互感器的选择要求

互感器的选择要求
互感器的选择要求

互感器的选择要求:

电压互感器的额定一次电压、电流互感器的额定一次电流应满足电力负荷的要求,同时在规定的负荷范围内还应满足准确等级的要求;

各类计量装置的准确等级

测量、计量用电流互感器误差限值

保护用电流互感器误差限值

测量用电压互感器的电压误差和相位限值

保护用电压互感器的电压误差和相位限值

电流互感器的选择要求:

1、安装在电网中的电流互感器,不论是测量用还是保护用,均应满足装设地点的短路容量要求;

2、对于负荷比较稳定的回路,为满足保护装置和测量、计量仪表准确度的要求,电流互感器的额定一次电流宜取回路负荷电流的1.5~2倍,对于负荷波动范围较大、保护准确限制系数较大或短路容量较大的情况,为满足负荷和测量、计量仪表的要求,电流互感器宜采用S测量级,额定一次电流宜取回路负荷电流的4~5倍;

3、对多级次电流互感器,不同功能的级次,可以采用不同的变比,保护用级次额定一次电流可为正常负荷电流的2~5倍,测量、计量用级次额定一次电流宜取正常负荷电流的1.5~2倍;

4、测量、计量仪表对电流互感器二次输出容量的要求:

无论常规指示仪表或变送器,其电流回路功耗很小。所以,对户外式电流互感器,互感器连线电阻将起决定作用;对户内式电流互感器,由于连线很短,所以回路功耗更小,一般取5VA甚至更小一些即可满足要求。

测量仪表及变送器电流回路功耗

当采用机电一体式电能表时,考虑有功和无功计量,每套计量装置(含有功、无功电能表各一块)电流回路功耗最大不超过8.5VA,实测通常为5~7VA,再加上连线电阻,一般取10VA;如果采用电子式电能表,则回路负载主要由连线电阻决定。

电能表电流回路功耗

5、继电保护、自动装置对电流互感器二次输出容量的要求:

当继电保护、自动装置均采用电子式时,互感器的二次负载主要取决于二次连线阻抗,当采用其它形式时,根据各类设备的保护和自动装置电流回路最大功耗计算互感器的二次负载一般见下表:

保护用电流互感器绕组要求容量

6、连线电阻计算公式:R=ρ

式中: R ―连线电阻Ω

ρ―导线电阻率铜 0.02Ω·mm2/m (35℃)

l ―连线长度 m

S ―连线截面积 mm2

电压互感器的选择要求:

1、电压互感器应满足继电保护、自动装置、测量仪表及计量装置的要求;

2、对于接于三相系统相与地间的单相电压互感器,且需要同时向继电保护、自动装置、测量仪表和计量装置提供电压量时,一般应具有二个二次绕组和一个剩余电压绕组,其准确级组合为0.2/0.5/3P或0.2/0.5/6P;

3、对于接于三相系统相间的单相电压互感器,一般应具有二个二次绕组,其准确级组合为0.2/0.2、0.2/0.5或0.5/0.5;

4、对于接于三相系统相与地间或相间的计量专用电压互感器,其准确级组合一般为0.2/0.2或0.2/0.5;

5、电压互感器的二次负载:

由于电子元件的广泛应用,继电保护、测量仪表和计量装置的电压回路功耗已大大减小,已由从前的几十伏安、十几伏安降低到几伏安,减轻了电压互感器的二次负担,也有利改善电压互感器的负载特性。根据当前各类继电保护、测量仪表和计量装置的厂家推荐,并经现场实测,每个元件、每个电压等级的功耗一般不超过下表范围:

电压互感器各类负载的功耗

名称继电保护测量仪表计量装置功耗 3 ~ 5VA 2 ~ 4VA 4 ~ 6VA

备注下限为110kV及以下等级

6、电压互感器二次导线截面和长度计算:

电压互感器二次电缆截面和长度按允许电压降来选择,不同负载的允许电压降见下表:

不同负载允许的电压降

负载类别或名称测量准确等级允许电压降(V)Ⅰ级电能表0.5级0.20Ⅱ、Ⅲ级电能表 1.0级0.5

测量仪表 1.0级 1.0继电保护和自动装置3P、6P 3.0

电压互感器二次负载电压降计算公式:ΔU=Kc··

式中: Kc ―接线系数对Y、v,V、v 接线Kc=

对Y、d,V、d 接线 Kc=3

对YN,Yn 接线 Kc=1

P ―电压互感器的线负载 VA;

U ―电压互感器的二次线电压 V 取100V;

ρ―导线电阻率铜 0.02Ω·mm2/m (35℃) γ== 50m/Ω· mm2

L ―导线长度 m ;

S ―导线截面积 mm2;

由上式可以得出电压互感器二次导线允许长度与二次负载和导线截面的关

系如下:

