总和约130亩。 4、电源 根据当地情况,灌区需380/220V灌溉电力线(电源电缆线由供方提供)。 4、灌溉类型 该项目为室外山地葡萄灌溉,要求满足园区作物生长所需水分、肥料的同时,兼顾调节园区温湿度、降低病虫害。葡萄采用滴灌带+施肥(根部肥)方式进行灌溉。 三、设计依据 (一)设计依据 1、《节水灌溉工程技术规范》(GB T50363-2006); 2、《喷灌与微灌工程技术管理规程》(SL236-1999); 3、《微灌工程技术规范》(SL103-95);

4.、《灌溉与排水工程设计规范》(GB50288-99) 5、《农田灌溉水质标准》GB5084-92。 (二)滴灌工程技术参数选择 根据以上规范、标准及国内外灌溉技术发展积累多年的经验,技术参数设定: 1、节灌土壤湿润比:P=60%; 2、节灌水利用系数: =0.95; 3、设计灌水均匀度:Eu≥90%; 4、设计湿润深度:Z=0.3m; 5、设计日耗水强度:Ea=5mm/day。 四、灌水器选型及布置方式 1、滴灌带布置及滴灌带选型 项目区葡萄种植制度为中等株行距,株距1.5m×行距2m;园区采取每行葡萄铺设一条滴灌带的毛管布置方式;滴灌带全部采用压力补偿式滴灌带,平地最长铺设距离可达120m,确保项目区溉施肥均匀,葡萄长势均匀,果子商品率高。 2.、滴灌带参数说明 滴头类型工作压力滴头流量湿润直径其他说明 Driplex滴灌带 1.0bar 1.0L/h0.5-0.6m 滴头间距0.3m,美国托罗TORO进口 3、滴灌带系统特点: ①灌溉均匀度超过85%; ②压力补偿能力,即使滴灌带长距离铺设其首尾两 端出水仍然高度均匀; ③结构简单,便于维护; ④灌溉水滴细,防止土壤板节及水流损失,创造良好的生产条件 五、灌水量计算 (一)滴灌供水量 葡萄为窄行距种植,株距1.5m×行距2m,葡萄根据品种不同根系深度约为60-100cm,为中、深根系作物,每两行葡萄布置一条滴灌带,经计算整个灌溉区有27000米滴灌带,滴头间距0.3米,每个滴头流量为1L/小时,则全灌溉区

水肥一体化技术的组成与功能亮点

水肥一体化技术的组成与功能亮点 总述: 水肥一体化技术是将灌溉与施肥融为一体的农业新技术。水肥一体化是借助压力系统(或地形自然落差),将可溶性固体或液体肥料,按土壤养分含量和作物种类的需肥规律和特点,配兑成的肥液与灌溉水一起,通过可控管道系统供水、供肥,使水肥相融后,通过管道和滴头形成滴灌、均匀、定时、定量,浸润作物根系发育生长区域,使主要根系土壤始终保持疏松和适宜的含水量,同时根据不同的蔬菜的需肥特点,土壤环境和养分含量状况;蔬菜不同生长期需水,需肥规律情况进行不同生育期的需求设计,把水分、养分定时定量,按比例直接提供给作物。 托普水肥一体化智能灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。通过与供水系统有机结合,实现智能化控制。整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现对灌溉、施肥的定时、定量控制,节水节肥节电,减少劳动强度,降低人力投入成本。省力省时、提高产量。专用于连栋温室、日光温室、温室大棚和大田种植灌溉作业。水肥一体化构架图 系统功能: 1.运行状态实时监控 通过水位和视频监控能够实时监测滴灌系统水源状况,及时发布缺水预警;通过水泵电