L≤= × 5 × 103 m

当ΔU=0.20% 即0.20V时

对Y、v,V、v 接线L≤S m

对Y、d,V、d 接线L≤S

m

对YN,yn接线L≤S

m

式中 Px ―每相负载

如何正确选择及使用电流互感器,民熔

如何正确选择及使用电流互感器,民熔 1.前言近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。 电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以策各位读者朋友。 2电流互感器的原理互感器,一般W14W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。 原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通m的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变m,但U1一定时,m是基本不变的,即保持IOW1 不变,因为I2的出现,必使原边电流I1增加,以抵消I2W2的去磁作用,从而保证IOW1不变,故有:IW=IW+(-IW)(1) 即IO=I1+WI/W(2)在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得:IW=-I2W2 有:T1/T2=-W2/W1 3电流互感器的选择3.1电流互感器选择与检验的原则1)电流互感器额定电压不小于装设点线路额定电压;2)根据一次负荷计算电流IC选择电流互感器变化;3)根据二次回路的要求选择电流互感器的准确度并校验准确度;4)校验动稳定度和热稳定度。 3.2电流互感器变流比选择电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=Iln/I2n ~N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1电流互感器准确级和误差限值3.3电流互感器准确度选择及校验所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。 准确度选择的原则:计费计量用的电流互感器其准度为0.2~0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0-3.0级电流互感器。为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。准确度校验公式:52≤s2n。 二次回路的负荷1:。取决于二次回路的阻抗Z2的值,则:S2=In'|z.|~In-(Z|zil+R+Rc) 或SV~Si+Ian'(R,+Rx)式中,Si、Zi为二次回路中的仪表、继电器线圈的额定负荷和阻抗,RXC为二次回路中所有接头、触点的接触电阻,一般取0.12,L为二次回路导线电阻,计算公式化为:Rm=L/(r×s)。

电流互感器的选型

电流互感器的选型 在电压互感器选型的时候需要依据一次接线方式(包括Y型连接和V 型连接)、一次电压的用电等级、二次线路对容量的要求以及对变换精度的要求来作出选择选择。 电流互感器主要装配于不同的开关设备当中,电流互感器的型号不同,电流互感器在结构上往往也产生较大差异(包括铜排搭接形式、铁心、外形等及动热稳定的耐受能力)。例如中置式手车柜配备的电流互感器多为LZZBJ9或AS12等型号,然而配备固定柜的型号会有很多。 同一型号与规格的电压互感器不相同之处也会有很多。一般主要由于变比不同、二次线圈的容量、保护线圈以及计量线圈精度的不同会出现多种组合。在选择电流互感器的变比时,应该首先得到实际负载额定电流,这种电流最好处于电流互感器测量范围的65%-85%处。例如:额定电流为70A,就应该选择100/5变比的电压互感器。 电流互感器变比100/5(100/5的意思是一次电流100A时,产生的二次输出电流为5A,这个数值描述的是变比数值、额定测量数值和额定输出值。电流互感器和电流表的变比是必须选用的。)表示在100*120%的电流范围内,测量的精度可以满足电流互感器铭牌上所标识的测量精度,例如:0.2级(测量精度误差为0.2%),0.5级(测

量精度误差为0.5%)。如果超过该电流的测量结果就可能与实际电流产生较大误差。如果过高的电流进入铁心的饱和区,测量的数据就没有意义了。 1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载串联; 2)按被测电流大小,选择合适的变化,否则误差将增大。同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故; 3)二次侧绝对不允许开路 4)为了满足测量仪表、继电保护、断路器失灵判断和故障录波等装置的需要,在发电机、变压器、出线、母线分段断路器、母联断路器、旁路断路器等回路中均设具有2~8个二次绕阻的电流互感器。对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置。

电流互感器和电压互感器

1.电流互感器 1.1 5A还是1A? 电流互感器的作用是将一次设备的大电流转换成二次设备使用的小电流,其工作原理相当于一个阻抗很小的变压器。其一次绕组与一次主电路串联,二次绕组接负荷。电流互感器的变比一般为X:5A(X不小于该设备可能出现的最大长期负荷电流),如此即可保证电流互感器二次侧电流不大于5A。 在超高压电厂和变电站中,如果高压配电装置远离控制室,为了增加电流互感器的二次允许负荷,减小连接电缆的导线界面及提高精确等级,多选用二次额定电流为1A的电流互感器。相应的,微机保护装置也应选用交流电流输入为1A的产品。 根据目前新建110kV变电站的规模及布局,绝大多数都是选用二次侧电流为5A的电流互感器。 1.2 10P10、0.5还是0.2S?在变电站中,电流互感器用于三种回路:微机保护、测量和计量,而这三种回路对电流互感器的准确级要求是不同的。根据准确级的不同可将电流互感器的绕组划分为10P10(保护)、0.5(测量)和0.2S(计量)。用于测量和计量的绕组着重于精度,用于保护的绕组着重于容量,以避免铁芯饱和影响实际变比。 1.3 星形还是三角形? 电流互感器二次绕组的接线常用的有三种,完全星形接线、不完全星形接线和三角形接线,如图2-1所示。 图2-1 完全星形接线:可以反映单相接地故障、相间短路及三相短路故障。目前,110kV线路、变压器、10kV电容器等设备配置的电流互感器均采用此接线方式。 不完全星形接线:反映相间短路及A、C相接地故障。目前,35kV及10kV架空线路在不考虑“小电流接地选线”功能(以后简称“选线”)的情况下多采用此接线方式,以节省一组电流互感器;否则,必须配置三组电流互感器,以获得零序电流实现“选线”功能。电缆出线时,配置了专用的零序电流互感器实现“选线”功能,也按此方式配置。 三角形接线:以往,这种接线用于采用Y,d11接线的变压器的差动保护,使变压器星形侧二次电流超前一次电流30°,从而和变压器三角形侧(电流互感器接成完全星形)二次电流相位相同。目前,主变微机差动保护本身可以实现因主变组别造成的相位角差的校正,主变星形侧和三角形侧电流互感器均采用完全星形接线。

电流互感器二次容量的选型及计算

电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。 一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。 电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA 或30VA,特殊情况可选的更大一些。 电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。 考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA或10VA就可以满足要求。 建议按三个方面综合考虑: 1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想; 2、计量用的互感器就选精确度高点(0.5级足矣),测量用的可以更低点; 3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点: 1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来; 2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件; 3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器; 4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多; 5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。电流互感器二次容量的计算及选择 1 引言 电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。 电流互感器的额定一次电流根据不同回路的正常电流会有不同,但电流互感器额定二次电流却是标准化的,只有1A及5A两种,本文就这两种电流分别计算测量及保持用电流互感器在不同的传输距离下所需的二次容量。 2 电流互感器二次负荷的计算 电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;另一部分是连接导线。计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。 电流互感器的二次负荷可以用阻抗Z2(Ω)或容量S(VA)表示。二者之间的关系为 S=I2*I2*Z2 当电流互感器二次电流为5A时,S=25 Z2 当电流互感器二次电流为1A时,S=Z2 电流互感器的二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100VA。

电流互感器与电能表的配合选用

电能表与电流互感器的合理选用 低压计量装置在实际工作中常常出现电流互感器(TA)和电能表选用不当、联用不妥的现象,给企业造成很大损失。特别在农村用电中,存在问题更为普遍。例如,有一个用电户安装了一台20kV·A变压器,电工在计量装置中配3只50/5A的TA,再联用一只DT8—25(50)的电能表,一个月下来只计得用电量450kW·h左右。像TA变比选大、配小、准确级次不够,电能表容量偏大、偏小等更是常见。笔者结合工作实际,针对计量装置的一些技术问题和有关规章,谈一些肤浅认识,以供大家参考。 1 TA的合理选用 1.1 本地区用电户多属第Ⅳ类、第Ⅴ类电能表计量装置,老规程要求TA准确级次为0.5级就可以,而新的DL/T448—2000《电能计量装置技术管理规程》要求,应配置准确级次为0.5S级的TA。 1.2 现在安装的低压电流互感器多采用穿心式,灵活性大,可根据实际负荷电流大小选择变比,但确定穿绕匝数要注意铭牌标注方法,否则容易出错。通常穿绕匝数是以穿绕入互感器中心的匝数为准,而不是以绕在外围的匝数为准,当误为外围匝数时,计算计量电能将会出现很大差错。 1.3 TA如何选择,简单说来就是怎样确定额定一次电流的问题。它应“保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少应不小于30%”。如有一台100kV·A配变供制砖机生产用电,负荷率为70%左右,那么在正常生产时的实际负荷电流约100A,按上面所述标准选择,就应该配置150/5A规格的TA,这样就保证了轻负荷时工作电流不低于30%额定值,同时也满足了对TA的二次侧实际负荷的要求。1.4 TA变比选大,在实际工作中常发生。当用电处在轻负荷时,实际负荷电流将低于TA的一次额定电流的30%,特别当负载电流低到标定电流值的10%及以下时,比差增加,并且是负误差。所以,为了避免TA长期运行在低值区间,对于农村负荷或变化较大的负荷,宜选用高于60%额定值,只要最大负荷电流不超过额定值的120%即可。 1.5 TA变比选小,这种状况仅发生在电工对实际负荷调查不清,或用电户增加了用电负荷的时候。曾有书上介绍TA最大工作电流可达其一次额定电流值的180%,这与DL/T448—2000规程规定不符。TA长时间过负荷运行也会增大误差,并且铁心和二次线圈会过热使绝缘老化。所以,工作人员应经常测试实际负荷,及时调整TA变比。 2 电能表的合理选用 2.1 新规程规定,对于Ⅳ类、Ⅴ类计量装置应选用准确级次2.0级的有功电能表。无功电能表用于Ⅳ类计量装置时配3.0级,而对于第Ⅴ类计量装置没有作规定。 2.2 许多资料(也包括老的电能计量规范)介绍或规定,电能表应工作在50%~100%标定电流范围内,误差才小。当它工作在30%轻载负荷以下,误差变化很大。特别是工作在标定电流10%以下时,因电能表的补偿装置调整限制,不能保证其准确度,超出允许范围的负误差更大。所以,新颁规程提出“为提高低负荷计量的准确性,应选用过载4倍及以上的电能表”。目前,D86系列表属此类型,其计量负荷范围宽,正在广泛推广使用。2.3 在低压供电线路中,老的规程规定负荷电流为80A及以下时,宜采用直接接入式电能表。新规程作了修正,降为负荷电流为50A及以下宜采用直接接入式电能表,而且标明选配方法:“电能表的标定电流为正常运行负荷电流的30%左右。”例如,正常运行负荷电流为30A,按30%选择它的标定电流就是9A,规范D86系列表就是选用10(40)A规格表。这样,既保证了在轻负荷运行时不小于30%标定电流,也满足了满负荷运行时不超过它的最大电流。 3 TA与电能表的最优联用 3.1 新规程规定“经电流互感器接入的电能表,其标定电流宜不超过电流互感器额定二