流和电压监测、出水口压力和流量监测、管网分干管流量和压力监测,能够及时发现滴灌系统爆管、漏水、低压运行等不合理灌溉事件,及时通知系统维护人员,保障滴灌系统高效运行。 2.阀门自动控制功能 通过对农田土壤墒情信息、小气候信息和作物长势信息的实时监测。根据采集到的信息,结合当地作物的需水和灌溉轮灌情况制定自动开启水泵,实现无人职守自动灌溉,分片控制,预防人为误操作。 3.运维管理功能 节水灌溉自动化控制系统能够充分发挥现有的节水设备作用,优化调度,提高效益,通过自动控制技术的应用,更加节水节能,降低灌溉成本,提高灌溉质量,将使灌溉更加科学、方便,提高管理水平。 4.移动终端APP 方便管理人员通过手机等移动终端设备随时随地查看系统信息,远程操作相关设备。 托普水肥一体化智能灌溉系统亮点: 应用范围: 农业、土肥、植保、经作、园林等农技推广;

水肥一体化应用-草莓实验

自2003年起中国草莓的种植面积和产量已超过美国,成为世界草莓第一国。2010年全国草莓栽培面积约176万亩,总产量约200万吨,面积和产量均居世界首位。然而很多地方草莓生产仍采用大水大肥,全生育期灌水30~40次,每次灌水10~25方/亩,不仅浪费了大量的水肥资源,而且会造成土壤板结、地下水潜在污染等很多问题。从2005年开始北京市逐渐摸索完善草莓水肥一体化技术模式,可节水提质增效,并在全市范围内推广取得良好效果。 1、草莓水肥一体化技术的概念 草莓水肥一体化技术是指在有压水源条件下,借助施肥设施,在灌溉的同时将草莓不同生育期需要的肥水混合液,通过管道系统与灌水器适时适量地直接输送到草莓根部附近的土壤表面或土层中,实现水肥一体,满足作物对水分和养分需求。相对常规灌溉施肥可节水40%,节肥20%左右,省工,提高果实品质。草莓上常用的水肥一体化技术主要有滴灌施肥技术和微喷带施肥技术,一般与地膜覆盖相结合,减少地表蒸发,降低温室湿度,减少病虫害和杂草的发生,同时避免草莓直接接触土壤,提高草莓外观和品质。 2、草莓水肥一体化技术内容 (1)灌溉管路铺设。定植前需整地、施底肥、做畦、铺设滴灌、安装施肥器等。北京日光温室草莓一般做小高垄:垄宽40~50厘米,垄沟宽30~40厘米,垄高20~25厘米。草莓定植株距17~20厘米,每垄栽两行。在定植两行草莓株距中间位置处铺设一条或2条滴灌毛管(滴灌带或1条微喷带);滴头间距一般选用20cm为宜。 (2)滴灌施肥。定植时一般滴灌20~30方/亩;移栽至开花期每5~7天滴灌一次,每次滴灌6~10方/亩;开花至膨大期每10~15天滴灌一次,每次滴灌8~10方/亩,如墒情好可适当延长灌水间隔;采收期每6~10天滴灌一次,每次滴灌6~8方/亩;草莓拉秧前10~15天停止灌水。缓苗后天开始追肥,随水施肥25~28次,每次3~5公斤/亩,拉秧前20天停止追肥。肥料的可溶性要好,并且含有适量中微量元素,N : P2O5 : K2O比例前期约为1.2 : 0.7 : 1.1,中期约为1.1 : 0.5 : 1.4,后期约为1.0 : 0.3 : 1.7。根据滴灌肥料养分含量高低,适当增减每次加肥量。 每次加肥时须控制好肥液浓度,一般1方水中加入0.6~0.9公斤肥料。有条件的地方可埋设张力计,当张力计指针在绿色区域时,表示土壤水分状况最佳;在蓝色区域时,土壤水分基本能够满足作物生长的需水量;在红色区域时,表示土壤水分亏缺,需要对作物进行灌溉;在黄色区域时,表示水分太多,土壤透气性差,需要排水。 (3)注意事项

相关文档
最新文档