如何正确选择及使用电流互感器

浅谈如何正确选择及使用电流互感器 1.前言 近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以飨各位读者朋友。 2电流互感器的原理 互感器,一般W1≤W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通Φm的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变Φm,但U1一定时,Φm是基本不变的,即保持I0W1不变,因为I2的出现,必使原边电流Il增加,以抵消I2W2的去磁作用,从而保证I0W1不变,故有:I1W1=I0W1+(-I2W2) (1) 即I0=I1+W2I2/W1 (2) 在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得: I1W1=-I2W2 有:Il/I2=-W2/W1 3 电流互感器的选择 3.1 电流互感器选择与检验的原则 1)电流互感器额定电压不小于装设点线路额定电压; 2)根据一次负荷计算电流IC选择电流互感器变化; 3)根据二次回路的要求选择电流互感器的准确度并校验准确度; 4)校验动稳定度和热稳定度。 3.2 电流互感器变流比选择 电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=I1n/I2n ≈N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1 电流互感器准确级和误差限值 3.3 电流互感器准确度选择及校验 所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。

电流互感器的选择

电流互感器的选择 电流互感器的选择和配置应按下列条件: (1)形式的选择:根据安装的地点及使用条件,选择电流互感器的绝缘结构、安装方式、一次绕组匝数等。 对于6-20KV 屋内配电装置,可采用瓷绝缘结构和树脂浇注绝缘结构的电流互感器。对于35KV 及以上配电装置,一般采用油浸式瓷箱式绝缘结构的独立式流互感器。有条件时,应尽量采用套管式电流互感器。选用母线式互感器时,应该校核其窗口允许穿过的母线尺寸。 (2)额定电压:电流互感器一次回路额定电压不应低于安装地点的电网额定电压,即:U c ≥U e (3)额定电流:电流互感器一次回路额定电流不应小于所在回路的最大持续工作电流,即: I le >I gmax (4)准确等级:要先知道电流互感器二次回路所接测量仪表的类型及对准确等级的要求,并按准确等级要求高的表计来选择。 (5)二次负荷的效验:互感器按选定准确级所规定的额定容量S 2N 应大于或等二次侧所接负荷 ,即 S 2e ≥S 2 其中 S 2 =I 2e Z 2 S2e=I 2e Z 2 z 2 =r v +r f +r d +r e 式中,rv 、rf 分别为二次侧回路中所接仪表和继电器的电流线圈电阻(忽略电抗); re 为接触电阻,一般可取0. 1 Ω;rd 为连接导线电阻。 (6)热稳定:电流互感器热稳定能力常以1s 允许通过的热稳定电流It 或一次额定电流I1N 的倍数Kt 来表示,热稳定校验式为:(K r I le )2≧I 2∝t dz 式中I le 为电流互感器一次侧额定电流,K r 为电流互感器的1s 热稳定倍数,K r =Ir/I le ,由制造厂家提供。 (7)动稳定: 内部动稳定校验式为: i es ≥i sh 或 12N e s s h I K i 式中i es 、K es 是电流互感器的动稳定电流及动稳定电流倍数,有制造厂提供。 外部动稳定校验式为: Fy ≧Fmax

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择 摘要:电流互感器的二次电流有 1A及5A两种,选用不同的二次电流,则二次的负荷及容量不同,所用的控制电缆截面也不同。 关健词:电流互感器;二次负荷;二次容量 1 引言 电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。 电流互感器的额定一次电流根据不同回路的正常电流会有不同,但电流互感器额定二次电流却是标准化的,只有1A及5A两种,本文就这两种电流分别计算测量及保持用电流互感器在不同的传输距离下所需的二次容量。信息来源: 2 电流互感器二次负荷的计算 电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;另一部分是连接导线。计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。 电流互感器的二次负荷可以用阻抗Z2(Ω)或容量S(VA)表示。二者之间的关系为 S=I2*I2*Z2 当电流互感器二次电流为5A时,S=25 Z2 当电流互感器二次电流为1A时,S=Z2 电流互感器的二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100VA。 2.1 测量用的电流互感器的负荷计算。信息来源: 一般在工程计算时可负略阻抗之间的相位差,二次负荷Z2可按下式计算信息来源: Z2=Kcj.zkZcj+Klx.zkZlx+Zc 信息来源: 式中:Zcj-------测量表计线圈的阻抗(Ω) Zlx-------连接导线的单程阻抗(Ω),一般可忽略电抗,仅计算电阻。

电流互感器的参数选择计算方法

电流互感器的参数选择计算 本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。 一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值) 1、计算二次极限电动势: E s1=K alf I sn(R ct+R bn)=15×5×(0.45+1.2)=123.75V 参数说明: (1)E s1:CT额定二次极限电动势(稳态); (2)K alf:准确限制值系数;

(3)I sn:额定二次电流; (4)R ct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值: 5A产品:1~1500A/5 A产品0.5Ω 1500~4000A/5 A产品 1.0Ω 1A产品:1~1500A/1A产品6Ω 1500~4000A/1 A产品15Ω 当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。 (5)R bn:CT额定二次负载,计算公式如下: R bn=S bn/ I sn 2=30/25=1.2Ω; ——R bn:CT额定二次负载; ——S bn:额定二次负荷视在功率; ——I sn:额定二次电流。 当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT额定二次负载 2、校核额定二次极限电动势 有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。 E s1=127.5V

路电流下CT裕度是否满足要求) 1、计算最大短路电流时的二次感应电动势: E s=I scmax/K n(R ct+R b)=10000/600×5×(0.45+0.38)=69.16V 参数说明: (1)K n:采用的变流比,当进行变比调整后,需用新变比进行重新校核; (2)I scmax:最大短路电流; (3)R ct:二次绕组电阻;(同上) 当通过改变CT二次绕组接线方式调大CT变比时,应重新测量CT额定二次绕组电阻 (4)R b:CT实际二次负荷电阻(此处取实测值0.38Ω),当有实测值时取实测值,无实测值时可用估算值计算,估算值的计 算方法如下: 公式:R b = R dl+ R zz ——R dl:二次电缆阻抗; ——R zz:二次装置阻抗。 二次电缆算例: R dl=(ρl)/s =(1.75×10-8×200)/2.5×10-6 =1.4Ω ——ρ铜=1.75×10-8Ωm; ——l:电缆长度,以200m为例; ——s:电缆芯截面积,以2.5mm2为例; 二次装置算例:

高压电压互感器选型指南

高压电压互感器选型指南 使用条件: 1、温度-25~40℃; 2、海拔高度≤1000m; 3、地震烈度Ⅷ(8)度; 4、污秽等级:户内不低于2级,户外不低于3级; 5、户内需考虑:(1)环境空气无明显灰尘、烟、腐蚀性气体、蒸汽或盐等污秽;(2)湿度条件:24h内测得的相对湿度平均值不超过95%;24h内水蒸气压力平均不超过2.2kPa;一个月内相对湿度平均值不超过90%;一个月内水蒸气压力平均不超过1.8kPa。 6、户外需考虑:(1)24h期间测得的环境气温平均值不超过40℃;(2)日照辐射达到1000W/m2(晴天中午)时应予以考虑;(3)环境空气可能有灰尘、烟、腐蚀性气体、蒸汽或盐污秽;(4)风压不超过700Pa(相当于34m/s);(5)应考虑出现凝露和降水。 7、特殊使用条件(另作考虑) 产品铭牌标志: 1、制造单位名及其所在地名或国名(出口产品),以及其他容易识别制造单位的标志、生产序号和日期; 2、互感器型号及名称、采用标准的代号、计量许可标志及计量许可批号; 3、额定一次电压和额定二次电压(例如:35/0.1kV); 4、额定频率(例如:50Hz); 5、额定输出和其相应的准确级(例如:50V A 0.5级); 6、设备最高电压Um(例如40.5kV);

7、额定绝缘水平;额定电压因数和相应的额定时间; 8、绝缘耐热等级; 9、二次绕组性能参数; 10、设备种类:户内或户外; 11、结构型式:油浸式或全封闭浇注式 12、一次绕组带熔断器保护; 下表中负载功率因数取cosΦ=0.8(滞后),产品性能要符合标准:GB1207-2006《电压互感器》。

如何选择合适的电流互感器

如何选择合适的电流互感器,用以设计高性能和经济的电功率测量表2009-9-15 10:01:52 Bertrand KLAIBER Pierre TURPIN 供稿 摘要:电功率计算包括根据不同应用领域的具体电气和机械特性进行电流测量。在实芯电磁感应技术已经能够暂时以低成本提供良好性能的同时,一些钳形互感器最近在技术上取得了重大进展,重新彰显了其在涉及将功率表加进现有设备进行更新等应用场合方面的价值。钳形互感器并非新鲜出炉,但是在过去这些互感器又大又笨重,所采用的传统技术有着诸多弊病。这些互感器不是采用昂贵的材料制造就是在精确度方面性能很差。在这种情况下,不确定度指的不是读数本身,而是线性度、输出电流的移相误差和读数超时的持续性。下文对传统的电流感应技术和一些创新技术进行了分析,侧重这些互感器在不同功率测量应用领域的优点和缺点。 功率测量应用 电功率测量已经成为1)电源管理、2)用电控制3)状态监控等工业领域中众多应用场合的重中之重。 1)由于电源管理是所有工业和商业活动的根本,因此是基本的功率测量应用领域。电源管理主要侧重发电和配电公司,但是也兼顾工业专业人士,这些人员通过监控其电力质量和功率因数来实现对其设备征收的费率进行控制,尤其是当操作低功率因数的负载时。 2)由于实施能量二次计量可以对能量成本进行跟踪并对其进行分配,同时也对电量消耗进行进一步的分析,从而提高其效率,因此逐步引起设备和工厂经理的关注。电源选型和计费通常取决于峰值消

耗,对整个系统进行动态管理可以降低运营成本并防止故障发生。了解和管理主要消费对象以及确定通常由于故障电器或设备用量不足(比如不合适的照明、加热或空气调节)而造成的能量浪费需要对能量进行二次计量。 3)状态监控要求对故障进行及时检测并做出反应,从而防止对设备造成损坏或临界进程发生中断。电功率测量给出一套反映电机负载特性(比如传送机、轴承、泵、切削刀具等)的综合信息(电流、有效功率、功率因数、频率等)。通常情况下,这种监控对异常情况的检测速度要比传统互感器快,比如温度、压力、振荡等。及时对这些电气参数的变化进行分析甚至能够实现对故障进行估计,从而可以计划有效的预先维护。 功率测量不仅在工业领域受到关注,在监控商业和住宅负载方面也是如此。不管从成本还是从环境保护方面来考虑,节约能源在全球日益成为公众关注的话题。关键问题是如何实现能源消耗实质性的持续降低。最可靠的解决方案是要了解用户如何消耗他们的能量以及如何使其对这些能量负责。锁定该领域仍然是一个工业课题,而且日益成为政府机构的关注重点。许多国家正在开展各种减少能源消耗的运动并且制定各种激励预算。这些激励措施的启用要求各种机构开发各种精确的测量性能。 电流互感器要求 工程师设计功率监控系统应该根据非常具体的特性谨慎选择所需要的电流互感器:

电流互感器及电压互感器型含义大全完整版

电流互感器及电压互感 器型含义大全 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

电流互感器及电压互感器型号含义说明 PT型号含义说明 第1位:J—PT 第2位:D—单相;S—三相;C—串级;W—五铁芯柱 第3位:G—干式;J—油浸;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相 第4位:W—五铁芯柱;B—带补偿角差绕组; 连字符号后面:GH—高海拔;TH—湿热区 CT型号含义说明 第1位:L—CT 第2或3位:A—穿墙式;M—母线型;B—支柱式;C—瓷绝缘;S—塑料注射绝缘;D—单匝贯穿式;W—户外式;F—复匝式;G—改进型;Y—低压式;Z—浇注绝缘 式支柱式;Q—母线型;K—塑料外壳;J—浇注绝缘或加大容量 第4或5位:B—保护级;C—差动保护;D—D级;J—加大容量;Q—加强型 例: LZZBJ9-10A3G L 电流互感器 Current transformer

Z 支柱式 Post type Z 浇注式 Casting type B 带保护级 Wity protective class J 加强型 Reinforced type 9 设计序号 Design Number 10 额定电压(kV) Highest voltage for equipment(kV) A3G 结构代号 Structure code LFZ-10Q L 电流互感器 Current transformer F 复匝式 Z 浇注式 Casting type 10 额定电压(kV) Highest voltage for equipment(kV) Q 结构代号 Structure code

电流互感器选择和应用原则

电流互感器选择和应用原则 1、额定一次电压和电流 电流互感器的额定一次电压应等于或大于回路的额定一次电压,绝缘水平应满足有关标准。 电流互感器的额定一次电流(I pn )应根据其所属一次设备的额定电流或最大工作电流选择,并应能承受该回路的额定连续热电流(I cth )、额定短时热电流(I th )及动稳定电流(I dyn )。 同时,额定一次电流的选择,应使得在额定变流比条件下的二次电流在正常运行和短路情况下,满足该回路保护装置的整定值选择性和准确性要求或满足计量及测量准确性要求。 额定一次电流(I pn )的标准值为:10、12.5、15、20、25、30、40、50、60、75以及它们的十进位倍数或小数。 2、额定二次电流及负荷 2.1 额定二次电流 电流互感器额定二次电流(I sn )有1A 和5A 两类。对于新建发电厂和变电所,各级电压的电流互感器额定二次电流宜统一选用1A ,以减轻电流互感器二次负荷,二次电缆截面可减小,节约投资。如扩建工程原有电流互感器采用5A 时,额定二次电流可选用5A 。 一个厂站内的电流互感器额定二次电流允许同时采用1A 和5A 。但同一电压等级的电流互感器的额定二次电流一般采用相同电流值。 2.2 二次负荷 电流互感器的二次负荷可用阻抗Z b (Ω)或容量S b (VA)表示。二者之间的关系为: 当电流互感器额定二次电流I sn 为5A 时,数值S b =25Z b ,当电流互感器额定二次电流I sn 为1A 时, S b =Z b 。 保护用电流互感器的准确级和允许极限电流,都与二次负荷有关,需要合理选择二次负荷额定值并进行相应的验算。 由于电子式仪表和微机继电保护的普遍应用,互感器额定二次电流广泛采用1A ,以及保护和控制下放就地等因素,二次回路负荷大大降低,相应的电流互感器二次负荷也宜选用较低的额定值,以便降低造价和改善其结构及性能(如采用倒立式结构)。 电流互感器的二次负荷额定值(S bn ,以VA 表示)可根据需要选用2.5、5、7.5、10、15、20、30、40VA 。在某些特殊情况,也可选用更大的额定值。 2sn b b I S Z

开关柜中零序电流互感器的选用原则

开关柜中零序电流互感器设计选型的探讨 Study of Selection for Zero Sequence Current T ransformer witchin Switchgear [摘要]本文简单介绍了开关柜内配零序电流互感器(适用于0.38~66KV),分析了它的特性。初步探讨了如何选择合适的零序电流互感器,以期达到最佳的使用效果。 [Abstract] This article brief introduce the zero sequence current transformer within Switchgear, suitable 0.38~66kV, analyses the characteristic of it. Discuss how to select the suitable zero sequence current transformer, thereby,reach the best effect. [关键词]零序电流互感器;开关柜;小电流接地选线装置;继电器;微机保护;变比; 容量; 准确级[Key Words] Zero Sequence Current Transformer; switchgear; Low Current Grounding Selector;Relay;Microcomputer Protection;Transformation ratio;Capacity;Accuracy class 1 概述 近年来,随着整机开关柜市场的逐步扩大,在中压电力系统的项目中,我们开关柜的设计人员经常会遇到开关柜内配零序电流互感器的选择问题,不同的零序电流互感器具有各自不同的特性,它们的应用环境也有所不同。如何在开关柜的设计中合理选用零序电流互感器就成为开关柜设计人员经常遇见的问题。本文就这一问题进行初步的探讨。 2零序电流互感器特性及分类 2.1 零序电流互感器及其特性 零序电流互感器是用来检测零序电流的,因此可以称之为零序电流过滤器,它的构造与普通穿心式电流互感器相仿,只是它的一次绕组是被保护系统的三个相的导线(三个相的导线一起穿过互感器环形铁心),二次绕组反应一次系统的零序电流。[1]在中性点不直接接地系统中,零序电流互感器与接地继电器等构成单相接地保护装置。系统正常运行时,通过零序电流互感器一次侧三相电流的矢量和为零,即Ia+Ib+Ic =0。此时零序电流互感器处于非工作状态,当发生单相接地故障(如A相)时,Ia+Ib+Ic=3Ioc,3Ioc 等于B相和C相的对地电容电流的向量和,铁芯中出现零序磁通,该磁通在二次绕组感应出电动势,二次电流流过接地继电器使之动作。 简单的说,零序电流互感器在电力系统产生零序接地电流时与继电保护装置或信号装置配合使用,使装置元件动作实现保护或监控功能。 2.2 零序电流互感器的分类 按照安装方式的不同,分整体式(如LJ、LJZ)和开合式(如LXK)两类,外形见图1。 按照产品结构的不同,分母线式(如LJM)和电缆式(如LJ、LJZ,LXK)两类,外形见图1。 按照配合保护的不同,分小电流接地选线装置用,继电器用,微机保护用三类。 LJ型LJZ型LJK型LXK型LJM型 图1 零序电流互感器

DL866-2004电流互感器和电压互感器选择及计算导则

目次 前言 1范围 2规范性引用文件 3术语、定义和符号 3.1电流互感器术语和定义 3.2电压互感器术语和定义 3.3符号 4电流互感器应用的一般问题 4.1基本特性及应用 4.2电流互感器的配置 4.3一次参数选择 4.4二次参数选择 5测量用电流互感器 5.1类型及额定参数选择 5.2准确级选择 5.3二次负荷选择及计算 6保护用电流互感器 6.1性能要求 6.2类型选择 6.3额定参数选择 6.4准确级及误差限值 6.5稳态性能验算 6.6二次负荷计算 7TP类保护用电流互感器 7.1电流互感器暂态特性基本计算式 7.2TP类电流互感器参数 7.3TP类电流互感器的误差限值和规范 7.4TP类电流互感器的应用 7.5TP类电流互感器的性能计算 8电压互感器 8.1分类及应用 8.2配置和接线 8.3一次电压选择 8.4二次绕组和电压选择 8.5准确等级和误差限值 8.6二次绕组容量选择及计算 8.7电压互感器的特殊问题 附录A(资料性附录)TP类电流互感器的暂态特性 附录B(资料性附录)测量仪表和保护装置电流回路功耗 附录C(资料性附录)P类或PR类电流互感器应用示例 附录D(资料性附录)TP类电流互感器应用示例 附录E(资料性附录)电子式互感器简介 前言 随着超高压系统的发展和电力体制的改革,继电保护系统和测量计费系统对电流互感器和电压互感器提出了许多新的和更严格的要求,现有的选择和计算方法已不能适应。为了规范电流互感器和电压互感器的选择和计算方法,统一对产品开发的技术要求,解决设计应用存在的问题,特制定此标准。

有关电流互感器和电压互感器的国家标准和行业标准对互感器的技术规范和订货技术条件作了规定,本标准是对电力工程中如何选定这些规范和需要进行的相应计算方法作出规定,并对新产品开发提出要求。 本标准主要适用于工程广泛使用的常规电流互感器和电压互感器。对于新开发的尚未普遍应用的新型电子式互感器,仅在附录中给出简要介绍。 本标准的附录均为资料性附录。 本标准由中国电力企业联合会提出。 本标准由电力行业电力规划设计标准化技术委员会归口。 本标准起草单位:国电华北电力设计院工程有限公司、中国电力建设工程咨询公司。 本标准起草人:袁季修、卓乐友、盛和乐、吴聚业、李京。 本标准由电力行业电力规划设计标准化技术委员会负责解释。

400V低压电流互感器技术规范

江苏省电力公司低压电流互感器技术规范 1、总则 本规范适用于江苏省电力公司系统内交流50Hz、额定电压0.38kV的计量用电流互感器(浇注式)。 本技术规范未明确之处,参照引用标准中相关标准执行。 供方提供的设备运行使用寿命应不小于30年,并提供设备投运后3年的质保期,投标报价应包含质保期内系统的维护费用,包括硬件更换、维修,定期检查,保养,系统软件升级,以及卖方维修人员的其它人工费用。设备软件及所有损坏(人为或不可抗力除外)的零部件所产生的费用由卖方支付。如采用全寿命周期招标,则产品保质期覆盖全寿命周期。 2、引用标准 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 GB1208 电流互感器 JJG313 测量用电流互感器检定规程 DL/T725 电力用电流互感器订货技术条件 DL/T448 电能计量装置技术管理规程 DL/T5137 电测量及电能计量装置设计技术规程 GB/T16934 电能计量柜 3、技术要求 3.1使用环境条件 3.1.1 环境温度 最高:40℃ 最低:-20℃ 3.1.2 使用条件所涉及到的海拔高度、风速、环境湿度、耐受地震能力、污秽等级、系统接地方式等应符合DL/T725的有关规定。 3.2 额定参数

3.2.1 额定一次电流标准值的选择 额定一次电流标准值宜在下述范围内进行选择: 75A、100A、150A、200A、250A、300A、400A、500A、600A、800A、1000A、1200A。 3.2.2 额定二次电流标准值 5A 3.2.3 准确度等级 0.2S级 3.2.4 额定二次负荷 10V A、15V A,功率因数:0.8~1.0 3.3 动热稳定要求 应符合GB1208和DL/T725的有关规定。 3.4 绝缘要求 应符合GB1208和DL/T725的有关规定。 3.5 误差特性 3.5.1 互感器检定误差控制 电流互感器二次计量绕组在接额定负荷和1/4额定负荷时,其检定误差应不大于JJG313规定误差限值的60%。 对于电流互感器额定一次电流值小于1200A规格时,在200%额定一次电流标准值时的比值差和相位差应不超过120%额定一次电流下JJG313规定的限值。 二次绕组输出电流波形失真度不大于1%。 3.5.2 检定互感器误差时二次负荷范围 互感器(计量绕组)应在25%~100%额定负荷下检测基本误差;额定二次电流为5A 的电流互感器最低下限负荷为2.5V A。 3.5.3 检定电流互感器误差时剩磁的影响 在电流互感器充磁和退磁两种情况下,剩磁影响不得大于误差限值的三分之一。 3.5.4 在高于下限使用温度5K和上限温度的情况下,施加50%额定电流120min,两种情况和常温条件情况的误差变化量不得大于误差限值的三分之一。误差测量时间不大于2min。 3.6 试验

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法 电流互感器的选用原则及方法1、额定电压电流互感器额定电压应大于装设点线路额定电压。 2、变比应根据一次负荷计算电流IC选择电流互感器变比。电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150、2×a/C)等多种规格,二次侧额定电流通常为1A或5A。其中2×a/C表示同一台产品有两种电流比,通过改变产品的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2×a/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 3、准确级应根据测量准确度要求选择电流互感器的准确级并进行校验。下表为不同准确级电流互感器的误差限值: 准确级选择的原则:计费计量用的电流互感器其准确级不低于0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0—3.0级电流互感器。为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。准确度校验公式:S2≤S2n。 二次回路的负荷l:取决于二次回路的阻抗Z2的值,则: S2=I2n2︱Z2︱≈I2n2(∑︱Zi︱+RWl+RXC) 或S2V1≈∑Si+I2n2(RWl+RXC) 式中,Si、Zi为二次回路中的仪表、继电器线圈的额定负荷和阻抗,RXC为二次回路中所有接头、触点的接触电阻,一般取0.1Ω,RWL为二次回路导线电阻, 计算公式化为:RWL=LC/(r×S)。 式中,r为导线的导电率,铜线r=53m/(Ωmm2),铝线r=32m(Ωmm2),S为导线截面积(mm2),LC为导线的计算长度(m)。设互感器到仪表单向长度为L1,

相关文档
最新文档